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Abstract—We consider communication over the binary erasure
channel (BEC) using low-density parity-check (LDPC) code and
belief propagation (BP) decoding. The bit error probability for
infinite block length is known by density evolution [3] and it is
well known that a difference between the bit error probability
at finite iteration number for finite block length n and for
infinite block length is asymptotically α/n, where α is a specific
constant depending on the degree distribution, the iteration
number and the erasure probability. Our main result is to derive
an efficient algorithm for calculating α for regular ensembles. The
approximation using α is accurate for (2, r)-regular ensembles
even in small block length.

I. I NTRODUCTION

In this paper, we consider irregular low-density parity-
check (LDPC) codes [1] with a degree distribution pair
(λ, ρ) [2]. The bit error probability of LDPC codes over
the binary erasure channel (BEC) under belief propagation
(BP) decoding is determined by three quantities; the block
length n, the erasure probabilityǫ and the iteration number
t. Let Pb(n, ǫ, t) denote the bit error probability of LDPC
codes with block lengthn over the BEC with erasure prob-
ability ǫ at iteration numbert. For infinite block length,
Pb(∞, ǫ, t) , limn→∞ Pb(n, ǫ, t) can be calculated easily
by density evolution [3] and there exists threshold parameter
ǫBP such thatlimt→∞ Pb(∞, ǫ, t) = 0 for ǫ < ǫBP and
limt→∞ Pb(∞, ǫ, t) > 0 for ǫ > ǫBP. Despite the ease
of analysis for infinite block length, finite-length analysis is
more complex. For finite block length and infinite iteration
number,Pb(n, ǫ,∞) , limt→∞ Pb(n, ǫ, t) can be calculated
exactly bystopping setsanalysis [6]. For finite block length
and finite iteration number,Pb(n, ǫ, t) can also be calculated
exactly in a combinatorial way [4]. The exact finite-length
analysis becomes computationally challenging as block length
increasing. An alternative approach which approximates the
bit error probability is therefore employed. For asymptotic
analysis of the bit error probability, two regions ofǫ can be
distinguished in the error probability; the high error probability
region calledwaterfall and the low error probability region
callederror floor. In terms of block length, they correspond to

the small block length region and the large block length region.
This paper deals with the bit error probability for large block
length both below and above threshold with finite iteration
number.

For infinite iteration number, the asymptotic analysis for
error floor was shown by Amuraoui as following [8]:

Pb(n, ǫ,∞) =
1

2

λ′(0)ρ′(1)ǫ

1− λ′(0)ρ′(1)ǫ

1

n
+o

(

1

n

)

, for ǫ < ǫBP,

asn → ∞. This equation means that for ensembles withλ2 >

0, 1
2

λ′(0)ρ′(1)ǫ
1−λ′(0)ρ′(1)ǫ

1
n

is a good approximation ofPb(n, ǫ,∞)
wheren is sufficiently large.

Our main result is following.
For regular LDPC codes with finite iteration number

Pb(n, ǫ, t) = Pb(∞, ǫ, t)+α(ǫ, t)
1

n
+ o

(

1

n

)

, for any ǫ,

as n → ∞, whereα(ǫ, t) = β(ǫ, t) + γ(ǫ, t) and β(ǫ, t) and
γ(ǫ, t) are given by Theorem 2 and Theorem 1.

This analysis is the first asymptotic analysis for finite
iteration number.

II. M AIN RESULT

The error probability of a bit in fixed tanner graph at thet-
th iteration is determined by neighborhood graph of deptht of
the bit [5], [9]. Since the probability of neighborhood graphs
which havek cycles isΘ(n−k) we focus on the neighborhood
graphs with no cycle and single cycle for calculating the
coefficient of n−1 in the bit error probability. Letβ(ǫ, t)
denote the coefficient ofn−1 in the bit error probability
due to cycle-free neighborhood graphs andγ(ǫ, t) denote
the coefficient ofn−1 in the bit error probability due to
single-cycle neighborhood graphs. Then the coefficient ofn−1

in the bit error probability can be expressed as following:
α(ǫ, t) = β(ǫ, t) + γ(ǫ, t). γ(ǫ, t) can be calculated efficiently
for irregular ensembles andβ(ǫ, t) can be expressed simply
for regular ensembles.
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The expected probability of erasure message for infinite
block length can be calculated by density evolution.

Proposition 1 (Density evolution [3]). Let Q(t) denote era-
sure probability of messages into check node at thet-th
iteration andP (t) denote erasure probability of messages into
variable node at thet-th iteration for infinite block length.
Then

Q(t) = ǫλ(P (t− 1))

P (t) =

{

1, if t = 0

1− ρ(1−Q(t)), otherwise

The bit error probability due to single-cycle neighborhood
graphs can be calculated using density evolution as Theorem
1. The complexity of the computation ofγ(ǫ, t) is O(t3) in
time andO(t2) in space.
β(ǫ, t) can be expressed simply for regular ensembles since

of uniqueness of the cycle-free neighborhood graph.

Theorem 2 (The coefficient ofn−1 in the bit error probability
due to cycle-free neighborhood graphs for regular ensembles).
β(ǫ, t) for the (l, r)-regular LDPC ensemble is expressed as
following

β(ǫ, t) = −
1

2
l(r−1)

1− {(l − 1)(r − 1)}t

1− (l − 1)(r − 1)
{(l−1)(r−1)}t

ǫL(P (t)).

Outline of the proof:The probability of the unique cycle-
free neighborhood graph of deptht is

∏l
1−{(l−1)(r−1)}t

1−(l−1)(r−1)
−1

i=0 (E − ir)
∏l(r−1)

1−{(l−1)(r−1)}t

1−(l−1)(r−1)

i=1 (E − il)

∏lr
1−{(l−1)(r−1)}t

1−(l−1)(r−1)
−1

i=0 (E − i)

,

whereE , nl. The coefficient ofn−1 in the probability is

−
1

2
l(r − 1)

1− {(l− 1)(r − 1)}t

1− (l − 1)(r − 1)
{(l − 1)(r − 1)}t

and the error probability of the root node isǫL(P (t)). Then
we obtain the statement of the theorem.

Due to the above theorems,α(ǫ, t) for regular ensembles
can be calculated efficiently.

Proposition 2 (The bit error probability decays exponentially
[9]). Assumeǫ < ǫBP. Then for anyδ > 0, there exists some
iteration numberT > 0 such that for anyt ≥ T

P (t) ≤ P (T )(λ′(0)ρ′(1)ǫ+ δ)t−T

P (t) ≥ P (T )(λ′(0)ρ′(1)ǫ− δ)t−T .

Although if λ′(0)λ′(1)ρ′(1)2ǫ < 1 then β(ǫ, t) converges
to 0 and γ(ǫ, t) converges to1

2
λ′(0)ρ′(1)ǫ

1−λ′(0)ρ′(1)ǫ as t → ∞, if
λ′(0)λ′(1)ρ′(1)2ǫ > 1 then β(ǫ, t) and γ(ǫ, t) grow expo-
nentially as t → ∞ due to the above proposition. Thus
convergence ofα(ǫ, t) is non-trivial. In practice it is necessary
to use high precision floating point tools for calculatingα(ǫ, t).

Theorem 1 (The coefficient ofn−1 in bit error probability due to single-cycle neighborhood graphs). γ(ǫ, t) for irregular
LDPC ensembles with degree distribution pair(λ, ρ) are calculated as following

γ(ǫ, t) =

t−1
∑

s1=1

2t
∑

s2=2s1+1

F12(t, s1, s2) +

t−1
∑

s1=0

2t
∑

s2=2s1+2

F34(t, s1, s2) +

2t
∑

s=1

F56(t, s)

where

f(t, s, p) ,

{

ǫ, if t = 0

ǫ
λ′(P (t))
λ′(1) g(t, s− 1, p), otherwise

, g(t, s, p) ,

{

p, if s = 0

1− ρ′(1−Q(t))
ρ′(1) (1− f(t− 1, s, p)), otherwise

h(u, t, s) ,















1, if s = 0

ǫg(u, s− 1, 1), if s > 0, t = 0

ǫ
λ′(P (t))
λ′(1)

((

1− ρ′(1−Q(t))
ρ′(1)

)

g(u, s− 1, 1) + ρ′(1−Q(t))
ρ′(1) h(u, t− 1, s− 1)

)

, otherwise

H1(t, s) , ǫ
λ′′(P (t))

λ′′(1)

((

1−
ρ′(1−Q(t))

ρ′(1)

)

g(t, s− 1, 1) +
ρ′(1 −Q(t))

ρ′(1)
h(t, t− 1, s− 1)

)

H2(t, s) , 1−
ρ′′(1 −Q(t))

ρ′′(1)

(

1− 2f(t− 1, s, 1) + ǫ
λ′(P (t− 1))

λ′(1)
h(t− 1, t− 1, s− 1)

)

F12(t, s1, s2) ,
1

2
λ′′(1)ρ′(1)2(λ′(1)ρ′(1))s2−s1−2Q(t+ 1)

g

(

t, s1 − 1, 1−
ρ′(1−Q(t− s1 + 1))

ρ′(1)
(1 −H1(t− s1, s2 − 2s1))

)

F34(t, s1, s2) ,
1

2
ρ′′(1)λ′(1)(λ′(1)ρ′(1))s2−s1−2Q(t+ 1)g (t, s1, H2(t− s1, s2 − 2s1 − 1))

F56(t, s) ,
1

2
(λ′(1)ρ′(1))sh(t, t, s)
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Fig. 1. ComparingPb(∞, ǫ, t) + α(ǫ, t) 1
n

with numerical simulations for
the (2, 3)-regular ensemble with iteration number 20. The dotted curves are
approximation and the solid curve is density evolution. Block lengths are 51,
102, 201, 402 and 801. The threshold is 0.5.

III. N UMERICAL CALCULATIONS AND SIMULATIONS

There is a question thathow large block length is neces-
sary for usingPb(∞, ǫ, t) + α(ǫ, t) 1

n
for a good approxi-

mation ofPb(n, ǫ, t). It is therefore interesting to compare
Pb(∞, ǫ, t) + α(ǫ, t) 1

n
with numerical simulations. In the

proof, we count only the error probability due to cycle-free
neighborhood graphs and single-cycle neighborhood graphs.
Thus it is expected that the approximation is accurate only
at large block length where the probability of the multicycle
neighborhood graphs is sufficiently small. Contrary to the
expectation, the approximation is accurate already at small
block length in Fig. 1. Although there is a large difference
in small block length near the threshold, the approximationis
accurate at block length 801 which is not large enough.

For the ensembles withλ2 = 0, the approximation is not
accurate atǫ far below the threshold in Fig. 2. Since|α(ǫ, t)|
decreases to0 as t → ∞ for the ensembles the higher
order terms caused by multicycle stopping sets has a large
contribution to the bit error probability. It is expected that the
approximation is even accurate for the ensembles from which
stopping sets with small number of cycles are expurgated.

The limiting value ofα(ǫ, t), α(ǫ,∞) , limt→∞ α(ǫ, t)
is also interesting. Forα(ǫ,∞), calculateα(ǫ, t) where suf-
ficiently large t in Fig. 3 and Fig. 4. For the(2, 3)-regular
ensemble below the threshold,α(ǫ,∞) and 1

2
λ′(0)ρ′(1)ǫ

1−λ′(0)ρ′(1)ǫ
take almost the same values. It implies that below threshold
n(Pb(n, ǫ, t)−Pb(∞, ǫ, t)) takes the same value at two limits;
n → ∞ then t → ∞ and t → ∞ then n → ∞. For the
ensembles withλ2 = 0, α(ǫ,∞) is almost0 whereǫ is smaller
than threshold.

At last, notice thatα(ǫ, t) takes non-trivial values slightly
below threshold. For the(3, 6)-regular ensemble,α(0.425, t)
is negative att ≤ 39, positive at40 ≤ t ≤ 53 and has
absolute value which is too small to be measured att = 54.
max1≤t≤54 |α(0.425, t)| = 38909.60 at t = 42.
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Fig. 2. ComparingPb(∞, ǫ, t) + α(ǫ, t) 1
n

with numerical simulations for
the (3, 6)-regular ensemble with iteration number 5. The dotted curves are
approximation and the solid curve is density evolution. Block lengths are 512,
2048 and 8192. The threshold is 0.42944.
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Fig. 3. Comparingα(ǫ,∞) with 1
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λ′(0)ρ′(1)ǫ
1−λ′(0)ρ′(1)ǫ

for the (2, 3)-regular
ensemble. Below the threshold 0.5, they take almost the samevalue.
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Fig. 4. α(ǫ,∞) plotted for the(3, 6)-regular ensemble above the threshold
0.42944.
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Fig. 5. The left figure is the neighborhood graph of depth 1. White variable node is the root node. The variable nodes in depth 1 have degreel1 to l8. We
consider summing up the probability of all nodes and the typeof marginalized graph in the right figure.

IV. OUTLINE OF THE PROOF OF THEOREM1

The bit error probability of an ensemble with iteration
numbert is defined as following:

Pb(n, ǫ, t) ,
∑

G∈Gt

Pn(G)Pb(G),

whereGt denotes a set of all neighborhood graphs of deptht,
Pn(G) denotes the probability of the neighborhood graphG

andPb(G) denotes the error probability of the root node in
the neighborhood graphG. The coefficient ofn−1 in the bit
error probability with iteration numbert due to single-cycle
neighborhood graphs is defined as following:

γ(ǫ, t) , lim
n→∞

n
∑

G∈St

Pn(G)Pb(G),

whereSt denotes a set of all single-cycle neighborhood graphs
of deptht.

First we consider the bit error probability of the root node
of the neighborhood graphG in Fig. 5. The variable nodes in
depth 1 have degreel1 to l8. Then the coefficient ofn−1 in
Pn(G) is given as

lim
n→∞

nPn(G) =
1

L′(1)
L3ρ3ρ5ρ4

λl1λl2λl3λl4λl5λl6λl7λl8(l4 − 1).

The error probability of the message from the channel to the
root node isǫ. The error probabilities of the message from the
left check node, the right check node and the middle check
node to the root node are(1 − (1 − ǫ)2), (1 − (1 − ǫ)3) and
(1− (1 − ǫ)3), respectively. Then the error probability of the
root node is given as

Pb(G) = ǫ(1− (1− ǫ)2)(1 − (1− ǫ)3)(1 − (1− ǫ)3).

The coefficient ofn−1 term of the bit error probability due to
G is given as

lim
n→∞

nPn(G)Pb(G) =

1

L′(1)
L3ρ3ρ5ρ4λl1λl2λl3λl4λl5λl6λl7λl8(l4 − 1)

ǫ(1− (1 − ǫ)2)(1 − (1− ǫ)3)(1 − (1− ǫ)3).

The sum of all the left and right subgraphs is given as

1

L′(1)
L3ρ5λl3λl4λl5(l4 − 1)ǫ(1− (1− ǫ)3)P (1)2.

The sum of alll3, l4 and l5 variable nodes is given as

1

L′(1)
L3ρ5λ

′(1)ǫ(1− (1− ǫ)(1−Q(1))2)P (1)2.

At last, the sum of all the root nodes and the middle check
nodes is given as

∑

l,r

λ′(1)

L′(1)
Llρrǫ(1− (1−Q(1))r−3(1− ǫ))

P (1)l−1l

(

r − 1

2

)

=
λ′(1)

2L′(1)
L′(P (1))ǫ(ρ′′(1)− ρ′′(1 −Q(1))(1− ǫ))

=
1

2
λ′(1)ρ′′(1)ǫ

L′(P (1))

L′(1)

(

1−
ρ′′(1 −Q(1))

ρ′′(1)
(1− ǫ)

)

.

The coefficient ofn−1 in the bit error probability for iteration
numbert due to neighborhood graphs with the right graph
type in Fig. 5 is given as

1

2
λ′(1)ρ′′(1)

ǫ
L′(P (t))

L′(1)

(

1−
ρ′′(1−Q(t))

ρ′′(1)

(

1− ǫ
λ′(P (t− 1))

λ′(1)

))

=
1

2
λ′(1)ρ′′(1)Q(t+ 1)g(t, 0, H2(t, 1))

= F34(t, 0, 2)

in the same way. Notice that12λ
′(1)ρ′′(1) is the coefficient of

n−1 of the probability of neighborhood graphs with the right
graph type in Fig. 5.

Single-cycle neighborhood graphs can be classified to six
types in Fig. 6. Summing up the bit error probability due to
all these types, we obtainγ(ǫ, t). Left two types correspond to
F12, middle two types correspond toF34 and right two types
correspond toF56.
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s1 = 1, s2 = 6 s1 = 1, s2 = 5 s1 = 0, s2 = 4 s1 = 0, s2 = 5 s = 6 s = 5

Fig. 6. Six types of marginalized single-cycle neighborhood graphs. These are distinguished in which variable node, check node or root node are bifurcation
node and which variable node or check node are connected node. Depth of the bifurcation node corresponds tos1. The number of nodes in the minimum
path from root node to connected node corresponds tos2 ands.

V. OUTLOOK

Although the asymptotic analysis of the bit error probability
for finite block length and finite iteration number given in this
paper is very accurate at(2, r)-regular, much work remains to
be done.

• In this paper, the approximation has been given only
for regular ensembles. We have a problem that how to
computeβ(ǫ, t) for irregular ensembles.

• In this paper, the approximation is not accurate for
ensembles withλ2 = 0 and ǫ smaller than threshold.
We have a problem that how to give higher order terms
of the bit error probability with both finite and infinite
iteration number.

• In this paper, the approximation has been given only for
the bit error probability. LetPB(n, ǫ, t) denote the block
error probability for block lengthn, erasure probability
ǫ and iteration numbert. The block error probability
for infinite block length and infinite iteration number is
known as following [7]:

lim
n→∞

lim
t→∞

PB(n, ǫ, t) = 1−
√

1− λ′(0)ρ′(1)ǫ.

We have a problem what islimn→∞ PB(n, ǫ, t).
• Concerning the previous problem, we have a problem

how quickly the block error probability converge to
limiting values as block length increasing for both finite
and infinite iteration number.

• Apply the same analysis in this paper to other ensembles.
• In this paper, the approximation has been given only

for the BEC. In the binary memoryless symmetric chan-
nel (BMS) parametrized byǫ ∈ [0,∞), We consider
inft Pb(n, ǫ, t) instead of limt→∞ Pb(n, ǫ, t) since of
lack of monotonicity. The asymptotic analysis of the bit
error probability with the best iteration numbert∗(n, ǫ) ,
arg inft Pb(n, ǫ, t) under BP decoding was shown by
Montanari for smallǫ as following [5]:

Pb(n, ǫ, t
∗(n, ǫ)) =

1

2

∞
∑

i=0

(λ′(0)ρ′(1))ipi
1

n
+ o

(

1

n

)

as n → ∞, wherepi , Pr(Zi < 0) + 1
2 Pr(Zi = 0)

andZi is a random variable corresponding to the sum of
the i i.i.d. channel log-likelihood ratio. It implies that
if λ2 > 0, the asymptotic bit error probability under
BP decoding is equal to that of maximum likelihood
(ML) decoding. Although the condition of the proof
in [5] implies the convergence of values correspond-
ing to β(ǫ, t) and γ(ǫ, t) in this paper, in general if
λ′(0)λ′(1)ρ′(1)2B(ǫ) > 1, they do not converge, where
B(ǫ) is Bhattacharyya constant. Although the condition
of ǫ is strong, the approximation is very accurate for all
ǫ smaller than threshold. we have problems how about
finite iteration number, higher order terms, the block error
probability and other ensembles for the BMS.

• The goal of finite-length analysis is to construct good
codes (e.g. low bit/block error probability, high rate, low
block length, low maximum degree, low complexity of
the encoding/decoding etc.).
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