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Abstract—We consider communication over the binary erasure
channel (BEC) using low-density parity-check (LDPC) code ad
belief propagation (BP) decoding. The bit error probability for
infinite block length is known by density evolution [3] and it is
well known that a difference between the bit error probability
at finite iteration number for finite block length n and for
infinite block length is asymptotically a/n, where « is a specific
constant depending on the degree distribution, the iteratin
number and the erasure probability. Our main result is to derive
an efficient algorithm for calculating « for regular ensembles. The
approximation using « is accurate for (2, r)-regular ensembles
even in small block length.

I. INTRODUCTION

the small block length region and the large block lengthaegi
This paper deals with the bit error probability for large dXo
length both below and above threshold with finite iteration
number.

For infinite iteration number, the asymptotic analysis for
error floor was shown by Amuraoui as followind [8]:

1 N0 (e 1 1
P = -], for ,
b(n, €, 00) 21— MN(0)p'(1)e n+0 n €< cpr
asn — oo. This equation means that for ensembles with>
0. L Np' (e 1

BTN (1) is a good approximation oPy(n,e, 00)

. . . _ _ wheren is sufficiently large.
In this paper, we consider irregular low-density parity- o main result is following

check (LDPC) codes[[1] with a degree distribution paif, yeqylar LDPC codes with finite iteration number
(A, p) [2]. The bit error probability of LDPC codes over
the binary erasure channel (BEC) under belief propagati B 1 1

(BP) decoding is determined by three quantities; the bIoc%E(n’e’t) B Pb(oo’e’t)Jra(e’t)ﬁ to (ﬁ) ' for anye,
length n, the erasure probability and the iteration number

t. Let Py(n,c,?) denote the bit error probability of LDPC 2S™ — 0. Wherea(e,t) = (e, t) + y(c,t) and §(e, ¢) and
codes with block lengtm over the BEC with erasure prob-V(E’t_) are given b_y Theor_em 2 and Th?‘)@“ 1. ) .
ability ¢ at iteration numbert. For infinite block length, = This analysis is the first asymptotic analysis for finite
Ph(00,¢,t) 2 lim, o0 Ph(n, e, ¢) can be calculated easily't€ration number.
by density evolution[[3] and there exists threshold paramet

egp such thatlim;_, ., Py(co,¢,t) = 0 for ¢ < egp and

lim; o Pr(00,€6,t) > 0 for ¢ > egp. Despite the ease The error probability of a bit in fixed tanner graph at the
of analysis for infinite block length, finite-length analyss th iteration is determined by neighborhood graph of depih
more complex. For finite block length and infinite iteratiothe bit [5], [S]. Since the probability of neighborhood ghap
number,Py(n, €, 00) £ lim;_,o, Py(n,¢,t) can be calculated which havek cycles is©(n~*) we focus on the neighborhood
exactly bystopping setanalysis [6]. For finite block length graphs with no cycle and single cycle for calculating the
and finite iteration numbeR,(n, ¢,t) can also be calculated coefficient of n=! in the bit error probability. Lets(e,t)
exactly in a combinatorial way_[4]. The exact finite-lengthienote the coefficient oh ! in the bit error probability
analysis becomes computationally challenging as blocitten due to cycle-free neighborhood graphs am(,¢) denote
increasing. An alternative approach which approximates tthe coefficient ofn=' in the bit error probability due to
bit error probability is therefore employed. For asymmtotisingle-cycle neighborhood graphs. Then the coefficient df
analysis of the bit error probability, two regions efcan be in the bit error probability can be expressed as following:
distinguished in the error probability; the high error pabbity  «(e,t) = B(e, t) + (e, t). v(e, t) can be calculated efficiently
region calledwaterfall and the low error probability region for irregular ensembles angl(e, t) can be expressed simply
callederror floor. In terms of block length, they correspond tdor regular ensembles.

II. MAIN RESULT
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The expected probability of erasure message for infinite Outline of the proof: The probability of the unique cycle-
block length can be calculated by density evolution. free neighborhood graph of depths

. i i . 1) (r—1)}? 1) (r—1)}t
Proposition 1 (Density evolution[[B]) Let Q(t) denote era- Hl%_lw i) Hi:;l)%(E )

sure probability of messages into check node at tkb i=0

1—{(0-1)(r—1)}? !

iteration and P(t) denote erasure probability of messages into Hf’;017<171><7‘71> 71(E —14)
variable node at the-th iteration for infinite block length. A = . . o
Then where E £ nl. The coefficient ol ~! in the probability is
1 1-{(-Dr -1} ¢
= - —=I(r—1 I—1D)(r-1
Q=epPe-1) PGV e s o e (R IGERY
P(t) = L, ift = O_ and the error probability of the root noded&(P(t)). Then
1—p(1—Q(t), otherwise we obtain the statement of the theorem. [

The bit error probability due to single-cycle neighborhood DU€ to the above theoremsye, ) for regular ensembles

graphs can be calculated using density evolution as TheorEff! Pe calculated efficiently.
[ The complexity of the computation of(e, ) is O(t*) in  Proposition 2 (The bit error probability decays exponentially
time andO(t?) in space. [9]). Assume: < egp. Then for anys > 0, there exists some
B(e, t) can be expressed simply for regular ensembles singgration number?” > 0 such that for anyt > T
of uniqueness of the cycle-free neighborhood graph. P(t) < P(T)(N (0)p (1)e + 6)t‘T
> P(T

N (0)p'(
Theorem 2 (The coefficient of»~! in the bit error probability P(t) (T)(N (0)p'(1)e — 8)t-T
due to cycle-free neighborhood graphs for regular ensespble '

B(e, t) for the (I, r)-regular LDPC ensemble is expressed as Although if X(0)X'(1)p'(1)%e < %th?n B(e,t) converges
following to 0 and (e, t) converges t02% ast — oo, if
. N(0)N(1)p'(1)%¢ > 1 then B(e, t) and y(e, t) grow expo-
— =Y -1} {(I-1)(r—1)}t nentially ast — oo due to the above proposition. Thus
- (=D -1 convergence ofi(e, t) is non-trivial. In practice it is necessary

eL(P(t)). to use high precision floating point tools for calculating, ¢).

Ble,t) = —%l(r—l)l

Theorem 1 (The coefficient ofn~! in bit error probability due to single-cycle neighborhoodghs) ~(e,t) for irregular
LDPC ensembles with degree distribution pék, p) are calculated as following

Z Z F12t81752 —|—Z Z F34t51,82 +ZF56tS

s1=1s9=2s1+1 s1=0s9=2s1+2
where
€ ift=0 D if s=0
t £707, , t £ 07
J(t:s.p) {GAA(,I?S))g(t,S—l,p), otherwise 9(t,5.p) {1 W( — f(t—1,s,p)), otherwise
1, if s=0
h(u,t,s) = eg(u,s —1,1) if s>0,t=0
(P (1-Q(#)) 1-Q()) i
>$'(1 ) (( p(l( )g(u s—1,1) + A ,(1)( h(u,t —1,5 — 1))7 otherwise
N'(P f)) p(1—Q())
Hy(t,s) & e———22 IHl ((1 )g(t,s—l,l)—l—wh(t,t—1,3—1)
” 1 (1 -Q(1) N(P(t—1))
2 _ M Sl S s _ _ _
Ho(t,s) 21— 0 (1 2f (t—1,5,1) + ¢ D ht—1,t—1,5—1)
Fia(t, 51,52) = —/\"( )p '( (N (1)p' (1)) 72Q(t + 1)
/ Qt—s1+1
g (t s1—1,1— AU p(’(l) : ))(1 — Hy(t — 51,82 — 281)))

(>

N~ -

PN (DN (1)p'(1))*2 7 72Q(t + 1)g (. 51, Ha(t — 51,52 — 251 — 1))

(V1) (1))*h(t,, 5)

F34(t, 51, 52)

Fe(t, s) &
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Fig. 1. ComparingPy, (oo, €,t) + a(e, t) 2 with numerical simulations for Fig. 2. ComparingPy, (oo, €, t) + ale, t)2 with numerical simulations for
the (2, 3)-regular ensemble With |tgrat|on number 20. The dotted esiare  the (3, 6)-regular ensemble with iteration number 5. The dotted e
approximation and the solid curve is density evolution.dgltengths are 51, approximation and the solid curve is density evolution.dRléengths are 512,

102, 201, 402 and 801. The threshold is 0.5. 2048 and 8192. The threshold is 0.42944.
I1I. NUMERICAL CALCULATIONS AND SIMULATIONS 7 ' ' ' ] ' ' ' '
There is a question thatow large block length is neces- ¢ | r A

sary for usingPy(cc,€,t) + ale, )% for a good approxi- 7
mation of Py,(n,e,t). It is therefore interesting to compares ° |
Pp(00,€,t) + ale, )= with numerical simulations. In theS al P ]
proof, we count onIy the error probability due to cycle- free: i
neighborhood graphs and single-cycle neighborhood grap_Es3 r 1
Thus it is expected that the approximation is accurate orf§y | -
at large block length where the probability of the multiceyclz -
neighborhood graphs is sufficiently small. Contrary to thg 1
expectation, the approximation is accurate already atlsmal e L
block length in Fig[JL. Although there is a large difference ° [ T L
in small block length near the threshold, the approximaison _; ‘ ‘ ‘ ‘ i ‘ ‘ ‘ ‘
accurate at block length 801 which is not large enough. 0 01 o0z 03
For the ensembles with, = 0, the approximation is not
accurate at far below the threshold in Fifl 2. Sin¢e(e, ¢)| Fig. 3. Comparinga(e, 00) with L /\A(,O)P (M for the (2, 3)-regular
decreases td) ast — oo for the ensembles the higherensemble. Below the threshold 05 they {ake afmost the saine.
order terms caused by multicycle stopping sets has a large
contribution to the bit error probability. It is expectedattthe 0 : : : : : .
approximation is even accurate for the ensembles from which .t
stopping sets with small number of cycles are expurgated.
The limiting value ofa(e, t), a(e,00) £ limy o0 ale,t)
is also interesting. Fow(e, 00), calculatea(e,t) where suf-
ficiently larget in Fig.[d and Fig[ 4. For th¢2,3)—regular
ensemble below the threshold,(e,c0) and ;%
take almost the same values. It implies that below thresho
n(Py(n,e,t)—Py(c0, €, t)) takes the same value at two limits;
n — oo thent — oo andt — oo thenn — oo. For the
ensembles with\y = 0, a(e, 0o) is almost) wheree is smaller -20 ¢ 1
than threshold.
At last, notice thatu(e, t) takes non-trivial values slightly 25 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
below threshold. For the3, 6)-regular ensembley(0.425, t) 0.42 044 046 048 05 052 054 056 058 0.6
is negative att < 39, positive at40 < t < 53 and has €
absolute value which is too small to be measured at54. Fig. 4. «a(e, o0) plotted for the(3, 6)-regular ensemble above the threshold
maxj<¢<s4 |(0.425,¢)| = 38909.60 at t = 42. 0.42944.
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Fig. 5. The left figure is the neighborhood graph of depth litéViariable node is the root node. The variable nodes inhd&égiave degreé; to ls. We
consider summing up the probability of all nodes and the typmarginalized graph in the right figure.

IV. OUTLINE OF THE PROOF OF THEOREN] The sum of all the left and right subgraphs is given as
The bit error probability of an ensemble with iteration 1 5 )
numbert is defined as foIIowing' o )L3p5>\13)\z4)\15 (la — De(1 = (1 — €)”)P(1)".
Py(n,¢,t) = Z Pu( The sum of allls, I, andl; variable nodes is given as

GeG:
whereg, denotes a set of all neighborhood graphs of depth 1 LapsN (De(1 — (1 — €)(1 — Q(1))2)P(1)%
P.(G) denotes the probability of the neighborhood graph L'(1)

and P1,(G) denotes the error probability of the root node iny; |ast, the sum of all the root nodes and the middle check
the neighborhood grap@i. The coefficient ofn=! in the bit nodes is given as
error probability with iteration number due to single-cycle

. . - - " B
neighborhood graphs is defined as following: ) L/( )szre 1= (1—Q)) 31 —e)
v(e,t) = lim n E P,(G)PL(G)
n—o0

GEeSy -1 1
whereS, denotes a set of all single-cycle neighborhood graphs ) ( 2 )
of d.eptht. _ . N XN 1P P o O
First we consider the bit error probability of the root node = 2L/(1) (P(1))e(p" (1) = p"(1 = Q1)) (1 - €))
of the neighborhood grapf¥ in Fig.[5. The variable nodes in L'(P(1)) J'(1— Q1))
depth 1 have degrek to Is. Then the coefficient oh~! in ==N1)p'(1 )ET <1 -y (1— e)) )
P,(G) is given as (1) (1)

Do =

1 The coefficient ofn ! in the bit error probability for iteration
lim nP,(G) = (1 )L3P3P5P4 numbert¢ due to neighborhood graphs with the right graph

n—oo
type in Fig.[® is given as
A AL A L — 1. P g 9

The error probability of the message from the channel to the—/\’( )p" (1)
root node is. The error probabilities of the message from the
" ; L'(P(t)) ( p'(1- Q) (1 _ X(P— 1))))
L’(l p

left check node, the right check node and the middle check e
node to the root node ard — (1 — €)?), (1 — (1 —¢)3) and )
(1 — (1 — ¢€)3), respectively. Then the error probability of the _— X(l)p”(l) Q(t + 1)g(t,0, Hy(t,1))
root node is given as
Pp(G) = (1 (1—e)*)(1 - (1 -’ )(1 - (1-¢)?).

The coefficient ofn=! term of the bit error probability due to
G is given as

= F34(t, 0,2)

in the same way. Notice that\’(1)p"(1) is the coefficient of
n~! of the probability of neighborhood graphs with the right
graph type in Fig[h.

lim nP,(G)PyL(G) = Single-cycle neighborhood graphs can be classified to six
e 1 types in Fig[[6. Summing up the bit error probability due to
oa )L3p3p5p4/\11/\12/\13/\l4 A Aig A A (e — 1) all these types, we obtaif(e, t). Left two types correspond to

F5, middle two types correspond #;, and right two types
e(1—(1— 5)2)(1 -(1- 5)3)(1 -(1- 5)3)- correspond tafg.
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Fig. 6. Six types of marginalized single-cycle neighborhgpaphs. These are distinguished in which variable nodegkchode or root node are bifurcation
node and which variable node or check node are connected Bagith of the bifurcation node correspondssta The number of nodes in the minimum
path from root node to connected node corresponds; tand s.

V. OUTLOOK

Although the asymptotic analysis of the bit error probayili
for finite block length and finite iteration number given iristh
paper is very accurate &, r)-regular, much work remains to
be done.

« In this paper, the approximation has been given only

asn — oo, wherep; £ Pr(Z; < 0) + 3 Pr(Z; = 0)
and Z; is a random variable corresponding to the sum of
the 7 i.i.d. channel log-likelihood ratio. It implies that
if A2 > 0, the asymptotic bit error probability under
BP decoding is equal to that of maximum likelihood
(ML) decoding. Although the condition of the proof

for regular ensembles. We have a problem that how to
computef(e, t) for irregular ensembles.

In this paper, the approximation is not accurate for
ensembles with\s = 0 and ¢ smaller than threshold.
We have a problem that how to give higher order terms
of the bit error probability with both finite and infinite
iteration number.

In this paper, the approximation has been given only for
the bit error probability. LePg(n, ¢,t) denote the block  *
error probability for block lengtm, erasure probability

e and iteration numbet. The block error probability
for infinite block length and infinite iteration number is
known as following [[7]:

_ DY ’
nh_}rnoo tli)moo Pg(n,e,t) =1 1= XN(0)p'(1)e.
(1]

We have a problem what i$m,,_, o, Pg(n,e€,t). 2l
Concerning the previous problem, we have a problem
how quickly the block error probability converge to
limiting values as block length increasing for both finite 3]
and infinite iteration number.
Apply the same analysis in this paper to other ensembleg]
In this paper, the approximation has been given onI){
for the BEC. In the binary memoryless symmetric chan- 3l
nel (BMS) parametrized by € [0,00), We consider
inf; Pp(n,€,t) instead oflim; o Pp(n,e€,t) since of
lack of monotonicity. The asymptotic analysis of the bit
error probability with the best iteration numbié(n, ¢) £
arginf; Py(n,¢,t) under BP decoding was shown by
Montanari for smalle as following [5]:
1
(5)

(6]

(7]

(8]
El

o0

) =3 SO ()b +o

=0

Py(n,e, t*(n

in [5] implies the convergence of values correspond-
ing to B(e,t) and (e, t) in this paper, in general if
N(0)N(1)p'(1)?B(e) > 1, they do not converge, where
B(e) is Bhattacharyya constant. Although the condition
of ¢ is strong, the approximation is very accurate for all
¢ smaller than threshold. we have problems how about
finite iteration number, higher order terms, the block error
probability and other ensembles for the BMS.

The goal of finite-length analysis is to construct good
codes (e.g. low bit/block error probability, high rate, low
block length, low maximum degree, low complexity of
the encoding/decoding etc.).
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