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Abstract—This paper studies the decoupling principle of a
linear vector channel, which is an extension of CDMA and MIMO
channels. We show that the scalar-channel characterization ob-
tained via the decoupling principle is valid not only for collections
of a large number of elements of input vector, as discussed in
previous studies, but also for individual elements of inputvector,
i.e. the linear vector channel for individual elements of channel
input vector is decomposed into a bank of independent scalar
Gaussian channels in the large-system limit, where dimensions
of channel input and output are both sent to infinity while their
ratio fixed.

I. I NTRODUCTION

Recently, the replica method, developed in statistical me-
chanics, has been applied to problems of performance evalua-
tion of various digital wireless communication systems, espe-
cially code-division multiple-access (CDMA) and multi-input
multi-output (MIMO) systems [1]–[4]. The replica method
provides us with a description of these channels, called, the
decoupling principle; that is, a CDMA channel, or equivalently
a MIMO channel, is decoupled, under a certain randomness
assumption of the channel, into a bank of independent scalar
Gaussian channels in the large-system limit, where dimensions
of channel input and output are both sent to infinity while their
ratio fixed.

Existing results of replica analysis, however, rely on saddle-
point evaluation of integrals, which is only valid for evaluating
macroscopic quantities, such as an empirical mean of many
microscopic quantities, such as individual elements of input,
which are many in the sense that their number goes to infinity
as the dimensions of the system in the large-system limit.
It is therefore not clear as to whether the scalar-channel
characterization of CDMA or MIMO channels obtained via the
replica analysis is still valid if we are interested in microscopic
quantities in the large-system limit.

In this paper we show that the scalar-channel characteriza-
tion is still valid for microscopic quantities, by performing
replica analysis on a linear vector channel, which is an
extension of CDMA or MIMO channels.

II. L INEAR VECTORCHANNEL

We consider aK-input N -output linear vector channel,
defined as follows. Letx0 = (x01, . . . , x0K)T denote the
input vector of the channel, andy = (y1, . . . , yN )T denote
the output vector given a linear transformHx0 of the inputs,
whereH is anN ×K channel matrix. Assuming the channel

to be memoryless, the input-output characteristic of the linear
vector channel is represented as

P0(y|Hx0) =

N
∏

µ=1

ρ0

(

yµ

∣

∣

∣

∣

∣

hT
µx0√
N

)

, (1)

where hT
µ /

√
N denotesµ th row of H . We define a true

prior as P0(x). Inference of the input vectorx0, given
the output vectory and the channel matrixH , can be
solved by a detection scheme based on Bayesian inference.
The detector assumes a channel model to beP (y|Hx) =
∏N

µ=1 ρ(yµ|hT
µx/

√
N), and a prior distribution to beP (x).

We also assume perfect channel state information at the
detector. These assumptions yield the posterior distribution

P (x|y, H) =
P (y|Hx)P (x)

∫

P (y|Hx)P (x) dx
. (2)

The posterior mean estimator (PME)x̄ =
∫

xP (x|y, H) dx
is the optimal inference scheme to minimize the mean squared
error, if the assumed model is matched to the true model.

In this paper, we study joint distributions ofL (≪ K)
elements of input vector and their estimates based on the
posterior distribution (2), given a channel matrixH . Without
loss of generality we consider the firstL elements of input
vector,xL

0 = (x01, . . . , x0L)
T , and their estimatesxL. The

joint distribution to be studied is thus

P(xL
0 , x

L|H) =

∫

P (xL|y, H)P0(y|Hx0)P0(x0) dx
\L
0 .

(3)

We assume the channel matrixH to be random and evaluate
expectation ofP(xL

0 , x
L|H) overH in the large-system limit

whereK, N → ∞ while β = K/N is kept finite:

P(xL
0 , x

L) = lim
K,N→∞

EH

[

P(xL
0 , x

L|H)
]

. (4)

Eu[· · · ] denotes expectation over the random variableu. Note
that if the scalar-channel characterization is derived forthe
joint distribution (4) using the replica method, it is easy
to show the scalar-channel characterization is still validfor
arbitrary microscopic quantities depend onxL

0 andxL.
To simplify the analysis, we assume the following:

• Random channel matrix: The elements{hµk} are in-
dependent and identically distributed (i.i.d.) with mean
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zero, unit variance, odd-order moments being zero and
(2m) th-order moments being finite.

• The firstL elements of input vectorxL
0 and the remaining

elementsx\L
0 = (x0(L+1), . . . , x0K)T are independent,

so that the prior distribution ofx is factorized as

P0(x0) = PL
0 (xL

0 )P
\L
0 (x

\L
0 ). (5)

The factorized formP (x) = PL(xL)P \L(x\L) is also
used as the postulated prior distribution.

• The conditional distributionsρ0(y|u) andρ(y|u) are one
and two times differentiable with respect tou, respec-
tively.

III. M AIN RESULT

Our main result is the following claim.
Claim 1: In the large-system limit and under the assump-

tion of replica symmetry (see Sect. IV), the joint distribution
P(xL

0 , x
L) defined in (4) is asymptotically equivalent to the

joint distribution

P(xL
0 , x

L) =

∫
∏L

k=1 ρG(zk|xk) P̃
L(xL)

∫
∏L

k=1 ρG(zk|xk) P̃L(xL) dxL

×
L
∏

k=1

ρG0(zk|x0k)P0(x
L
0 ) dz

L, (6)

whereρG0(z|x) andρG(z|x) represent input-output character-
istics of the scalar Gaussian channels

ρG0(z|x) =
√

E2

2πF
exp

[

−E2(z − x)2

2F

]

, (7)

ρG(z|x) =
√

E

2π
exp

[

−E(z − x)2

2

]

, (8)

respectively, and wherezL = (z1, . . . , zL)
T . P̃L(xL) is a

“modulated” version of the assumed prior, defined as

P̃L(xL) =
exp

[

G−F+E
2

∣

∣

∣

∣xL
∣

∣

∣

∣

2
]

PL(xL)

∫

exp
[

G−F+E
2

∣

∣

∣

∣xL
∣

∣

∣

∣

2
]

PL(xL) dxL
, (9)

where
∣

∣

∣

∣x
∣

∣

∣

∣

2
= xTx.

The parameters{G, E, F} are determined by solving the
following equations for{G, E, F, r, m, q},

G =

∫

ρ̄0

(

y

∣

∣

∣

∣

∣

√

βm2

q
t

)

ρ̄′′
(

y|
√
βq t

)

ρ̄
(

y|
√
βq t

) Dt dy, (10)

E =

∫

ρ̄′0

(

y

∣

∣

∣

∣

∣

√

βm2

q
t

)

ρ̄′
(

y|
√
βq t

)

ρ̄
(

y|
√
βq t

) Dt dy, (11)

F =

∫

ρ̄0

(

y

∣

∣

∣

∣

∣

√

βm2

q
t

)[

ρ̄′
(

y|
√
βq t

)

ρ̄
(

y|√βq t
)

]2

Dt dy, (12)

r = lim
K→∞

1

K

〈〈

∣

∣

∣

∣〈x〉
∣

∣

∣

∣

2
〉〉

, (13)

m = lim
K→∞

1

K

〈〈

xT
0 〈x〉

〉〉

, (14)

q = lim
K→∞

1

K

〈〈

∣

∣

∣

∣〈x〉
∣

∣

∣

∣

2
〉〉

, (15)

where
∫

(· · · )Du =
∫∞

−∞(· · · ) exp(−u2/2) du/
√
2π. The

distributionsρ̄0 and ρ̄ are defined as

ρ̄0

(

y

∣

∣

∣

∣

∣

√

βm2

q
t

)

=

∫

ρ0

(

y

∣

∣

∣

∣

∣

√

βm2

q
t+

√

β

(

r0 −
m2

q

)

u

)

Du, (16)

ρ̄
(

y
∣

∣

∣

√

βq t
)

=

∫

ρ
(

y
∣

∣

∣

√

βq t+
√

β (r − q) u
)

Du, (17)

respectively, wheref ′(y|u) = ∂
∂u

f(y|u), and where

r0 = lim
K→∞

1

K

∫

∣

∣

∣

∣x0

∣

∣

∣

∣

2
P0(x0) dx0. (18)

The brackets〈〈· · ·〉〉 and〈· · · 〉 denote the averages with respect
to the joint distribution ofx0 andz = (z1, . . . , zK)T ,

〈〈

· · ·
〉〉

=

∫∫

(· · · )
K
∏

k=1

ρG0(zk|x0k)P0(x0) dz dx0, (19)

and the posterior distribution ofx givenz,

〈· · · 〉 =
∫

(· · · )∏K
k=1 ρG(zk|xk) P̃ (x)

∫
∏K

k=1 ρG(zk|xk) P̃ (x) dx
, (20)

respectively, where

P̃ (x) =
exp

[

G−F+E
2

∣

∣

∣

∣x
∣

∣

∣

∣

2
]

P (x)

∫

exp
[

G−F+E
2

∣

∣

∣

∣x
∣

∣

∣

∣

2
]

P (x) dx
. (21)

If more than one solution exists for (10)–(15), the correct
solution is the one that minimizes the functionF defined as

F =
1

β

∫∫

ρ̄0

(

y

∣

∣

∣

∣

∣

√

βm2

q
t

)

log ρ̄
(

y
∣

∣

∣

√

βq t
)

Dt dy

+
1

2
Gr − Em+

1

2
Fq +

F

2E
+

1

2
Er0 −

1

2
log

E

2π

+ lim
K→∞

1

K

∫∫ K
∏

k=1

ρG0(zk|x0k)P0(x0)

×
{

log

∫ K
∏

k=1

ρG(zk|xk) P̃ (x) dx

}

dx0 dz. (22)

Detailed derivation of the claim is given in Section IV.
The claim implies that the scalar-channel characterization is
valid for the joint distributionP(xL

0 , x
L), this is, the joint

distributionP(xL
0 , x

L) defined in (4) can be asymptotically
identified as the joint distribution ofxL

0 and xL where the
elements ofxL

0 are independently transmitted over the scalar
Gaussian channelρG0(z|x) and where the detector postulates
the channel modelρG(z|x) and the modulated version of the
assumed prior̃P (xL) (Fig. 1). This result is a finer version
of the decoupling principle, which is first stated by Tse and
Hanly [5], and named by Guo and Verdú [2].
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Fig. 1. The linear vector channel and the corresponding detector (a). The
bank of scalar Gaussian channels and their corresponding detector (b).

IV. D ERIVATION OF THE CLAIM

A. Replica method

We evaluateP(xL
0 , x

L) defined in (4) via replica method.
Introducing a real numbern, (4) can be rewritten as

P(xL
0 , x

L) = lim
K,N→∞

lim
n→0

EH

[

∫
{
∫

P (y|Hx)P (x) dx\L

}

×
{
∫

P (y|Hx)P (x)dx

}n−1

P0(y|Hx0)P0(x0)dx
\L
0

]

.

(23)

According to the standard prescription of replica method, we
first evaluate

Zn(x
L
0 , x

L
1 ) = lim

K,N→∞
EH

[

n
∏

a=0

{

∫

Pa(y|Hxa)Pa(xa)

}

× dx
\L
0 dx

\L
1

n
∏

a=2

dxa

]

(24)

for a positive integern, wherePa(y|Hxa) = P (y|Hxa)
and Pa(x) = P (x) for a = 1, . . . , n, and then the result
is continuated to realn in order to take the limitn → 0 to
obtain

lim
n→0

Zn(x
L
0 , x

L
1 )
∣

∣

∣

xL

1
=xL

= P(xL
0 , x

L). (25)

Although there is no rigorous justification for the replica
method, we assume validity of the replica method and related
techniques throughout this paper.

B. Average over channel matrix

To evaluate (24), we first take the average over the channel
matrix H . Using the assumptions of random channel matrix
and memoryless channels, one has

Zn(x
L
0 , x

L
1 )

= lim
K,N→∞

∫

· · ·
∫

{

Eh

[

∫ n
∏

a=0

ρa

(

y

∣

∣

∣

∣

∣

hTxa√
N

)

dy

]}N

×
n
∏

a=0

Pa(xa) dx
\L
0 dx

\L
1

n
∏

a=2

dxa, (26)

whereρa(y|u) = ρ(y|u) for a = 1, . . . , n. We let

A =

{

Eh

[

∫ n
∏

a=0

ρa

(

y

∣

∣

∣

∣

∣

hTxa√
N

)

dy

]}N

(27)

and introduce auxiliary random variablesv = (v0, . . . , vn)
T ,

va = hTxa/
√
K. The average overh in (27) can be rewritten

in terms of an integral over the conditional distribution ofv

given {xa; a = 0 . . . , n}, denoted byV (v|{xa}), as

A =

{

∫

V (v|{xa})
∫ n
∏

a=0

ρa

(

y|
√

β va

)

dy dv

}N

. (28)

To obtain an explicit expression forV (v|{xa}), we evaluate
the characteristic function ofV (v|{xa}), as

V̂ (v̂|{xa}) =
∫

eiv̂
T v V (v|{xa}) dv

= exp

[

−1

2
v̂TQv̂

]

×







1− 3− κ

24K

n
∑

a,b,c,d=0

Wabcd v̂av̂bv̂cv̂d +O
(

K−2
)







,

(29)

where v̂ = (v̂0, . . . , v̂n)
T , whereκ is fourth-order moment

of hµk, and where(n+1)× (n+1) symmetric matrixQ and
fourth-order symmetric tensorW are defined as

Qab =
1

K

K
∑

k=1

xakxbk (0 ≤ a ≤ b ≤ n), (30)

Wabcd =
1

K

K
∑

k=1

xakxbkxckxdk (0 ≤ a ≤ b ≤ c ≤ d ≤ n).

(31)

Note that in the above we have to evaluateV̂ (v̂|{xa}) up to
O(K−1) terms. The inverse Fourier transform yields

V (v|{xa}) = VG(v)−
1

K
V∆(v) +O(K−2), (32)

where

VG(v) =
[

(2π)n+1det (Q)
]− 1

2

exp

[

−1

2
vTQ−1v

]

, (33)

V∆(v) =
3− κ

24

n
∑

a,b,c,d=0

Wabcd

∂4

∂va∂vb∂vc∂vd
VG(v). (34)



Collecting these expressions, we have

A = exp
[

NG0(Q)− G1(Q,W ) +O
(

K−1
)

]

, (35)

where

G0(Q) = log

∫

VG(v)

∫ n
∏

a=0

ρa

(

y|
√

β va

)

dy dv,

(36)

G1(Q, W ) =

∫

V∆(v)
∫
∏n

a=0 ρa
(

y|
√
β va

)

dy dv

β
∫

VG(v)
∫
∏n

a=0 ρa
(

y|√β va
)

dy dv
. (37)

C. Integral over Q and W

Since the quantityA depends on{xa} only throughQ and
W , one can rewrite (26) in terms of an integral overQ and
W , as

Zn(x
L
0 , x

L
1 )

= lim
K,N→∞

∫∫

exp
[

NG0(Q)− G1(Q, W ) +O
(

K−1
)

]

× µK(Q, W ; xL
0 , x

L
1 ) dQdW, (38)

where

µK(Q, W ; xL
0 , x

L
1 )

=

∫

· · ·
∫

∏

0≤a≤b≤n

δ

(

Qab −
1

K

K
∑

k=1

xakxbk

)

×
∏

0≤a≤b≤c≤d≤n

δ

(

Wabcd −
1

K

K
∑

k=1

xakxbkxckxdk

)

×
n
∏

a=0

Pa(xa) dx
\L
0 dx

\L
1

n
∏

a=2

dxa, (39)

anddQ =
∏

0≤a≤b≤n dQab , dW =
∏

0≤a≤b≤c≤d≤n dWabcd.
We evaluate (39) in the large-system limit by following the

derivation in [6], [7]. We introduce parameterŝQ = {Q̂ab; 0 ≤
a ≤ b ≤ n} and Ŵ = {Ŵabcd; 0 ≤ a ≤ b ≤ c ≤ d ≤ n},
which are conjugates toQ and W , respectively, and define
some functions of them for later use:

Λ(Q̂, Ŵ ) =
1

K
log

∫

· · ·
∫ K
∏

k=1

exp

[

∑

0≤a≤b≤n

Q̂ab xakxbk

+
∑

0≤a≤b≤c≤d≤n

Ŵabcd xakxbkxckxdk

]

n
∏

a=0

{

Pa(xa) dxa

}

, (40)

λx(Q̂, Ŵ ;xL
0 , x

L
1 )

= log

∫

· · ·
∫ L
∏

k=1

exp

[

∑

0≤a≤b≤n

Q̂ab xakxbk

+
∑

0≤a≤b≤c≤d≤n

Ŵabcd xakxbkxckxdk

]

n
∏

a=0

PL
a (xL

a )

n
∏

a=2

dxL
a ,

(41)

λ(Q̂, Ŵ ) = log

∫

· · ·
∫ L
∏

k=1

exp

[

∑

0≤a≤b≤n

Q̂ab xakxbk

+
∑

0≤a≤b≤c≤d≤n

Ŵabcd xakxbkxckxdk

]

n
∏

a=0

{

PL
a (xL

a ) dx
L
a

}

.

(42)

We further assume thatΛ(Q̂, Ŵ ) has a limit asK → ∞.
Using the functions (40)–(42), the Fourier transform of (39)
is given by

µ̂K(Q̂, Ŵ ; xL
0 , xL

1 ) = exp

[

KΛ

(

i
Q̂

K
, i

Ŵ

K

)

+ λx

(

i
Q̂

K
, i

Ŵ

K
; xL

0 , x
L
1

)

− λ

(

i
Q̂

K
, i

Ŵ

K

)]

, (43)

and its inverse Fourier transform yields

µK(Q, W ; xL
0 , x

L
1 ) =

(

K

2π

){(n+2

2 )+(n+4

4 )}

×
∫∫

exp
[

K
{

−iQ · Q̂− iW · Ŵ + Λ(iQ̂, iŴ )
}]

× exp
[

λx(iQ̂, iŴ ; xL
0 , x

L
1 )− λ(iQ̂, iŴ )

]

dQ̂ dŴ , (44)

where Q · Q̂ and W · Ŵ are abbreviations of
∑

0≤a≤b≤n Qab Q̂ab and
∑

0≤a≤b≤c≤d≤nWabcd Ŵabcd,
respectively.

To evaluate the integral over̂Q and Ŵ in (44), let Q̂∗ =
{Q̂∗

ab; 0 ≤ a ≤ b ≤ n} andŴ ∗ = {Ŵ ∗
abcd; 0 ≤ a ≤ b ≤ c ≤

d ≤ n} denote the solution of the equations

Qab =
∂Λ(Q̂, Ŵ )

∂Q̂ab

, Wabcd =
∂Λ(Q̂, Ŵ )

∂Ŵabcd

. (45)

Applying three operations to (44); a change of variables

iQ̂ab → i
Q̂ab√
K

+ Q̂∗
ab, iŴabcd → i

Ŵabcd√
K

+ Ŵ ∗
abcd, (46)

Taylor expansion ofΛ, λx andλ, and a change of integration
paths to real axes, one can find that the integral in (44) leads
to a Gaussian integration. Then, one obtains

µK(Q, W ; xL
0 , x

L
1 )

=

(

K

2π

)
1
2{(n+2

2 )+(n+4

4 )}
det
(

H(Λ|Q̂∗, Ŵ ∗)
)− 1

2

× exp
[

K
{

−Q · Q̂∗ −W · Ŵ ∗ + Λ(Q̂∗, Ŵ ∗)
}

+ λx(Q̂
∗, Ŵ ∗; xL

0 , x
L
1 )− λ(Q̂∗, Ŵ ∗) +O

(

K− 1
2

) ]

,

(47)

whereH(f |u∗) represents a Hessian matrix of the function
f(u) at u = u∗. Use of Gaussian integration requires the
Hessian matrixH(Λ|Q̂∗, Ŵ ∗) being positive definite. Note
that a similar evaluation is still possible whenH(Λ|Q̂∗, Ŵ ∗)
is non-negative definite [8].



D. Saddle-point evaluation

We evaluate the integral overQ and W in (38) via the
saddle-point method [9]. We obtain

Zn(x
L
0 , x

L
1 )

= lim
K,N→∞

D exp
[

KnFn(Q
∗, W ∗)− G1(Q

∗, W ∗)

+ λx(Q̂
∗, Ŵ ∗; xL

0 , x
L
1 )− λ(Q̂∗, Ŵ ∗) +O

(

K−1
)

]

, (48)

where the functionFn(Q, W ) is defined as

Fn(Q, W )

=
1

n

[

1

β
G0(Q)−Q · Q̂∗ −W · Ŵ ∗ + Λ(Q̂∗, Ŵ ∗)

]

(49)

Note thatQ̂∗ andŴ ∗ depend onQ andW via (45). The saddle
pointsQ∗ = {Q∗

ab; 0 ≤ a ≤ b ≤ n} andW ∗ = {W ∗
abcd; 0 ≤

a ≤ b ≤ c ≤ d ≤ n} are determined as the solution of

∂Fn(Q, W )

∂Qab

= 0,
∂Fn(Q, W )

∂Wabcd

= 0. (50)

If more than one solution exists for (50), the correct solution
is the one that maximizes (49). The normalization factorD is
given by

D =
[

det
(

H(Λ|Q̂∗, Ŵ ∗)
)

det
(

H(−nFn|Q∗, W ∗)
)]− 1

2

.

(51)

Application of the saddle-point method here requires that the
Hessian matrixH(−nFn|Q∗, W ∗) is positive definite.

Since our final result will be a function ofxL
0 and xL

1 ,
we can ignore terms in (48) which are independent of these
variables, obtaining

Zn(x
L
0 , x

L
1 ) ∝ exp

[

λx(Q̂
∗, 0; xL

0 , x
L
1 )
]

. (52)

Note that one obtainŝWabcd = 0 by solving (50), and that the
overall factor, which we have just ignored, can be determined
via normalization. It turns out, fromŴabcd = 0, (45), and
(50), thatQ∗ and Q̂∗ do not depend onW ∗.

E. Replica symmetric ansatz

To proceed further, we assume replica symmetry (RS) [10],
under which we let

Q∗
00 = r0, Q∗

aa = r, Q∗
0a = m, Q∗

ab = q,

Q̂∗
00 =

1

2
G0, Q̂∗

aa =
1

2
G, Q̂∗

0a = E, Q̂∗
ab = F, (53)

for positive integersa < b. Then,F ≡ limn→0 Fn(Q, W )
is reduced to (22), and the saddle-point equations (45) and
(50) become (10)–(15), (18) andG0 = 0 (For detailed
derivation, see [10]). Notice that the condition for the Hessian
matrix H(−nFn|Q∗, W ∗) being positive definite yields the
de Almeida-Thouless (AT) condition for local stability of RS
solutions [11].

Inserting the RS assumption (53) into (52), one obtains

Zn(x
L
0 , x

L
1 )

∝
∫

[

L
∏

k=1

ρG(zk|x1k)e
G−F+E

2

∣

∣

∣

∣xL

1

∣

∣

∣

∣

2

PL
1 (xL

1 )

]

×
[

∫ L
∏

k=1

ρG(zk|xk)e
G−F+E

2

∣

∣

∣

∣xL

∣

∣

∣

∣

2

PL(xL) dxL

]n−1

×
L
∏

k=1

{

ρG0(zk|x0k)e
1
2 (nEz2

k
+G0x

2
0k)
}

PL
0 (xL

0 ) dz
L. (54)

Taking the limitn → 0, one finally arrives at (6).

V. CONCLUSION

In this paper, we have considered the decoupling principle
of the linear vector channel. We have shown that the scalar-
channel characterization obtained via decoupling principle is
valid for the joint distributions ofL (≪ K) elements of input
vector and their estimates based on the posterior probability,
in the large-system limit. This implies that the scalar-channel
characterization is valid not only for macroscopic quantities,
but also for microscopic quantities on the linear vector chan-
nel.
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