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Abstract

We introduce the two user finite state compound Gaussian interference chan-
nel and characterize its capacity region to within one bit. The main contributions
involve both novel inner and outer bounds. The inner bound is multilevel super-
position coding but the decoding of the levels is opportunistic, depending on the
channel state. The genie aided outer bound is motivated by the typical error events
of the achievable scheme.

1 Introduction

The focus of this paper is the communication scenario depicted in Figure 1. Two transmitter-
receiver pairs communicate reliably in the face of interference. The discrete time complex
baseband model is:

y1[m] = h11x1[m] + h21x2[m] + z1[m], (1)

y2[m] = h12x1[m] + h22x2[m] + z2[m]. (2)

Here m is the time index, yk is the signal at receiver k while xk is the signal sent out by
the transmitter k (with k = 1, 2). The noise sequences {z1[m], z2[m]}m are memoryless
complex Gaussian with zero mean and unit variance. The transmitters are subject to
average power constraints:

N∑

m=1

|xk[m]|2 ≤ NPk, k = 1, 2, ∀N ≥ 1. (3)

The complex parameters {hkℓ, ℓ = 1, 2, k = 1, 2} model the channel coefficients between
the pairs of transmitters and receivers. They do not vary with time but the transmitters
and receivers have different information about them:
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• Receiver k is exactly aware of the two channel coefficients h1k, h2k; this models
coherent communication.

• Transmitters are only coarsely aware of the channel coefficients: the transmitters
know that the channel coefficients belong to a finite set. Specifically, both the
transmitters know that

(h1k, h2k) ∈ Ak, k = 1, 2. (4)

This models potential partial feedback to the transmitters regarding the channel
coefficients.

A more general compound channel model allows for all four channel parameters to jointly
take on different choices:

(h11, h12, h21, h22) ∈ A. (5)

However, since the receivers do not cooperate in the interference channel, it turns out
that the setting in Equation (5) is no more general than the one in Equation (4). This is
explored in Section 8.
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Figure 1: The two user Gaussian interference channel.

The key problem of interest is the characterization of the capacity region: the set
of rate pairs at which arbitrarily reliable communication between the two transmitter-
receiver pairs. The “compound” aspect of the channel is in insisting that the receivers be
able to decode the messages of interest with arbitrarily high probability, no matter which
of the finite states the channel coefficients take on. Our main result is a characterization
of the capacity region up to one bit.
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A special instance of the problem studied here is the classical two user Gaussian
interference channel: in a recent work, Etkin, Tse and Wang [4] showed that a single
superposition coding scheme (a specific choice among the broad class of schemes first
identified by Han and Kobayashi [1]) achieves performance within one bit of the capacity
region. The transmission involved splitting the data into two parts – one public and the
other private – and linearly superposing them. The idea is that the public data stream
is decoded by both the receivers while the private data stream only by the receiver of
interest. The key identity of the proposed superposition scheme is the following: the
power allocated to the private stream is such that it appears at exactly the same level as
the background noise at the unintended receiver (the idea is that since the private data
stream is being treated as noise at the unintended receiver, there is no extra incentive
to reduce its level even further than that of the additive noise). A novel outer bound
developed in [4] showed that this simple superposition scheme is within one bit of the
capacity region.

Implementation of the specific superposition scheme proposed above requires each
transmitter to be aware of the interference level it is causing to the unintended receiver.
In the context of the compound channel being studied here, the transmitter is not aware of
the interference level; this poses an obstacle to adopting the idea of appropriately choosing
the power level of the private data stream. One possibility could be to set the power level
of the private data stream based on the strongest interfering link level (among the set of
possible choices) – this would ensure that it is only received below noise level when the
interfering link level takes on the other possible choices. However, this approach might
be too pessimistic and its closeness to optimality is unclear.

We circumvent this problem by proposing the following novel twist to the general
superposition coding scheme. Our main idea is best described when the interference links
(h12 and h21 in Figure 1) take on only two possible values and the direct links are fixed
(i.e., the sets A1 and A2 have cardinality of two, cf. Equation (4)). We now superpose
three data streams at each transmitter. Two of them, public and private, are as earlier:
all receivers in all channel states decode the public message while only the receiver of
interest decodes the private message (no matter the channel state, again). The novelty
is in the third data stream that we will call semi-public: this data stream is decoded by
the unintended receiver only when the interference link is the stronger of the two choices
(and treated as noise otherwise). As such, this data stream is neither fully private nor
public (the unintended receiver either treats it as noise or decodes it based on the channel
state) and the nomenclature is chosen to highlight this feature.

The power split rule is the following: the power of the private stream is set such that
at the higher of the interference link levels, it is received at the unintended receiver at
the same level as the additive noise. The power of the semi-public data stream is set such
that it is received at the unintended receiver at the same level as the additive noise only
when the interference link level is at the lower of the two possible choices. The rationale
is that the semi-public data stream is not decoded only when the interference link level
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is at the lower of the two possible choices, and thus it can transmit higher power than if
its power is restricted by the higher of the interference link levels. This approach scales
naturally when the interference link levels can take on more than two possible choices
(the number of splits of the data stream is one more than the cardinality of the set of
possible choices).

We derive novel outer bounds to show that our simple achievable scheme is within
one bit of the capacity region. Our outer bounds are genie aided and are based on the
clues provided by the typical error events in the achievable scheme. This approach sheds
operational insight into the nature of the outer bounds even in the noncompound version
(thus eliminating the “guesswork” involved in the derivation, cf. Section IV of [5]).

The paper is organized as follows: we start with a simple two-state compound inter-
ference channel. In this setting, both the direct and interference link levels can take on
only one of two possible values (so the sets A1 and A2 have cardinality two). Using a
somewhat abstract setting (described in Section 2) that features the Gaussian problem
of interest as a special case, we present our main results (both inner and outer bounds)
for this two-state compound interference channel. Our definition of the abstract setting
is motivated by that chosen in [5] and could be viewed as a natural compound version of
the interference channel studied by Telatar and Tse [5]. This is done in Section 3. We
discuss the insights garnered from these results in the context of the simpler noncom-
pound interference channel in Section 6. Next, we are ready to set up the model and
describe the solution the more general finite state interference channel; we do this first
in the abstract setting (Section 7) followed by specializing to the Gaussian scenario of
interest (Section 8).

2 Model

Consider the two-user, two-state compound memoryless interference channel depicted in
Figure 2. There are two transmitters which want to reliably communicate independent
messages to two corresponding receivers. The input to the channel from the first trans-
mitter at any discrete time X1 ∈ X1 passes through a degraded discrete memoryless
broadcast channel: the two outputs of the degraded broadcast channel are S1α ∈ S1 and
(the degraded version) S1β ∈ S1. Similarly, at any time, the input to the channel from
transmitter 2 X2 ∈ X2 produces S2α ∈ S2 and a degraded version S2β ∈ S2 of it. The
channel to any one of the two receivers is decided by the state of that receiver: here there
are only two states α and β. Once the state is decided, it is fixed for the entire duration
of communication. When the first receiver is in state α, the output at any time is

Y1α = f1α(X1, S2α) ∈ Y1. (6)

Similarly, when the first receiver is in state β, the output at any time is

Y1β = f1β(X1, S2β) ∈ Y1. (7)

4



Y1α

q

q

q

q

q ✻

❄

✲

❄❄ ❄

✲

✻✻ ✻

✲

✄
✄
✄
✄
✄
✄
✄
✄
✄

✲ ✲

✲✲

❈
❈
❈
❈
❈
❈
❈
❈
❈ ✲

X2

X1

f1α f1β

pS2β |S2α
pS2α|X2

pS1α|X1
pS1β |S1α

f2β
Y2α

f2α
Y2β

Y1β

q

Figure 2: A two-state compound channel model.

Here f1α and f1β are deterministic functions such that for every x1 ∈ X1, s2 ∈ S2, and
η = α, β, the following function is invertible:

f1η(x1, .) : S2 → Y1.

Likewise, the outputs of user 2 under the two possible states the channel to it can take
are defined using similar deterministic functions f2α and f2β.

We allow each receiver to be in potentially different states, and they are both aware
of the state they are in. A pair of communication rates (R1, R2) is said to be achievable
if for every ǫ > 0, there are block length n encoders,

enck : {1, . . . ,Mk} → X
n
k ,Mk ≥ 2n(Rk−ǫ), k = 1, 2, (8)

and decoders
deckη : Y

n
k → {1, . . . ,Mk}, k = 1, 2, η = α, β, (9)

such that

1

M1M2

∑

m1,m2

Pr
(
deck,η(Y

n
kη) = mk, k = 1, 2, η = α, β|Xn

k = enck(mk), k = 1, 2
)
≥ 1− ǫ.

(10)
We are interested in the capacity region C, which is the set of all achievable (R1, R2) pairs.
We can make a few observations:
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• The channel described here can be thought of as a natural generalization of that
studied in [5].

• An important special case occurs when the channels pSkα|Xk
and pSkβ |Skα

are deter-
ministic for both k = 1, 2. This channel is a compound version of the deterministic
channel considered by El Gamal and Costa [2] with the interference in state β being
a deterministic function of the interference in state α.

• The compound Gaussian interference channel, with the cardinality of both the sets
A1 and A2 restricted to 2 (in the notation introduced in Section 1), is a special
instance of the model in Figure 2. We start with a compound Gaussian interference
channel with

(h11, h21) ∈ {(h11α, h21α), (h11β , h21β)} ,

(h22, h12) ∈ {(h22α, h12α), (h22β , h12β)} .

Further, without loss of generality, we can assume that

|h21α| ≥ |h21β |, (11)

|h12α| ≥ |h12β |. (12)

With the following assignment, we see that the model in Figure 2 can capture the
Gaussian model in Figure 1:

S1α = h12αX1 + Z2, (13)

S1β =
h12β

h12α
S1α +

(

1−

∣
∣
∣
∣

h12β

h12α

∣
∣
∣
∣

2
)1/2

Z ′
2, (14)

S2α = h21αX2 + Z1, (15)

S2β =
h21β

h21α
S2α +

(

1−

∣
∣
∣
∣

h21β

h21α

∣
∣
∣
∣

2
)1/2

Z ′
1, (16)

Y1α = f1α(X1, S2α) = h11αX1 + S2α, (17)

Y1β = f1β(X1, S2β) = h11βX1 + S2β , (18)

Y2α = f2α(X2, S1α) = h22αX2 + S1α, (19)

Y2β = f2β(X2, S1β) = h22βX2 + S1β . (20)

Here Z1, Z
′
1, Z2 and Z ′

2 are independent complex Gaussian random variables with
unit variance.

3 Main Result

Our main results on the 2-state compound interference channel are the following.
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• We first show the performance of an achievable scheme and hence characterize an
inner-bound;

• next, we give an outer-bound to the capacity region and quantify the gap between
the outer-bound and the achievable scheme;

• specializing to the compound deterministic interference channel, we completely char-
acterize the capacity region;

• specializing to the compound Gaussian interference channel, we characterize the
capacity region up to a gap of 1 bit (at all operating SNR values and all channel
parameter values).

3.1 Inner-bound: Achievable Scheme

The achievable scheme is characterized by P, the set of random variables

(Q,X1, U1α, U1β, X2, U2α, U2β), (21)

such that the following Markov chain is satisfied:

U1β − U1α −X1 −Q−X2 − U2α − U2β.

Alternatively, the joint probability distribution function factors as

p(q, x1,, u1α, u1β, x2, u2α, u2β) =p(q)p(x1|q)p(u1α|x1)p(u1β|u1α)p(x2|q)p(u2α|x2)p(u2β|u2α).
(22)

Our achievable scheme is a multilevel superposition coding one and can be viewed as
a generalization of the two-level superposition coding scheme of Chong et al. [3]. The
random coding method can be intuitively described as follows, using the “cloud-center”
analogy from Cover and Thomas (Section 14.6.3, [8]); a formal statement and its proof
follow later. The random variables U1β and U2β are used to generate the outermost code
books (with rate R1β and R2β , respectively) for the two users. These messages encoded
via these code books are decoded by both receivers and, as such, can be interpreted as
public information. Next, the random variables U1α and U2α are used to generate the
next level of code books (with rate R1α and R2α, respectively). The messages encoded
via these code books are decoded by the receiver with stronger interference (i.e. Rxkα)
but treated as noise by the receiver with weaker interference (i.e. Rxkβ); as such, these
messages can be viewed as semi-public information. Finally, the messages encoded via the
inner most code books (rates R1p and R2p) are only decoded by the receiver of interest;
thus this constitutes private information.

Given P ∈ P, we define the six-dimensional region

R(6)
in (P ) , {(R1p, R1α, R1β, R2p, R2α, R2β) : satisfying (24)− (55)} . (23)
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R1p ≤ I(Y1β ;X1|U1α, U2β , Q) = γ11 (24)

R2β +R1p ≤ I(Y1β ;X1, U2β|U1α, Q) = γ12 (25)

R1α +R1p ≤ I(Y1β ;X1|U1β , U2β, Q) = γ13 (26)

R2β +R1α +R1p ≤ I(Y1β ;X1, U2β|U1β , Q) = γ14 (27)

R1β +R1α +R1p ≤ I(Y1β ;X1|U2β , Q) = γ15 (28)

R2β +R1β +R1α +R1p ≤ I(Y1β ;X1, U2β|Q) = γ16 (29)

R1p ≤ I(Y1α;X1|U1α, U2α, Q) = δ11 (30)

R2α +R1p ≤ I(Y1α;X1, U2α|U1α, U2β , Q) = δ12 (31)

R2β +R2α +R1p ≤ I(Y1α;X1, U2α|U1α, Q) = δ13 (32)

R1α +R1p ≤ I(Y1α;X1|U1β , U2α, Q) = δ14 (33)

R2α +R1α +R1p ≤ I(Y1α;X1, U2α|U1β , U2β, Q) = δ15 (34)

R2β +R2α +R1α +R1p ≤ I(Y1α;X1, U2α|U1β , Q) = δ16 (35)

R1β +R1α +R1p ≤ I(Y1α;X1|U2α, Q) = δ17 (36)

R2α +R1β +R1α +R1p ≤ I(Y1α;X1, U2α|U2β , Q) = δ18 (37)

R2β +R2α +R1β +R1α +R1p ≤ I(Y1α;X1, U2α|Q) = δ19 (38)

R2p ≤ I(Y2β ;X2|U2α, U1β , Q) = γ21 (39)

R1β +R2p ≤ I(Y2β ;X2, U1β|U2α, Q) = γ22 (40)

R2α +R2p ≤ I(Y2β ;X2|U2β , U1β, Q) = γ23 (41)

R1β +R2α +R2p ≤ I(Y2β ;X2, U1β|U2β , Q) = γ24 (42)

R2β +R2α +R2p ≤ I(Y2β ;X2|U1β , Q) = γ25 (43)

R1β +R2β +R2α +R2p ≤ I(Y2β ;X2, U1β|Q) = γ26 (44)

R2p ≤ I(Y2α;X2|U2α, U1α, Q) = δ21 (45)

R1α +R2p ≤ I(Y2α;X2, U1α|U2α, U1β , Q) = δ22 (46)

R1β +R1α +R2p ≤ I(Y2α;X2, U1α|U2α, Q) = δ23 (47)

R2α +R2p ≤ I(Y2α;X2|U2β , U1α, Q) = δ24 (48)

R1α +R2α +R2p ≤ I(Y2α;X2, U1α|U2β , U1β, Q) = δ25 (49)

R1β +R1α +R2α +R2p ≤ I(Y2α;X2, U1α|U2β , Q) = δ26 (50)

R2β +R2α +R2p ≤ I(Y2α;X2|U1α, Q) = δ27 (51)

R1α +R2β +R2α +R2p ≤ I(Y2α;X2, U1α|U1β , Q) = δ28 (52)

R1β +R1α +R2β +R2α +R2p ≤ I(Y2α;X2, U1α|Q) = δ29 (53)

R1p +R1α +R1β ≥ 0 (54)

R2p +R2α +R2β ≥ 0. (55)
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We define the two-dimensional region,

Rin(P ) ,{(R1, R2) :

R1 = R1p +R1α +R1β,

R2 = R2p +R2α +R2β,

(R1p, R1α, R1β, R2p, R2α, R2β) ∈ R
(6)
in (P )}. (56)

In other words Rin(P ) is the projection of the six-dimensional polytope R(6)
in (P ). One

approach to take the projection, is to do the Fourier-Motzkin elimination, as done for the
basic superposition coding scheme in the context of the regular (noncompound) interfer-
ence channel [3]. Doing this explicitly is rather cumbersome as the inequalities here are
much more in number than the inequalities that were handled by Chong et al. in [3].

Theorem 1 The capacity region C satisfies

C ⊇
⋃

P∈P

Rin (P ) . (57)

Proof: A formal description of the achievable scheme and the proof of this theorem are
available in Section 4.1. ✷

Particularizing, we restrict ourselves to a subset of P defined as follows. Given random
variables (Q,X1, X2) such thatX1 andX2 are conditionally independent when conditioned
on Q, we define random variables U1α and U1β which take values in S1, and U2α and U2β

which take values in S2. They are jointly distributed with (Q,X1, X2) according to the
conditional distribution

p(u1α, u1β, u2α, u2β|q, x1, x2) =

pS1α|X1
(u1α|x1)pS1β |S1α

(u1β|u1α)pS2α|X2
(u2α|x2)pS2β |S2α

(u2β|u2α).

(58)

Note that, conditioned on Q, we have the following two Markov chains, with the sets of
random variables involved in the two chains being conditionally independent.

U1β − U1α −X1 − S1α − S1β

U2β − U2α −X2 − S2α − S2β .

Our choice is motivated by the choice in the paper by Telatar and Tse [5]. Every member
of this family is uniquely determined by joint random variables (Q,X1, X2) such that
X1 − Q − X2 is a Markov chain. We will henceforth denote the corresponding regions
R

(6)
in (P ) by R

(6)
in (Q,X1, X2) and Rin (P ) by Rin (Q,X1, X2). We now have the natural

result:
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Corollary 2

C ⊇
⋃

Q,X1,X2

Rin (Q,X1, X2) , (59)

where the union is over all (Q,X1, X2) such that X1 −Q−X2 is a Markov chain.

Proof: Follows directly from Theorem 1. ✷

We observe that the Fourier-Motzkin elimination procedure to implement the projec-
tion operation in obtaining Rin(Q,X1, X2) would yield only a finite set of inequalities.
Further, the right hand sides of these inequalities would be linear functions of p(q) and
for a fixed Q = q0 the right hand sides form a closed set of finite dimensions. Thus, by
Carathèodory’s theorem, we can conclude that the cardinality of Q can taken to be finite
without loss of generality in the union in Equation (59).

3.2 Outer-bound

Theorem 3 For every (Q,X1, X2) such that X1 −Q−X2 is a Markov chain, there is a
region Rout(Q,X1, X2) ⊆ R

2
+ such that the following are true:

(i)

C ⊆
⋃

Q,X1,X2

Rout(Q,X1, X2), (60)

where the union is over all (Q,X1, X2) such that X1 −Q−X2 is a Markov chain.

(ii) If (R1, R2) ∈ Rout(Q,X1, X2), then (R1 −∆1, R2 −∆2) ∈ Rin(Q,X1, X2), where

∆1(Q,X1, X2) = max(I(X2;S2α|U2α), I(X2;S2β|U2β)), (61)

∆2(Q,X1, X2) = max(I(X1;S1α|U1α), I(X1;S1β|U1β)), (62)

in which the random variables are jointly distributed according to (58) and the chan-
nel conditional distributions.

Proof: Part(i) is proved in Section 5.1. Part(ii) is proved in Section 5.2. ✷

The set Rout(Q,X1, X2) is defined in Section 5.1. Our definition is motivated by the
external representation of Rin(Q,X1, X2) that we obtain in Section 4.2.
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3.3 Special Cases

Our model captures two important special cases:

• the compound deterministic interference channel;

• the compound Gaussian interference channel,

as discussed in Section 2. Thus our results apply to these cases (readily for the determin-
istic channel, and with an appropriate approximation result to the continuous alphabet
Gaussian channel). Moreover, the structure afforded by these special cases allows us to
derive further insight into the nature of the general results derived earlier.

3.3.1 Compound Deterministic Interference Channel

In this instance, the capacity region is exactly described.

Corollary 4 For the deterministic compound interference channel, the inner bound in
Theorem 1 is the capacity region.

Proof: The proof is elementary. When the channel is deterministic, we see that the gap
claimed by Theorem 3

∆1(Q,X1, X2) = ∆2(Q,X1, X2) = 0. (63)

This completes the proof. ✷

3.3.2 2-state Compound Gaussian Interference Channel

For the Gaussian version, we can characterize the capacity to within one-bit.

Corollary 5 For the 2-state compound Gaussian interference channel, the achievable
region of Theorem 1 is within at most one bit of the capacity region.

Proof: For the Gaussian channel, each of the mutual information terms in the expressions
for ∆1(Q,X1, X2) and ∆2(Q,X1, X2) can be upper bounded by 1 bit. To see this, note
that S1α = h1αX1 + N1α and U1α = h1αX1 + N ′

1α, where N1α and N ′
1α are independent

and identically distributed memoryless complex Gaussian random variables. Hence

I(X1;S1α|U1α) = h(S1α|U1α)− h(N1α)

≤ h(S1α − U1α)− h(N1α) = 1.

11



Similarly,

I(X1;S1β|U1β) ≤ 1, (64)

I(X2;S2α|U2α) ≤ 1, (65)

I(X2;S2β|U2β) ≤ 1. (66)

✷

Additionally, we can use Gaussian code books to get to within one bit of the capacity.

Corollary 6 For the 2-state compound Gaussian interference channel,

C ⊆ Rout(Q
∗, X∗

1 , X
∗
2 ), (67)

where Q∗ = 1, X∗
1 ∼ CN (0, P1), X

∗
2 ∼ CN (0, P2).

This implies that Rin(Q
∗, X∗

1 , X
∗
2) is within one-bit of the capacity region C of the

2-state Gaussian compound interference channel.

Proof: See Section 5.3. ✷

4 An Achievable Scheme

We will present a natural, and novel, achievable scheme first. We will evaluate the set of
reliable communication rates using this strategy and hence characterize an inner bound
to the capacity region; this will complete the proof of Theorem 1. Next, we will see some
important geometric properties of the achievable rate region.

4.1 Proof Of Theorem 1

Our coding scheme is a natural generalization of the scheme of Chong et al. [3]. Since
there are two possible states for both receivers, each encoder now sends two sets of com-
mon information, with the receivers opportunistically decoding the common information
(depending on the state). we choose the random variables corresponding to the two sets of
common information in a degraded manner, following the same ordering of degradedness
of the interferences under the two states (c.f.

Xk − Skα − Skβ, k = 1, 2). (68)

Fix a P ∈ P.

12



Codebook Generation

Generate a codeword Qn of length n, generating each element i.i.d. according to Πn
i=1p(qi).

For the codeword Qn, generate 2nR1β independent codewords

Un
1β(j1), j1 ∈ {1, 2, · · · , 2

nR1β}, (69)

generating each element i.i.d. according to Πn
i=1p(u1βi|qi). For each of the codewords

Un
1β(j1), generate 2nR1α independent codewords

Un
1α(j1, k1), k1 ∈ {1, 2, · · · , 2

nR1α}, (70)

generating each element i.i.d. according to Πn
i=1p(u1αi|u1βi, qi). For each of the codewords

Un
1α(j1, k1), generate 2nR1p independent codewords

Xn
1 (j1, k1, l1), l1 ∈ {1, 2, · · · , 2

nR1p}, (71)

generating each element i.i.d. according to Πn
i=1p (x1|u1αi, u1βi, qi).

Similarly generate code books

Un
2β(j2), j2 ∈ {1, 2, · · · , 2

nR2β}, (72)

Un
2α(j2, k2), k2 ∈ {1, 2, · · · , 2

nR2α}, (73)

Xn
2 (j2, k2, l2), l2 ∈ {1, 2, · · · , 2

nR2p}. (74)

Encoding

Transmitter Tx1 sends Xn
1 (j1, k1, l1) to communicate the message indexed by (j1, k1, l1).

Transmitter Tx2 sends Xn
2 (j2, k2, l2) to communicate the message indexed by (j2, k2, l2).

Decoding

The receivers do joint typical set decoding. Let A
(n)
ǫ (Ω) denote the set of jointly typical

sequences ωn where Ω is the probability space containing the entire collection of random
variables.

Receiver Rx1β determines a unique
(

ĵ1, k̂1, l̂1

)

and any ĵ2 such that

(

Qn, Un
1β

(

ĵ1

)

, Un
1α

(

ĵ1, k̂1

)

, Xn
1

(

ĵ1, k̂1, l̂1

)

, Un
2β

(

ĵ2

)

, Y n
1β

)

∈

A(n)
ǫ (Q,U1β , U1α, X1, U2β, Y1β) .

It declares an error if it fails to find such a choice.
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Receiver Rx1α determines a unique
(

ĵ1, k̂1, l̂1

)

and any
(

ĵ2, k̂2

)

such that,

(

Qn, Un
1β

(

ĵ1

)

, Un
1α

(

ĵ1, k̂1

)

, Xn
1

(

ĵ1, k̂1, l̂1

)

, Un
2β

(

ĵ2

)

, Un
2α

(

ĵ2, k̂2

)

, Y n
1β

)

∈

A(n)
ǫ (Q,U1β , U1α, X1, U2β, U2α, Y1α).

It declares an error if it fails to find such a choice.

Similar decoding is done by receivers Rx2β and Rx2α.

From the analysis of the probability of error, we show in Appendix A that the rate
vector (R1p, R1α, R1β, R2p, R2α, R2β) is achievable if it satisfies the following conditions:

R1p ≤ I(Y1β ;X1|U1α, U2β, Q), if R1p > 0, (75)

R2β +R1p ≤ I(Y1β ;X1, U2β|U1α, Q), if R1p > 0, (76)

R1α +R1p ≤ I(Y1β ;X1|U1β, U2β , Q), if R1α +R1p > 0, (77)

R2β +R1α +R1p ≤ I(Y1β ;X1, U2β|U1β , Q), if R1α +R1p > 0 (78)

R1β +R1α +R1p ≤ I(Y1β ;X1|U2β, Q), if R1β +R1α +R1p > 0, (79)

R2β +R1β +R1α +R1p ≤ I(Y1β ;X1, U2β|Q), if R1β +R1α +R1p > 0, (80)

R1p ≤ I(Y1α;X1|U1α, U2α, Q), if R1p > 0, (81)

R2α + R1p ≤ I(Y1α;X1, U2α|U1α, U2β, Q), if R1p > 0, (82)

R2β +R2α + R1p ≤ I(Y1α;X1, U2α|U1α, Q), if R1p > 0, (83)

R1α + R1p ≤ I(Y1α;X1|U1β, U2α, Q), if R1α +R1p > 0, (84)

R2α +R1α + R1p ≤ I(Y1α;X1, U2α|U1β, U2β , Q), if R1α +R1p > 0, (85)

R2β +R2α +R1α + R1p ≤ I(Y1α;X1, U2α|U1β, Q), if R1α +R1p > 0, (86)

R1β +R1α + R1p ≤ I(Y1α;X1|U2α, Q), if R1β +R1α +R1p > 0, (87)

R2α +R1β +R1α + R1p ≤ I(Y1α;X1, U2α|U2β, Q), if R1β +R1α +R1p > 0, (88)

R2β +R2α +R1β +R1α + R1p ≤ I(Y1α;X1, U2α|Q), if R1β +R1α +R1p > 0, (89)

R2p ≤ I(Y2β ;X2|U2α, U1β, Q), if R2p > 0, (90)

R1β +R2p ≤ I(Y2β ;X2, U1β|U2α, Q), if R2p > 0, (91)

R2α +R2p ≤ I(Y2β ;X2|U2β, U1β , Q), if R2α +R2p > 0, (92)

R1β +R2α +R2p ≤ I(Y2β ;X2, U1β|U2β , Q), if R2α +R2p > 0, (93)

R2β +R2α +R2p ≤ I(Y2β ;X2|U1β, Q), if R2β +R2α +R2p > 0, (94)

R1β +R2β +R2α +R2p ≤ I(Y2β ;X2, U1β|Q), if R2β +R2α +R2p > 0, (95)
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R2p ≤ I(Y2α;X2|U2α, U1α, Q), if R2p > 0, (96)

R1α +R2p ≤ I(Y2α;X2, U1α|U2α, U1β , Q), if R2p > 0, (97)

R1β +R1α +R2p ≤ I(Y2α;X2, U1α|U2α, Q), if R2p > 0, (98)

R2α +R2p ≤ I(Y2α;X2|U2β , U1α, Q), if R2α +R2p > 0, (99)

R1α +R2α +R2p ≤ I(Y2α;X2, U1α|U2β , U1β, Q), if R2α +R2p > 0, (100)

R1β +R1α +R2α +R2p ≤ I(Y2α;X2, U1α|U2β , Q), if R2α +R2p > 0, (101)

R2β +R2α +R2p ≤ I(Y2α;X2|U1α, Q), if R2β +R2α +R2p > 0, (102)

R1α +R2β +R2α +R2p ≤ I(Y2α;X2, U1α|U1β , Q), if R2β +R2α +R2p > 0, (103)

R1β +R1α +R2β +R2α +R2p ≤ I(Y2α;X2, U1α|Q), if R2β +R2α +R2p > 0, (104)

R1p ≥ 0, (105)

R1α ≥ 0, (106)

R1β ≥ 0, (107)

R2p ≥ 0, (108)

R2α ≥ 0, (109)

R2β ≥ 0. (110)

Note that (75)-(80) are the decodability conditions at Rx1β; (81)-(89) are the decod-
ability conditions at Rx1α; (90)-(95) are the decodability conditions at Rx2β ; (96)-(104)
are the decodability conditions at Rx2α and (105)-(110) are stating the fact that the rates
are nonnegative real numbers.

Define

R̃(6)
in (P ) , {(R1p, R1α, R1β, R2p, R2α, R2β) : satisfies (75)-(110)} , (111)

and its projection onto the two dimension space (R1, R2) by R̃in(P ).

Lemma 7
Rin(P ) ⊆ R̃in(P ).

Proof: See Appendix B. ✷

Thus, we have shown that the capacity region C satisfies

C ⊇
⋃

P∈P

Rin (P ) . (112)
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In particular, restricting to a subfamily of P, where given random variables (Q,X1, X2)
such that X1−Q−X2 is a Markov chain and (U1α, U1β, U2α, U2β) are defined by (58), we
get

C ⊇
⋃

(Q,X1,X2)

Rin (Q,X1, X2) . (113)

This completes the proof of Theorem 1. ✷

4.2 Geometric Properties Of Rin (Q,X1, X2)

We have noted earlier that it is tedious to characterize Rin(Q,X1, X2) explicitly. Nev-
ertheless, we would like to derive some useful insights into the geometric properties of
Rin (Q,X1, X2). These will prove useful in deriving the outer bound.

We begin by noting that Rin (Q,X1, X2) is a closed and bounded convex region. (In
fact, we know that it is a polyhedron.) The extremal representation theorem of classical
Convex set theory (see Theorem 18.8, [7]) states that “an n-dimensional closed convex
set in R

n is the intersection of the closed half-spaces tangent to it”. Thus,

Rin(Q,X1, X2) =
{
(R1, R2) : aR1 + bR2 ≤ c∗ (a, b|(Q,X1, X2)) , ∀(a, b) ∈ R

2
}
. (114)

Here, c∗ (a, b|(Q,X1, X2)) is the support function (Section 13, [7]) of Rin(Q,X1, X2) and
is defined as the solution of the following linear program,

Max aR1 + bR2, (115)

s.t. (R1, R2) ∈ Rin(Q,X1, X2).

Since Rin (Q,X1, X2) is the projection of the six-dimensional region R(6)
in (Q,X1, X2), the

linear program (115) is equivalent to the following linear program.

Max aR1p + aR1α + aR1β + bR2p + bR2α + bR2β , (116)

s.t. (R1p, R1α, R1β, R2p, R2α, R2β) ∈ R
(6)
in (Q,X1, X2).

The dual of the linear program in Equation (116) sheds important geometric infor-
mation. Let us denote the dual-variables associated with the inequalities (24)-(29) by
ν11, . . . , ν16, with (30)-(38) by µ11, . . . , µ19, with (39)-(44) by ν21, . . . , ν26, with (45)-(53)
by µ21, . . . , µ29 and with (54)-(55) by ω1 and ω2.

Define Λ(a,b) ⊂ R
32 by,

Λ(a,b) ,
{(
{ν1i}

6
1, {µ1i}

9
1, {ν2i}

6
1, {µ2i}

9
1, {ωi}

2
1

)
: satisfying (118)− (124)

}
. (117)
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6∑

i=1

ν1i +
9∑

i=1

µ1i − ω1 = a (118)

6∑

i=3

ν1i +
9∑

i=4

µ1i + (µ22 + µ25 + µ28) + (µ23 + µ26 + µ29)− ω1 = a (119)

6∑

i=5

ν1i +

9∑

i=7

µ1i + (µ23 + µ26 + µ29) + (ν22 + ν24 + ν26)− ω1 = a (120)

6∑

i=1

ν2i +

9∑

i=1

µ2i − ω2 = b (121)

6∑

i=3

ν2i +
9∑

i=4

µ2i + (µ12 + µ15 + µ18) + (µ13 + µ16 + µ19)− ω2 = b (122)

6∑

i=5

ν2i +
9∑

i=7

µ2i + (µ13 + µ16 + µ19) + (ν12 + ν14 + ν16)− ω2 = b (123)

µij, νij , ωi ≥ 0. (124)

For any λ ∈ Λ(a,b) define

c
(in)
(λ,a,b)(Q,X1, X2) ,

2∑

j=1

(
6∑

i=1

νjiγji +

9∑

i=1

µjiδji

)

. (125)

The dual linear program is

min c
(in)
(λ,a,b)(Q,X1, X2), (126)

suchthat λ ∈ Λ(a,b).

By the strong duality theorem

c∗ (a, b|(Q,X1, X2)) = min
{

c
(in)
(λ,a,b)(Q,X1, X2)|λ ∈ Λ(a,b)

}

. (127)

Therefore,

{(R1, R2) : aR1 + bR2 ≤ c∗ (a, b|(Q,X1, X2))} =
⋂

λ∈Λ(a,b)

{

(R1, R2) : aR1 + bR2 ≤ c
(in)
(λ,a,b)(Q,X1, X2)

}

.

(128)

Using (114) and (128), Rin(Q,X1, X2) can now be described as,

Rin(Q,X1, X2) = {(R1, R2) : aR1 + bR2 ≤ c
(in)
(λ,a,b)(Q,X1, X2),

∀λ ∈ Λ(a,b), ∀ (a, b) ∈ R
2}. (129)

17



The set of linear inequalities (c.f. (129)) that is used to describe Rin(Q,X1, X2) is very
large and many of the inequalities might be redundant. The following result, Lemma 8,
tries to characterize some of these redundant inequalities.

Let Λ′
(a,b) be a subset of Λ(a,b) defined by

Λ′
(a,b) ,

{
λ ∈ Λ(a,b) : ω1 = 0, ω2 = 0

}
. (130)

Lemma 8

Rin(Q,X1, X2) = {(R1, R2) : R1 ≥ 0, R2 ≥ 0

aR1 + bR2 ≤ c
(in)
(λ,a,b)(Q,X1, X2), ∀λ ∈ Λ′

(a,b), ∀a ≥ 0, b ≥ 0}.

(131)

Proof: Every inequality used to define Rin(Q,X1, X2) in (129) is described by param-
eters (a, b) and λ ∈ Λ(a,b). Note that this set of inequalities includes the following two
inequalities:

−R1 ≤ 0 (132)

−R2 ≤ 0. (133)

Consider any inequality, other than the two special ones above, described by (a, b) and
λ ∈ Λ(a,b), such that λ 6∈ Λ′

(a,b):

aR1 + bR2 ≤ c
(in)
(λ,a,b). (134)

Define
(ã, b̃) , (a+ ω1, b+ ω2). (135)

Consider λ̃ ∈ Λ′
(ã,b̃)

, obtained by replacing ω1 and ω2 in λ by 0. Now we have

c
(in)
(λ,a,b) = c

(in)

(λ̃,ã,b̃)
. (136)

Therefore
(a + ω1)R1 + (b+ ω2)R2 = ãR1 + b̃R2 ≤ c

(in)

(λ̃,ã,b̃)
= c

(in)
(λ,a,b). (137)

The above inequality, along with R1 ≥ 0 and R2 ≥ 0, implies (134). Therefore we have
that (134) is redundant.

Thus we have proved that inequalities that are characterized by a λ 6∈ Λ′
(a,b) are

redundant and can be removed. It also follows from (118)-(124) that Λ′
(a,b) is an empty

set if either a or b is less than 0. Thus we only need to consider inequalities characterized
by (a, b), where a ≥ 0 and b ≥ 0. This completes the proof. ✷

We also state the following proposition, that will be used in proving the outer bound.
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Proposition 1 For any λ ∈ Λ′
(a,b),

(µ11 + µ12 + µ13) + (ν11 + ν12) = (µ22 + µ23 + µ25 + µ26 + µ28 + µ29)
(138)

(µ14 + µ15 + µ16) + (µ22 + µ25 + µ28) + (ν13 + ν14) = (ν22 + ν24 + ν26) (139)

(µ21 + µ22 + µ23) + (ν21 + ν22) = (µ12 + µ13 + µ15 + µ16 + µ18 + µ19)
(140)

(µ24 + µ25 + µ26) + (µ12 + µ15 + µ18) + (ν23 + ν24) = (ν12 + ν14 + ν16). (141)

Proof: The proof follows directly from (118)-(123). ✷

5 Outer Bound

Our goal in this Section is to show that, if (R1, R2) is achievable then there exist random
variables (Q,X1, X2), where X1 −Q−X2 is a Markov chain, and a region

Rout(Q,X1, X2) , {(R1, R2) : R1 ≥ 0, R2 ≥ 0

aR1 + bR2 ≤ c
(out)
(λ,a,b)(Q,X1, X2), ∀λ ∈ Λ′

(a,b), ∀a ≥ 0, b ≥ 0},

(142)

such that
(R1, R2) ∈ Rout(Q,X1, X2). (143)

The term c
(out)
(λ,a,b)(Q,X1, X2) is defined in Section 5.1. Note that our definition ofRout(Q,X1, X2)

is inspired by the characterization of Rin(Q,X1, X2) that we have obtained through
Lemma 8.

Further, quantifying the difference between c
(in)
(λ,a,b)(Q,X1, X2) and c

(out)
(λ,a,b)(Q,X1, X2)

will give us the gap between the inner and the outer bounds.

5.1 Proof Of Theorem 3 (i)

Suppose there is a sequence of encoders at rates (R1, R2), sequenced by the block length
n, and decoders with probability of error going to 0 as n → ∞. Fix the block length
n and consider the corresponding code book. Let Xn

1 , X
n
2 , S

n
1 , S

n
2 , Y

n
1 , Y

n
2 be the random

variables induced by the channel and encoders for uniformly distributed messages, in-
dependent across the two users. We define random variables Un

1α which is obtained by
passing Xn

1 through an independent copy of the channel pS1α|X1
, and Un

1β by passing the
Un
1α so obtained through an independent copy of rhe channel pS1β |S1α. Similarly, we also

define Un
2α and Un

2β from Xn
2 and independent copies of pS2α|X2

and pS2β |S2α
.
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Consider any non-negative pair (a, b) and any λ ∈ Λ′
(a,b). Since the probability of error

goes to 0 as n→∞, by Fano’s inequality there exists a sequence ǫn → 0 such that

n(aR1 + bR2 − (a+ b)ǫn)

(1)

≤

(
6∑

i=1

ν1i

)

I(Xn
1 ; Y

n
1β) +

(
9∑

i=1

µ1i

)

I(Xn
1 ; Y

n
1α)

+

(
6∑

i=1

ν2i

)

I(Xn
2 ; Y

n
2β) +

(
9∑

i=1

µ2i

)

I(Xn
2 ; Y

n
2α)

(2)

≤
6∑

i=1

ν1iI(X
n
1 ; Y

n
1β, V

n
1iβ) +

9∑

i=1

µ1iI(X
n
1 ; Y

n
1α, V

n
1iα)

+
6∑

i=1

ν2iI(X
n
2 ; Y

n
2β, V

n
2iβ) +

9∑

i=1

µ2iI(X
n
2 ; Y

n
2α, V

n
2iα). (144)

Note that in step (1), we split up a and b according to (118) and (121), considering
decoders under different states. In step (2), we consider genies which provide different
side-information V ’s to the decoders. Consider, for instance, the term ν11I(X

n
1 ; Y

n
1β, V

n
11β).

We will choose the side-information V n
11β in such a way that we can form a correspon-

dence between this term and the term contributed to the inner bound by the right hand
side of the constraint (24). In particular, we choose the genie provided side-information
V n
11β to match the error-event corresponding to (24). More specifically, we note that

the corresponding error-event is when receiver 1 in state β correctly decodes the other
user’s common information U2β, and its own common information (U1β, U1α), but makes
an error in decoding its private message. Hence, the genie provides the side-information
(Un

1α, U
n
1β, U

n
2β) which can be shrunk to V n

11β = (Un
1α, U

n
2β) because of the Markov relation-

ship between Xn
1 , U

n
1α, and Un

1β . Now, we expand the term I(Xn
1 ; Y

n
1β, V

n
11β) to get (145).

We can repeat these two steps for every term in (144): the (expanded) upper bounds on
all the terms are given in (145)-(174).

I(Xn
1 ;Y

n
1β , V

n
11β) , I(Xn

1 ;Y
n
1β , U

n
1α, U

n
2β) = H(Y n

1β |U
n
1α, U

n
2β)−H(Sn

2β |U
n
2β) +H(Un

1α)−H(Un
1α|X

n
1 )

(145)

I(Xn
1 ;Y

n
1β , V

n
12β) , I(Xn

1 ;Y
n
1β , U

n
1α) = H(Y n

1β |U
n
1α)−H(Sn

2β) +H(Un
1α)−H(Un

1α|X
n
1 ) (146)

I(Xn
1 ;Y

n
1β , V

n
13β) , I(Xn

1 ;Y
n
1β , U

n
1β , U

n
2β) = H(Y n

1β |U
n
1β , U

n
2β)−H(Sn

2β |U
n
2β) +H(Un

1β)−H(Un
1β |X

n
1 )

(147)

I(Xn
1 ;Y

n
1β , V

n
14β) , I(Xn

1 ;Y
n
1β , U

n
1β) = H(Y n

1β |U
n
1β)−H(Sn

2β) +H(Un
1β)−H(Un

1β |X
n
1 ) (148)

I(Xn
1 ;Y

n
1β , V

n
15β) , I(Xn

1 ;Y
n
1β , U

n
2β) = H(Y n

1β |U
n
2β)−H(Sn

2β |U
n
2β) (149)

I(Xn
1
;Y n

1β , V
n
16β) , I(Xn

1
;Y n

1β) = H(Y n
1β)−H(Sn

2β) (150)
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I(Xn
1
;Y n

1α, V
n
11α) , I(Xn

1
;Y n

1α, U
n
1α, U

n
2α) = H(Y n

1α|U
n
1α, U

n
2α)−H(Sn

2α|U
n
2α) +H(Un

1α)−H(Un
1α|X

n
1
)

(151)

I(Xn
1 ;Y

n
1α, V

n
12α) , I(Xn

1 ;Y
n
1α, U

n
1α, U

n
2β) = H(Y n

1α|U
n
1α, U

n
2β)−H(Sn

2α|U
n
2β) +H(Un

1α)−H(Un
1α|X

n
1 )

(152)

I(Xn
1 ;Y

n
1α, V

n
13α) , I(Xn

1 ;Y
n
1α, U

n
1α) = H(Y n

1α|U
n
1α)−H(Sn

2α) +H(Un
1α)−H(Un

1α|X
n
1 ) (153)

I(Xn
1 ;Y

n
1α, V

n
14α) , I(Xn

1 ;Y
n
1α, U

n
1β, U

n
2α) = H(Y n

1α|U
n
1β , U

n
2α)−H(Sn

2α|U
n
2α) +H(Un

1β)−H(Un
1β |X

n
1 )

(154)

I(Xn
1 ;Y

n
1α, V

n
15α) , I(Xn

1 ;Y
n
1α, U

n
1β, U

n
2β) = H(Y n

1α|U
n
1β , U

n
2β)−H(Sn

2α|U
n
2β) +H(Un

1β)−H(Un
1β |X

n
1 )

(155)

I(Xn
1 ;Y

n
1α, V

n
16α) , I(Xn

1 ;Y
n
1α, U

n
1β) = H(Y n

1α|U
n
1β)−H(Sn

2α) +H(Un
1β)−H(Un

1β |X
n
1 ) (156)

I(Xn
1
;Y n

1α, V
n
17α) , I(Xn

1
;Y n

1α, U
n
2α) = H(Y n

1α|U
n
2α)−H(Sn

2α|U
n
2α) (157)

I(Xn
1
;Y n

1α, V
n
18α) , I(Xn

1
;Y n

1α, U
n
2β) = H(Y n

1α|U
n
2β)−H(Sn

2α|U
n
2β) (158)

I(Xn
1
;Y n

1α, V
n
19α) , I(Xn

1
;Y n

1α) = H(Y n
1α)−H(Sn

2α) (159)

I(Xn
2
;Y n

2β , V
n
21β) , I(Xn

2
;Y n

2β , U
n
2α, U

n
1β) = H(Y n

2β |U
n
2α, U

n
1β)−H(Sn

1β |U
n
1β) +H(Un

2α)−H(Un
2α|X

n
2
)

(160)

I(Xn
2
;Y n

2β , V
n
22β) , I(Xn

2
;Y n

2β , U
n
2α) = H(Y n

2β |U
n
2α)−H(Sn

1β) +H(Un
2α)−H(Un

2α|X
2

n) (161)

I(Xn
2 ;Y

n
2β , V

n
23β) , I(Xn

2 ;Y
n
2β , U

n
2β , U

n
1β) = H(Y n

2β |U
n
2β , U

n
1β)−H(Sn

1β |U
n
1β) +H(Un

2β)−H(Un
2β |X

n
2 )

(162)

I(Xn
2 ;Y

n
2β , V

n
24β) , I(Xn

2 ;Y
n
2β , U

n
2β) = H(Y n

2β |U
n
2β)−H(Sn

1β) +H(Un
2β)−H(Un

2β |X
n
2 ) (163)

I(Xn
2 ;Y

n
2β , V

n
25β) , I(Xn

2 ;Y
n
2β , U

n
1β) = H(Y n

2β |U
n
1β)−H(Sn

1β |U
n
1β) (164)

I(Xn
2 ;Y

n
2β , V

n
26β) , I(Xn

2 ;Y
n
2β) = H(Y n

2β)−H(Sn
1β) (165)

I(Xn
2 ;Y

n
2α, V

n
21α) , I(Xn

2 ;Y
n
2α, U

n
2α, U

n
1α) = H(Y n

2α|U
n
2α, U

n
1α)−H(Sn

1α|U
n
1α) +H(Un

2α)−H(Un
2α|X

n
2 )

(166)

I(Xn
2 ;Y

n
2α, V

n
22α) , I(Xn

2 ;Y
n
2α, U

n
2α, U

n
1β) = H(Y n

2α|U
n
2α, U

n
1β)−H(Sn

1α|U
n
1β) +H(Un

2α)−H(Un
2α|X

n
2 )

(167)

I(Xn
2 ;Y

n
2α, V

n
23α) , I(Xn

2 ;Y
n
2α, U

n
2α) = H(Y n

2α|U
n
2α)−H(Sn

1α) +H(Un
2α)−H(Un

2α|X
n
2 ) (168)

I(Xn
2
;Y n

2α, V
n
24α) , I(Xn

2
;Y n

2α, U
n
2β, U

n
1α) = H(Y n

2α|U
n
2β , U

n
1α)−H(Sn

1α|U
n
1α) +H(Un

2β)−H(Un
2β |X

n
2
)

(169)

I(Xn
2
;Y n

2α, V
n
25α) , I(Xn

2
;Y n

2α, U
n
2β, U

n
1β) = H(Y n

2α|U
n
2β , U

n
1β)−H(Sn

1α|U
n
1β) +H(Un

2β)−H(Un
2β |X

n
2
)

(170)

I(Xn
2
;Y n

2α, V
n
26α) , I(Xn

2
;Y n

2α, U
n
2β) = H(Y n

2α|U
n
2β)−H(Sn

1α) +H(Un
2β)−H(Un

2β |X
n
2
) (171)

I(Xn
2
;Y n

2α, V
n
27α) , I(Xn

2
;Y n

2α, U
n
1α) = H(Y n

2α|U
n
1α)−H(Sn

1α|U
n
1α) (172)

I(Xn
2 ;Y

n
2α, V

n
28α) , I(Xn

2 ;Y
n
2α, U

n
1β) = H(Y n

2α|U
n
1β)−H(Sn

1α|U
n
1β) (173)

I(Xn
2 ;Y

n
2α, V

n
29α) , I(Xn

2 ;Y
n
2α) = H(Y n

2α)−H(Sn
1α). (174)
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Continuing with our outer bound derivation, from (144),

n(aR1 + bR2 − (a + b)ǫn)

(a)

≤
6∑

i=1

ν1iH(Y n
1β|V

n
1iβ) +

9∑

i=1

µ1iH(Y n
1α|V

n
1iα)

+H(Un
1α){(ν11 + ν12) + (µ11 + µ12 + µ13)} + H(Un

1β){(ν13 + ν14) + (µ14 + µ15 + µ16)}

−H(Sn
1α){(µ23 + µ26 + µ29)} − H(Sn

1β){(ν22 + ν24 + ν26)}

−H(Un
1α|X

n
1 ){(ν11 + ν12) + (µ11 + µ12 + µ13)}

−H(Un
1β|X

n
1 ){(ν13 + ν14) + (µ14 + µ15 + µ16)}

−H(Sn
1α|U

n
1α){(µ21 + µ24 + µ27)} − H(Sn

1β|U
n
1β){(ν21 + ν23 + ν25)}

−H(Sn
1α|U

n
1β){(µ22 + µ25 + µ28)}

+

6∑

i=1

ν2iH(Y n
2β|V

n
2iβ) +

9∑

i=1

µ2iH(Y n
2α|V

n
2iα)

+H(Un
2α){(ν21 + ν22) + (µ21 + µ22 + µ23)} + H(Un

2β){(ν23 + ν24) + (µ24 + µ25 + µ26)}

−H(Sn
2α){(µ13 + µ16 + µ19)} − H(Sn

2β){(ν12 + ν14 + ν16)}

−H(Un
2α|X

n
2 ){(ν21 + ν22) + (µ21 + µ22 + µ23)}

−H(Un
2β|X

n
2 ){(ν23 + ν24) + (µ24 + µ25 + µ26)}

−H(Sn
2α|U

n
2α){(µ11 + µ14 + µ17)} − H(Sn

2β|U
n
2β){(ν11 + ν13 + ν15)}

−H(Sn
2α|U

n
2β){(µ12 + µ15 + µ18)} (175)

(b)
=

6∑

i=1

ν1iH(Y n
1β|V

n
1iβ) +

9∑

i=1

µ1iH(Y n
1α|V

n
1iα)

+H(Un
1α){(µ22 + µ25 + µ28)} − H(Un

1β){(µ22 + µ25 + µ28)}

−H(Sn
1α|U

n
1β){(µ22 + µ25 + µ28)}

−H(Un
1α|X

n
1 ){(µ22 + µ25 + µ28) + (µ23 + µ26 + µ29)}

−H(Un
1β|X

n
1 ){(ν22 + ν24 + ν26)− (µ22 + µ25 + µ28)}

−H(Sn
1α|U

n
1α){(µ21 + µ24 + µ27)} − H(Sn

1β|U
n
1β){(ν21 + ν23 + ν25)}

+
6∑

i=1

ν2iH(Y n
2β|V

n
2iβ) +

9∑

i=1

µ2iH(Y n
2α|V

n
2iα)

+H(Un
2α){(µ12 + µ15 + µ18)} − H(Un

2β){(µ12 + µ15 + µ18)}

−H(Sn
2α|U

n
2β){(µ12 + µ15 + µ18)}

−H(Un
2α|X

n
2 ){(µ12 + µ15 + µ18) + (µ13 + µ16 + µ19)}

−H(Un
2β|X

n
2 ){(ν12 + ν14 + ν16)− (µ12 + µ15 + µ18)}

−H(Sn
2α|U

n
2α){(µ11 + µ14 + µ17)} − H(Sn

2β|U
n
2β){(ν11 + ν13 + ν15)} (176)
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(c)

≤
6∑

i=1

ν1iH(Y n
1β|V

n
1iβ) +

9∑

i=1

µ1iH(Y n
1α|V

n
1iα)

−H(Un
1α|X

n
1 ){(µ22 + µ25 + µ28) + (µ23 + µ26 + µ29)} − H(Un

1β|X
n
1 ){(ν22 + ν24 + ν26)}

−H(Sn
1α|X

n
1 ){(µ21 + µ24 + µ27)} − H(Sn

1β|X
n
1 ){(ν21 + ν23 + ν25)}

+
6∑

i=1

ν2iH(Y n
2β|V

n
2iβ) +

9∑

i=1

µ2iH(Y n
2α|V

n
2iα)

−H(Un
2α|X

n
2 ){(µ12 + µ15 + µ18) + (µ13 + µ16 + µ19)} − H(Un

2β|X
n
2 ){(ν12 + ν14 + ν16)}

−H(Sn
2α|X

n
2 ){(µ11 + µ14 + µ17)} − H(Sn

2β|X
n
2 ){(ν11 + ν13 + ν15)} (177)

(d)
=

6∑

i=1

ν1iH(Y n
1β|V

n
1iβ) +

9∑

i=1

µ1iH(Y n
1α|V

n
1iα)

−H(Sn
1α|X

n
1 )

(
9∑

i=1

µ2i

)

− H(Sn
1β|X

n
1 )

(
6∑

i=1

ν2i

)

+
6∑

i=1

ν2iH(Y n
2β|V

n
2iβ) +

9∑

i=1

µ2iH(Y n
2α|V

n
2iα)

−H(Sn
2α|X

n
2 )

(
9∑

i=1

µ1i

)

− H(Sn
2β|X

n
2 )

(
6∑

i=1

ν1i

)

. (178)

Here,

• to get inequality (a), we used (145)-(174) in (144) and collected the terms together;

• for equality (b), we used Proposition 1 along with the facts

H(Un
1α) = H(Sn

1α), (179)

H(Un
1β) = H(Sn

1β), (180)

H(Un
2α) = H(Sn

2α) (181)

H(Un
2β) = H(Sn

2β); (182)

• inequality (c) follows from the fact that conditioning reduces entropy. In particular,

H(Un
1α)−H(Un

1β)−H(Sn
1α|U

n
1β) = −H(Un

1β|S
n
1α) ≤ −H(Un

1β|X
n
1 ) (183)

H(Un
2α)−H(Un

2β)−H(Sn
2α|U

n
2β) = −H(Un

2β|S
n
2α) ≤ −H(Un

2β|X
n
2 ); (184)

• for equality (d) we used

H(Un
1α|X

n
1 ) = H(Sn

1α|X
n
1 ), H(Un

1β|X
n
1 ) = H(Sn

1β|X
n
1 )

H(Un
2α|X

n
2 ) = H(Sn

2α|X
n
2 ), H(Un

2β|X
n
2 ) = H(Sn

2β|X
n
2 ).
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Now we single-letterize using the chain rule along with the fact that the channel is mem-
oryless and conditioning reduces entropy.

aR1 + bR2 − (a + b)ǫn≤
1

n

n∑

q=1

{
6∑

i=1

ν1iH(Y1β(q)|V1iβ(q)) +

9∑

i=1

µ1iH(Y1α(q)|V1iα(q))

−H(S1α(q)|X1(q))

(
9∑

i=1

µ2i

)

−H(S1β(q)|X1(q))

(
6∑

i=1

ν2i

)

+
6∑

i=1

ν2iH(Y2β(q)|V2iβ(q)) +
9∑

i=1

µ2iH(Y2α(q)|V2iα(q))

−H(S2α(q)|X2(q))

(
9∑

i=1

µ1i

)

− H(S2β(q)|X2(q))

(
6∑

i=1

ν1i

)}

. (185)

aR1 + bR2 − (a + b)ǫn ≤
6∑

i=1

ν1iH(Y1β|V1iβ, Q) +
9∑

i=1

µ1iH(Y1α|V1iα, Q)

−

(
9∑

i=1

µ2i

)

H(S1α|X1, Q)−

(
6∑

i=1

ν2i

)

H(S1β|X1, Q)

+

6∑

i=1

ν2iH(Y2β|V2iβ, Q) +

9∑

i=1

µ2iH(Y2α|V2iα, Q)

−

(
9∑

i=1

µ1i

)

H(S2α|X2, Q)−

(
6∑

i=1

ν1i

)

H(S2β|X2, Q)

, c
(out)
(λ,a,b)(Q,X1, X2), (186)

where we set (Q,U1β , U1α, X1, S1β, S1α, U2β , U2α, X2, S2β , S2α) to be joint random variables
such that Q is uniformly distributed over {1, 2, . . . , n} and,

Pr (U1β, U1α, X1, S1α, S1β, U2β, U2α, X2, S2α, S2β |Q = q)

= Pr (U1β(q), U1α(q), X1(q), S1α(q), S1β(q), U2β(q), U2α(q), X2(q), S2α(q), S2β(q)) , (187)

for 1 ≤ q ≤ n. Since the messages are independent for the two users, so are X1(q)
and X2(q). Therefore, (Q,X1, X2) satisfies the Markov chain X1 − Q − X2. Further
because of our choice of (U1β(q), U1α(q), U1β(q), U1α(q)), the random variables satisfy the
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condition (58). Hence the random variables (Q,X1, U1α, U1β , X2, U2α, U2β) belong to the
sub-family of P that we described earlier, whose elements are defined by (Q,X1, X2).

We are now ready to formally define Rout(Q,X1, X2):

Rout(Q,X1, X2) , {(R1, R2) : R1 ≥ 0, R2 ≥ 0

aR1 + bR2 ≤ c
(out)
(λ,a,b)(Q,X1, X2), ∀λ ∈ Λ′

(a,b), ∀a ≥ 0, b ≥ 0}.

We have proved that if (R1, R2) is achievable, then

(R1, R2) ∈
⋃

Q,X1,X2

Rout(Q,X1, X2). (188)

This completes the proof. ✷

5.2 Proof Of Theorem 3 (ii)

For a given (Q,X1, X2) such that X1−Q−X2 is a Markov chain, we need to quantify the
gap between Rout(Q,X1, X2) and Rin(Q,X1, X2), which are defined by Equations (131)

and (142) respectively. In order to do this, we quantify the gap between c
(out)
(λ,a,b)(Q,X1, X2)

and c
(in)
(λ,a,b)(Q,X1, X2).

c
(out)
(λ,a,b)(Q,X1, X2) − c

(in)
(λ,a,b)(Q,X1, X2)

= (H(S1α|U1α, Q)−H(S1α|X1, Q))

(
9∑

i=1

µ2i

)

+ (H(S1β|U1β , Q)−H(S1β|X1, Q))

(
6∑

i=1

ν2i

)

+ (H(S2α|U2α, Q)−H(S2α|X2, Q))

(
9∑

i=1

µ1i

)

+ (H(S2β|U2β, Q)−H(S2β|X2, Q))

(
6∑

i=1

ν1i

)

= I(S1α;X1|U1α, Q)

(
9∑

i=1

µ2i

)

+ I(S1β ;X1|U1β, Q)

(
6∑

i=1

ν2i

)

+ I(S2α;X2|U2α, Q)

(
9∑

i=1

µ1i

)

+ I(S2β;X2|U2β , Q)

(
6∑

i=1

ν1i

)

≤ bmax(I(S1α;X1|U1α, Q), I(S1β;X1|U1β , Q))

+ amax(I(S2α;X2|U2α, Q), I(S2β;X2|U2β , Q))

≤ a∆1(Q,X1, X2) + b∆2(Q,X1, X2). (189)

25



Here ∆1(Q,X1, X2) and ∆2(Q,X1, X2) are defined as follows:

∆1(Q,X1, X2) , max(I(S2α;X2|U2α), I(S2β;X2|U2β)),

∆2(Q,X1, X2) , max(I(S1α;X1|U1α), I(S1β;X1|U1β)).

This completes the proof of Theorem 3. ✷

5.3 Proof Of Corollary 6

Consider the 2-state compound Gaussian interference channel. For this special case, we
have the following result that identifies the Gaussian code books to be sufficient.

Lemma 9
Rout(Q,X1, X2) ⊆ Rout(Q

∗, X∗
1 , X

∗
2 ) (190)

where Q∗ = 1, X∗
1 ∼ CN(0, P1), X

∗
2 ∼ CN(0, P2).

We note for easy reference that Rout(Q,X1, X2) is defined in Equation (142).

Proof : It suffices to show that

c
(out)
(λ,a,b)(Q,X1, X2) ≤ c

(out)
(λ,a,b)(Q

∗, X∗
1 , X

∗
2 ),

where c
(out)
(λ,a,b)(Q,X1, X2) is as defined in (186).

c
(out)
(λ,a,b)(Q,X1, X2) =

6∑

i=1

ν1ih(Y1β|V1iβ, Q) +
9∑

i=1

µ1ih(Y1α|V1iα, Q)

−

(
9∑

i=1

µ2i

)

h(S1α|X1, Q)−

(
6∑

i=1

ν2i

)

h(S1β |X1, Q)

+

6∑

i=1

ν2ih(Y2β|V2iβ, Q) +

9∑

i=1

µ2ih(Y2α|V2iα, Q)

−

(
9∑

i=1

µ1i

)

h(S2α|X2, Q)−

(
6∑

i=1

ν1i

)

h(S2β |X2, Q)

The terms h(S1α|X1, Q), h(S1β|X1, Q), h(S2α|X2, Q) and h(S2β|X2, Q) are the differential
entropies of complex Gaussian noise with known variance and are readily handled. Let
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us now turn to the term h(Y1β |V11β, Q):

h(Y1β|V11β, Q) = h(Y1β|U1αU2β , Q) (191)

=
∑

q

p(q)h(Y1β|U1αU2β , Q = q) (192)

(a)

≤
∑

q

p(q) log

(
P1q

|h12α|2P1q + 1
+ 1 +

|h21β|2P2q

|h21β |2P2q + 1

)

(193)

(b)

≤ log

(
P1

|h12α|2P1 + 1
+ 1 +

|h21β|
2P2

|h21β |2P2 + 1

)

(194)

= h(Y ∗
1β|U

∗
1αU

∗
2β , Q

∗). (195)

Here,

• in step (a), we denoted

E
[
|Xk|

2|Q = q
]
= Pkq, k = 1, 2 (196)

and used the fact that conditional differential entropy is maximized with the Gaus-
sian distribution under a covariance constraint (Lemma 1 [6]);

• in step(b), we used Jensen’s inequality.

A similar argument follows for the other terms. To conclude, we have shown that

c
(out)
(λ,a,b)(Q,X1, X2) ≤ c

(out)
(λ,a,b)(Q

∗, X∗
1 , X

∗
2 ). (197)

This completes the proof. ✷

Finally, we can readily see the proof of Corollary 6. This is because,

⋃

(Q,X1,X2)

Rout(Q,X1, X2) = Rout(Q
∗, X∗

1 , X
∗
2 ), (198)

as a direct consequence of Lemma 9.

6 Discussion: Insights On The Non-Compound In-

terference Channel

In this section we consider the non-compound interference channel model introduced in
[5]; this is a specific instance of our model and is obtained by setting α = β. Our results,
when specialized to this instance provide an alternative derivation of the results of Chong
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et al. [3] and Tse and Telatar [5]. Below we briefly sketch our results with an aim to
compare and contrast the different proofs. The goal is not only to give better insight
into existing results, but also to give an idea on how our new proof technique scales
more naturally to the 2-state compound interference channel (and in general to the n-
state compound interference channel that we will describe in the next section). We first
describe the achievable scheme and the inner bound. Following that, we will describe the
outer-bound, focusing on contrasts between the different approaches.

6.1 Achievable Scheme

The special case of the noncompound version is obtained by setting

Skβ = Skα = Sk (199)

and, correspondingly,
Ukβ = Ukα = Uk (200)

for k = 1, 2. We also set
Rkα = 0. (201)

We rename Rkβ as Tk and Rkp as Sk to be consistent with the notation of Chong et al.
[3].

The superposition achievable scheme can now be described by joint random variables

P = (Q,U1, X1, U2, X2) (202)

with the joint distribution factoring as

p(q)p(x1|q)p(x2|q)p(u1|x1q)p(u2|x2q). (203)

From Section 4.1, it follows that any rate vector (S1, T1, S2, T2) that satisfies,

S1 ≤ I(Y1;X1|U1, U2, Q), if S1 > 0, (204)

T2 + S1 ≤ I(Y1;X1U2|U1, Q), if S1 > 0, (205)

T1 + S1 ≤ I(Y1;X1|U2, Q), if T1 + S1 > 0, (206)

T2 + T1 + S1 ≤ I(Y1;X1U2|Q), if T1 + S1 > 0, (207)

S2 ≤ I(Y2;X2|U2, U1, Q), if S2 > 0, (208)

T1 + S2 ≤ I(Y2;X2, U1|U2, Q), if S2 > 0, (209)

T2 + S2 ≤ I(Y2;X2|U1, Q), if T2 + S2 > 0, (210)

T1 + T2 + S2 ≤ I(Y2;X2, U1|Q), if T2 + S2 > 0, (211)

S1, T1, S2, T2 ≥ 0, (212)
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is achievable. Define the 4-dimensional region

R̃(4)
in (P ) , {(S1, T1, S2, T2) : satisfies (204)-(212)} (213)

and its projection on the 2-dimensional space

R̃in(P ) , {(R1, R2) : Rk = Sk + Tk, k = 1, 2} . (214)

On the other hand, define

R(4)
in (P ) , {(S1, T1, S2, T2) : satisfies (216)-(225)} . (215)

S1 ≤ I(Y1;X1|U1, U2, Q) (216)

T2 + S1 ≤ I(Y1;X1U2|U1, Q) (217)

T1 + S1 ≤ I(Y1;X1|U2, Q) (218)

T2 + T1 + S1 ≤ I(Y1;X1U2|Q) (219)

S2 ≤ I(Y2;X2|U2, U1, Q) (220)

T1 + S2 ≤ I(Y2;X2, U1|U2, Q) (221)

T2 + S2 ≤ I(Y2;X2|U1, Q) (222)

T1 + T2 + S2 ≤ I(Y2;X2, U1|Q) (223)

S1 + T1 ≥ 0, (224)

S2 + T2 ≥ 0. (225)

Let its projection on the 2-dimensional space

Rin(P ) , {(R1, R2) : Rk = Sk + Tk, k = 1, 2} . (226)

In Theorem 2 of [3], the authors explicitly evaluated the constraints that define this set
and described it as the “compact version” of the Han-Kobayashi region [1] (which results
from a somewhat different coding strategy, as compared to the superposition coding one).
However, we know from Lemma 7 that

Rin(P ) ⊆ R̃in(P ). (227)

We thus conclude the alternate proof of [3](Theorem 2). Our approach differs from the
approach of Chong et al. [3] in two ways:

• It is instructive to observe the similarities and differences between the 4-dimensional
achievable region R̃(4)

in (P ) to the one in [3](Lemma 3). First, the inequalities involved
are the same. Howevber, several of these constraints are inactive when the boundary
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conditions on the data rates bite. We can immediately conclude that our achievable
region (R̃(4)

in (P )) is in general a superset of the region in [3]. This is somewhat
surprising since the encoding method in both cases is superposition coding. The
differences result due to our careful consideration of the error events in the decoding
process.

• Chong et al. [3] described the 2-dimensional region explicitly by carrying out the
somewhat tedious algorithmic procedure of Fourier-Motzkin elimination. Further,
they showed that a potentially bigger region (the compact description region) is
achievable by time-sharing between two other schemes defined by (Q, ∅, X1, U2, X2)
and (Q,U1, X1, ∅, X2). In our approach, we entirely avoid describing the 2-dimensional
region explicitly. Further, we showed that there is no need to time-share between
any other schemes, to achieve Rin(P ).

6.2 Outer Bound

For a given P = (Q,U1, X1, U2, X2), the inner-bound region in Chong et al. [3] is described
by seven linear inequalities involving R1 and R2. In [5], Telatar and Tse picked a specific
choice of (U1, U2) given by

p(u1, u2|q, x1, x2) = pS1|X1(u1|x1)pS2|X2(u2|x2). (228)

In deriving the outer bound, Telatar and Tse [5] gave extra information to the receivers
(the so-called “genie-aided” approach) to handle the seven inequalities. The rationale to
what side information the genie should provide to handle the different linear inequalities
was somewhat speculative (cf. Section IV [5]).

Our approach avoids an explicit representation of the inner-bound. This higher level
description allowed us (cf. Section 4.2) to show that any inequality involved in the pro-
jected region can be obtained by linear combination of the inequalities (216)-(223). Fur-
ther, each inequality in (216)-(223) arises from a typical error event consideration. We
now have the operational insight into what side information to give when. We demon-
strate this process in the instance of Equation (216). This inequality must be satisfied
to ensure that the Receiver 1 decodes its own private message, on the condition that it
can decode both the public messages correctly. This suggests that corresponding to this
inequality, we may give the side information (Un

1 , U
n
2 ). A similar argument handles each

of the other inequalities (216)-(223).

7 N-state Compound Interference Channel

In this section we consider the natural extension of the 2-state compound interference
channel to an N -state compound interference channel. Our earlier results (both inner
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and outer bounds) also generalize naturally to the more general N -state model.

7.1 Model

The N -state compound interference channel is depicted in Figure 3. Each receiver can be
in one of the N possible states denoted by α1, α2, . . . , αN .
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Figure 3: The N -state compound interference channel model.

7.2 Results

We can characterize the inner bound and outer bounds to the capacity region in a way
similar to the 2-state compound channel.

Inner Bound

Our coding scheme is N + 1-level superposition coding. This is much along the lines of
the 3-level superposition coding employed for the 2-state compound interference channel.
The coding scheme is characterized by jointly distributed random variables

(Q,X1, U1α1 , . . . , U1αN
, X2, U2α1 , . . . , U2αN

) (229)

which satisfy the Markov chain

U1αN
− . . .− U1α1 −X1 −Q−X2 − U2α1 − . . .− U2αN

. (230)

As earlier, we restrict ourselves to a subfamily of the jointly distributed random variables
uniquely determined by (Q,X1, X2) in the following way:
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Given (Q,X1, X2), we pick random variables

{Ukαn
, n = 1, . . . , N, k = 1, 2} , (231)

such that they have the same joint distribution as

{Skαn
, n = 1, . . . , N, k = 1, 2} , (232)

but are independent of them.

Using these random variables, we generate the (N + 1)-level superposition random code
books for each user with rates (R1αN

, . . . , R1α1 , R1p) and (R2αN
, . . . , R2α1 , R2p) respec-

tively.

The decoding at each receiver is jointly typical set decoding. It is similar to the
decoding described for the 2-state. Each receiver tries to decode fully all of its own
messages, but only partially decodes the other (interfering) user. This strategy can be
seen as an opportunistic strategy where the extent of the interference that the receiver
decodes depends upon the level of interference it sees.

The remainder description of the achievable rate region follows the same development
pattern as for the 2-state compound channel. It would be impractical (in terms of the
length of the descriptions) to explicitly detail this description. As such, we briefly itemize
the main points in the achievable region description below.

• We first have an achievable rate region R̃2(N+1)
in (Q,X1, X2) in 2(N + 1) dimensions

along the same lines as (111) (we have avoided the explicit description of the linear
inequalities describing the region due to the tedium and length involved in doing
so). As earlier, let R̃in(Q,X1, X2) be the projection onto the 2-dimensional space
(R1, R2) where,

R1 = R1αN
+ . . .+R1α1 +R1p, R2 = R2αN

+ . . .+R2α1 +R2p. (233)

We have that R̃in(Q,X1, X2) is achievable.

• We next define R2(N+1)
in (Q,X1, X2) as a generalization of (23) and define its projec-

tion onto the two dimensional space Rin(Q,X1, X2). Lemma 7 can be appropriately
generalized to show that

Rin(Q,X1, X2) ⊆ R̃in(Q,X1, X2), (234)

thus proving that Rin(Q,X1, X2) is also achievable.

• We next characterize an extremal representation of Rin(Q,X1, X2), using an appro-
priate generalization of (131) to the N -state model). In other words, we represent
it as an intersection of hyperplanes, where the inequality used to define the hy-
perplane can be obtained as a linear combination of the inequalities used to define
R2(N+1)

in (Q,X1, X2).
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Outer Bound

An outer-bound Rout(Q,X1, X2) can be derived with an extremal representation that
is similar to the corresponding one for the inner bound Rin(Q,X1, X2) (this step is a
natural generalization of (142)). In deriving the outer bound, we use appropriate genie-
aided techniques (that involve providing suitable side information to the receiver). Again,
what side information is shared is decided based on the typical error events which lead to
the corresponding inequality in the inner bound.

Gap

Finally, we characterize the gap between the outer and inner bounds to the capacity
region for the n-state compound channel, in much the same way as we did for the 2-state
compound channel. This is stated formally below.

Theorem 10 For the N-state compound interference channel of Figure 3, if (R1, R2) is
in the outer bound to the capacity region, then (R1 −∆1, R2 −∆2) is achievable, where

∆1(Q,X1, X2) = max
1≤n≤N

I(X2;S2αn
|U2αn

), (235)

∆2(Q,X1, X2) = max
1≤n≤N

I(X1;S1αn
|U1αn

). (236)

Specializing to the deterministic version, we can see that this gap is zero and hence
the capacity region is characterized exactly. Specializing to the Gaussian version, we can
see that this gap is no more than one bit. This completes the extension to the N -state
compound channel scenario.

7.3 Discussion

A few comments on the structure and properties of the achievable scheme are in order
here.

• Note that the structure of the achievable scheme (or the power split in the Gaussian
scheme), which is characterized by the joint random variables

(Q,X1, U1α1 , . . . , U1αN
, X2, U2α1 , . . . , U2αN

) , (237)

depends only on the interference states and not on the deterministic functions fkαn
.

The functions fkαn
however may still help in determining the actual achievable rate

region.
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We highlight this point by considering the case when each of the degraded interfer-
ence channels in our model are identity, i.e.,

Skα2 = Skα1 = . . . = SkαN
, k = 1, 2. (238)

For this model the “compoundness” of the channel is only due to the functions fkαn
.

Indeed, only two levels of superposition coding suffice, much as in the noncompound
version of the problem.

• Let us assume
S1α2 = S1α1 . (239)

Then our achievable scheme sets

U1α2 = U1α1 . (240)

This implies that the level of the code book corresponding to U1α2 is “degenerate”
and that we might as well set

R1α2 = 0. (241)

Suppose, however that
f1α2 6= f1α1 (242)

and hence the two receiver states Y1α1 and Y1α2 are not the same. While the receiver
in either state adopts the same decoding technique (with respect to the level of
interference it decodes), the higher dimensional constraints on the rate vector, as
imposed by the decoding condition for each state, are different. Nevertheless, we
see that for the Gaussian case one of these states is always worse than the other
and thus would be the critical bottleneck in determining the achievable rates; this
is done next.

8 The Compound Gaussian Interference Channel

8.1 Model

The scalar Gaussian interference channel is defined by the complex channel parameters
(h11, h21, h12, h22). The finite state compound channel version of it allows these parameters
to take values in a finite set A.

A =
{
(h11, h21, h12, h22)1, (h11, h21, h12, h22)2, . . . , (h11, h21, h12, h22)|A|

}
. (243)

Define
Ak , {(h1k, h2k)| (h11, h21, h12, h22) ∈ A} , k = 1, 2, (244)
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Observe that the channels from the two transmitters to the receiver k are defined solely
by the parameters (h1k, h2k). Therefore the set Ak is the set of states that the receiver k
can take. Now define A′ as

A′ , A1 ×A2

= {(h11, h21, h12, h22)| (h11, h21) ∈ A1, (h12, h22) ∈ A2} . (245)

In other words A′ allows for all combinations of the possible states for both the receivers.
Let C(A) denote the capacity region of the compound channel defined by the set A. We
have the following proposition:

Proposition 2
C(A) = C(A′).

Proof: Note that A ⊆ A′. Thus it is clear that any scheme that works for the compound
channel A′ also works for the compound channel A. However, since the two receivers do
not cooperate, only the marginal channels to each receiver decides the decodability of any
communication scheme. We now conclude that a scheme that works for the compound
channel A also works for the compound channel A′. This completes the proof. ✷

In the light of this observation, we can, without loss of generality, consider finite state
compound channels whose state set A decomposes as A1 ×A2.

In Section 2 we saw that the case where the cardinality of A1 and A2 is restricted to
2 is captured by the 2-state compound interference channel of Figure 2. Analogously, the
general case where |A1| and |A2| are finite (with cardinality no more than N) is captured
by the N -state compound interference channel of Figure 3. We see this formally below.
The key point is the infinitely divisible nature of Gaussian statistics. This aspect was used
to show that the scalar Gaussian broadcast channel is always stochastically degraded. In
a similar vein, the compound scalar Gaussian interference channel can always be supposed
to have degraded interference states.

We begin by noting that if
|A1| 6= |A2|, (246)

then we can add redundant duplicate copies to one of the sets, so that

|A1| = |A2|. (247)

Therefore, without of loss of generality, we suppose this is true.:

|A1| = |A2| = N. (248)

Then, order the finite sets A1 and A2 such that

|h21α1 | ≥ |h21α2 | ≥ . . . ≥ |h21αN
|,

|h12α1 | ≥ |h12α2 | ≥ . . . ≥ |h12αN
|.
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Next, we do the following substitution to reduce the finite state Gaussian interference
channel to the model of Figure 3.

S1α1 = h12α1X1 + Z1α1 , (249)

S1αn
=

h12αn

h12α(n−1)

S1α(n−1)
+



1−

∣
∣
∣
∣
∣

h12αn

h12α(n−1)

∣
∣
∣
∣
∣

2




1/2

Z1αn
, n = 2, . . . , N, (250)

S2α1 = h21α1X2 + Z2α1 , (251)

S2αn
=

h21αn

h21α(n−1)

S2α(n−1)
+



1−

∣
∣
∣
∣
∣

h21αn

h21α(n−1)

∣
∣
∣
∣
∣

2




1/2

Z2αn
, n = 2, . . . , N. (252)

Y1αn
= f1αn

(X1, S2αn
) = h11αn

X1 + S2αn
, 1 ≤ n ≤ N, (253)

Y2αn
= f2αn

(X2, S1αn
) = h22αn

X2 + S1αn
, 1 ≤ n ≤ N. (254)

Here Zkαn
s are independent complex Gaussian random variables with unit variance.

Note that the function fkαn
captures the direct link gains h11 and h22. The channels

p(Skαn
|Skα(n−1)

) capture the cross link gains h12 and h21 as well as the additive noise.

8.2 Main Result

We are now ready to summarize the main result of this paper.

Theorem 11 For the finite state compound Gaussian interference channel, multilevel
superposition coding with Gaussian code books and opportunistic decoding depending on
the interference state is within one bit of the capacity region.

Proof : We have shown earlier in this section that any finite state Gaussian interference
channel is captured as a special case of the model in Figure 3. Specializing the result
of Theorem 10 to the Gaussian case, we have that the multilevel superposition coding is
within one bit to the capacity. Further, it suffices to only consider Gaussian code books
in the superposition code (along the same lines as Corollary 6). ✷

8.3 Discussion

A few remarks are in order now.
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1. While we have restricted both the direct-link gains (h11 and h22) and the cross-link
gains (h12 and h21) to a finite set of values so far, it turns out that we can relax this
assumption for the direct link gain. In particular, suppose

(h11, h21), (h
′
11, h21) ∈ A1, |h11| < |h

′
11|. (255)

These correspond to two states of the receiver 1, which differ only in the direct link
gain, but have the same cross link gain. As observed in the previous section, for
either of the two states, the receiver adopts the same decoding method. Further,
since we have restricted ourselves to Gaussian code books, we see that the perfor-
mance is restricted only by the state that has the weaker of the two direct links: in
this case, it is the one with parameters (h11, h21) To summarize:

If a rate vector is achievable for the state (h11, h21), then it is also achiev-
able for (h′

11, h21).

Therefore, at any receiver, for a fixed cross-link value the direct-link gain at the
corresponding receiver can take on values in a set. This set could be infinite. The
receiver state that has the weakest direct link is the bottleneck.

2. At any receiver, the set of unique values the cross-link gains take is assumed to be
finite. This finiteness assumption appears to be critical since the number of levels
required in the superposition coding at the interfering transmitter depends on it.
If the cardinality of the set is N , then the number of levels in the superposition
coding is N + 1. It is an open question to determine if a finite number of levels of
superposition coding suffice to handle a continuum of interference cross-link gains.

A Analysis Of Probability Of Error

In the following we consider the decodability conditions at receiver Rx1β only. A very
similar analysis applies to the other receiver-state pairs.

Due to the symmetry of the random code book generation, the probability of error
averaged over the ensemble of random random code books, does not depend on which
codeword was sent. Hence, without loss of generality, we can assume that the messages
indexed by

(j1, k1, l1) = (1, 1, 1), (j2, k2, l2) = (1, 1, 1), (256)

were sent by the two transmitters respectively. Let us define the following event

Ejklm =
{(

Qn, Un
1β (j) , U

n
1α (j, k) , X

n
1 (j, k, l) , Un

2β (m) , Y n
1β

)
∈ A(n)

ǫ (Q,U1β , U1α, X1, U2β , Y1β)
}
.
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Letting P
(n)
e denote the probability of decoding error at Rx1β we have

P (n)
e = P

(

(∪mE111m)
c
⋃

∪(j,k,l)6=(1,1,1)Ejklm

)

(257)

≤P ((∪mE111m)
c)

︸ ︷︷ ︸

(a)

+
∑

l 6=1

P (E11l1)

︸ ︷︷ ︸

(b)

+
∑

l 6=1,m6=1

P (E11lm)

︸ ︷︷ ︸

(c)

+
∑

k 6=1,l

P (E1kl1)

︸ ︷︷ ︸

(d)

+
∑

k 6=1,l,m6=1

P (E1klm)

︸ ︷︷ ︸

(e)

+
∑

j 6=1,k,l

P (Ejkl1)

︸ ︷︷ ︸

(f)

+
∑

j 6=1,k,l,m6=1

P (Ejklm)

︸ ︷︷ ︸

(g)

. (258)

The final inequality used the union bound. Let us consider each term in (258) and study
the conditions needed to make it go to 0 asymptotically (in n).

• It is straightforward to see that (a) goes to 0 as n→∞.

• Now consider (b). We begin by noting that l ∈ {1, . . . , 2nR1p}. Therefore if R1p = 0
then (b) = 0. Else,

(b) ≤ 2nR1p2−n(I(Y1β ;X1|U1α,U2β ,Q)−5ǫ). (259)

Therefore for (b) to go to 0 as n→∞, we must have

R1p ≤ I(Y1β;X1|U1α, U2β , Q), if R1p > 0. (260)

• Similarly, (c) is 0 if R1p = 0 or R2β = 0. Else, it must be that

R2β +R1p ≤ I(Y1β;X1, U2β|U1α, Q). (261)

It is important to note that if R2β = 0, but R1p > 0 then, (261) is redundant because
of (260). Therefore for (c) to go to 0 as n→ ∞ (assuming that (b) goes to 0 too),
we must have,

R2β +R1p ≤ I(Y1β;X1, U2β|U1α, Q), if R1p > 0. (262)

Similarly for (d), (e), (f) and (g), we must have

R1α +R1p ≤ I(Y1β;X1|U1β , U2β, Q), if R1α +R1p > 0, (263)

R2β +R1α +R1p ≤ I(Y1β;X1, U2β |U1β, Q), if R1α +R1p > 0, (264)

R1β +R1α +R1p ≤ I(Y1β;X1|U2β , Q), if R1β +R1α +R1p > 0, (265)

R2β +R1β +R1α +R1p ≤ I(Y1β;X1, U2β |Q), if R1β +R1α +R1p > 0, (266)

respectively.
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B Proof Of Lemma 7

Consider any (R1, R2) ∈ Rin(P ). Then there exists an

(R1p, R1α, R1β , R2p, R2α, R2β) ∈ R
(6)
in (P ) (267)

such that,
R1 = R1p +R1α +R1β and R2 = R2p +R2α +R2β . (268)

We will find a
(R̃1p, R̃1α, R̃1β , R̃2p, R̃2α, R̃2β) ∈ R̃

(6)
in (P ) (269)

such that,

R̃1p + R̃1α + R̃1β = R1p +R1α +R1β,

R̃2p + R̃2α + R̃2β = R2p +R2α +R2β,

by the following algorithmic procedure.

Step 1a) For k = 1, 2, if Rkβ < 0 then,

Rkβ ← 0, Rkα ← Rkα +Rkβ. (270)

Step 1b) For k = 1, 2, if Rkα < 0 then,

Rkα ← 0, Rkp ← Rkp +Rkα. (271)

Step 2a) For k = 1, 2, if Rkp < 0 then,

Rkp ← 0, Rkα ← Rkα +Rkp. (272)

Step 2b) For k = 1, 2, if Rkα < 0 then,

Rkα ← 0, Rkβ ← Rkβ +Rkα. (273)

First up, we note that at each step we are ensuring that R1p+R1α+R1β and R2p+R2α+
R2β stay invariant. Next, note that if R1p, R1α, R1β, R2p, R2α and R2β are all nonnegative
to begin with, then it is easy to see that

(R1p, R1α, R1β , R2p, R2α, R2β) ∈ R̃
(6)
in (P ) (274)

and hence
(R1, R2) ∈ R̃in(P ). (275)
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Claim 1 At the end of Step 1b, the new (R1p, R1α, R1β, R2p, R2α, R2β) still remains in

R(6)
in (P ) and satisfies

R1α, R1β , R2α, R2β ≥ 0. (276)

Proof: Consider Step 1a. Note that in this step we are potentially increasing Rkβ, but the
rest of the components either remain the same or decrease. Also note that in this step, we
are keeping Rkβ +Rkα invariant. Therefore, we only need to ensure that the inequalities
among (24)-(53) that have Rkβ, but not Rkα are not violated. This can be verified to be
true, because of the polymatroidal nature of each block of the inequalities in (24)-(53).
The argument is similar for Step 1b. ✷

Claim 2 At the end of Step 2b, the new (R1p, R1α, R1β , R2p, R2α, R2β) is in R̃(6)
in (P ).

Proof: Note that in Step 2a, the only component that potentially increases is Rkp, and so
we might be violating one of the following constraints: (24),(25),(30)-(32),(39),(40) and
(45)-(47). However, by setting Rkp = 0, these violated constraints no longer matter for

R̃(6)
in (P ). The argument is similar for Step 2b. Note that at the end of Step 2b, we have

ensured that all the components are nonnegative. ✷
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