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Abstract— In this work, a MIMO detection problem is con-
sidered. At first, we derive the Generalized Likelihood Ratio
Test (GLRT) for arbitrary transmitted signals and arbitrar y
time-correlation of the disturbance. Then, we investigatedesign
criteria for the transmitted waveforms in both power-unlim ited
and power-limited systems and we study the interplay among
the rank of the optimized code matrix, the number of transmit
diversity paths and the amount of energy integrated along each
path. The results show that increasing the rank of the code matrix
allows generating a larger number of diversity paths at the price
of reducing the average signal-to-clutter level along eachpath.

I. I NTRODUCTION

We consider a detection system wherein both the receiver
and the transmitter, which are not necessarily co-located,are
equipped with multiple widely spaced antennas. The scenario is
that typical of a Multiple-Input Multiple-Output (MIMO) radar
architecture, as outlined in [1] and analyzed in [2], [3], but may
also describe the tasks of a sensor network with widely spaced
nodes, wherein both the transmit and the receive array elements
exhibit no coherence. In this situation, the MIMO architecture
can be advocated to improve the detectability of targets with
fluctuating radar cross section either through an increase of the
diversity order [1], [2] or through beam-forming in the signal
space [3] or through a combination of these two strategies: the
degree of freedom which allows jumping from one strategy
to another is the structure of the transmitted signals, and in
particular the rank of the space-time code matrix used at the
transmitter.

In the above context, this paper makes the following contri-
butions. At the receiver-design level, we first derive the Gener-
alized Likelihood Ratio Test (GLRT) for arbitrary transmitted
waveforms and arbitrary time-correlation of the disturbance.
Building upon [2], [3], two design criteria for the space-time
code are then presented and discussed. The figure of merit is the
Mutual Information (MI) [4] between the received signals and
the channel vectors generated by a prospective target, whose
maximization is related to the ability to estimate unknown
characteristics of the target as shown in [5], and also to the
maximization of the detection probability (Pd) for a fixed false
alarm probability (Pfa) as pointed out in [2], [3]. We examine
both the case of power-unlimited systems, wherein a constraint
is forced upon thereceivedaverage signal-to-disturbance ratio,
and the case of power-limited systems, wherein the constraint is
instead on thetransmittedenergy. Finally, closed-form formulas
for Pfa and Pd are given, showing that there is an inherent
trade-off between number of diversity paths and amount of
energy integration along each path, which is a direct confirma-
tion of the well-known fact that no uniformly optimum (e.g.,
for any signal-to-disturbance ratio) coding strategy exists. The
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Fig. 1. Considered scenario.

tool that can be used for trading diversity order for integration
is the code-matrix structure, and particularly its rank.

This paper is organized as follows. In Section II, the problem
under investigation is described. In Section III, the GLRT-based
detector is derived. Finally, the diversity-integration trade-offs
for different code design criteria are analyzed in Section IV.

II. PROBLEM STATEMENT

Consider a detection architecture where the transmitter and
the receiver consist ofM and L widely spaced antennas,
respectively, and are not necessarily co-located as depicted in
Figure 1. We assume the following general model for the signal
transmitted by them-th antenna (node)

sm(t) =

N
∑

n=1

an,mφn(t) , 0 ≤ t ≤ Ts , m = 1, . . . ,M , (1)

where N is the signal-space dimension,{φn(t)}Nn=1 is an
orthonormal basis of the considered signal space,am =
(a1,m, . . . , aN,m)T is the codeword associated with them−th
transmitter,‖am‖2 is the energy transmitted by antennam and
Ts is the time duration of the transmitted signal. Subsumed by
the above model is the case of a pulsed-MIMO radar, wherein
φn(t) = p(t− (n− 1)T ), with p(·) a pulse of durationTp ≤ T
andT = Ts/N the pulse-repetition time (PRT) [2].

The signal observed at theL receive nodes may contain or
not the echo of a target scattering located at a given distance.
The bandwidth of the transmitted signal induces a partitionof
the controlled area in a finite number of range cells, directly tied
to the delay with which a target echo is heard at the receiving
nodes. Denoting byrℓ(t) the signal received at theℓ−th receive
node at a given delayτ0, we thus have:

rℓ(t) =















H1 :

M
∑

m=1

N
∑

n=1

an,mφn(t− τ0)αm,ℓ + wℓ(t)

H0 :wℓ(t)

(2)
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for ℓ = 1, . . . , L. In the above equation, which subsumes
the model outlined in [2],wℓ(t) is a Gaussian process which
models the overall disturbance originating from the super-
position of receiver noise and spurious scattering from the
surrounding environment (denoted as clutter) which typically
exhibits time correlation. In writing down (2), the following
three assumptions have been made. a) The transmitted signals
are narrowband [1], namely all of the receive sensors see the
target as belonging to the same range cell1. b) The spacing of
the antennas at both the transmitter and the receiver is wide
enough as to allowangle diversity[1], [6], i.e., to generate
different aspect angles which justifies the use of theLM
different coupling coefficientsαm,ℓ for m = 1, . . . ,M and
ℓ = 1, . . . , L. c) The target is either stationary or has a known
Doppler shift which is compensated for at the receiver [7].

In principle, Analog-to-Digital (A/D) conversion would re-
quire undertaking a Kelly-Root expansion of the received
(vector) signal [8], which would inevitably lead to an A/D
stage depending on the clutter covariance2. This would in turn
lead to a hardly implementable receiver and would prevent
any subsequent step towards adaptive systems, wherein such
a covariance is assumed unknown [3]. As a consequence,
we adopt the customary - albeit sub-optimum - approach of
projecting the received observations onto the signal space,
which yields the following binary hypothesis testing problem:

rℓ =

{

H1 :Aαℓ +wℓ

H0 :wℓ

ℓ = 1, . . . , L , (3)

whereαℓ = (α1,ℓ, . . . , αM,ℓ)
T is theM−dimensional vector

modeling the scattering of the target - hit by theM transmitted
waveforms in (1) - towards theℓ−th receive node forℓ =
1, . . . , L; A = (a1, . . . ,aM ) is the N × M code matrix
containing theN−dimensional codeword transmitted by the
m−th transmit node as itsm−th column; tr{AAH} is the
total transmitted energy; finally,wℓ represents the overall
disturbance at theℓ−th receive antenna and is modeled as
an N−dimensional Gaussian vector with known (full-rank)
correlation matrixM .

For future reference, we define∆ = min{N,M} and δ =
rank{A}, with 1 ≤ δ ≤ ∆. Also, we define the received
average signal-to-clutter ratio (SCR) as

SCR=
1

NL
Eα

[

L
∑

ℓ=1

αH
ℓ AHM−1Aαℓ

]

=
σ2
α

N
tr
{

AHM−1A
}

,

(4)
where the expectation is over the realizations of the vectorα =
vec{(α1, . . . ,αL)}, tr{·} denotes trace and the assumption has
been made thatE[αℓα

H
ℓ ] = σ2

αIM for ℓ = 1, . . . , L.
Given the above ingredients, we first derive a distribution-

free test for (3), namely a test whose implementation does not
require prior knowledge of the target parameters: in this work,
we assume that detection takes place at a fusion center wherein

1This assumption can be relaxed through cell synchronization.
2This becomes the conventional Karhunen-Loewe expansion tobe under-

taken at each receive antenna when, as assumed throughout this study, the
clutter exhibits temporal correlation, but no spatial correlation.
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Fig. 2. GLRT statistic computation.

un-quantized versions of therℓ’s are made available. Next,
we investigate two design criteria for the code matrixA, so
as to elicit the interplay between the transmitted waveforms
s1(t), . . . , sM (t) and detection performance.

III. D ETECTORSTRUCTURE

Lacking prior information as to the target statistics, the
Neyman-Pearson test cannot be implemented, whereby a wise
design strategy for the detector is the Generalized Likelihood
Ratio Test (GLRT) [7] which, under the model (3), yields:

T = max
α1,...,αL

ln

[

f(r1, . . . , rL|H1,α1, . . . ,αL)

f(r1, . . . , rL|H0)

] H1
>
<
H0

η , (5)

where f(r1, . . . , rL|H1,α1, . . . ,αL) and f(r1, . . . , rL|H0)
denote the conditional densities of the observations underthe
two alternative hypotheses, whileη is the detection threshold,
to be set based upon the desired false alarm probability,Pfa

say. The maximization involved by (5) is obviously tied to
the structure ofA, which can be in principle arbitrary, and
in particular to its rankδ, which in turn may take on any
integer value from1 to ∆. Straightforward derivations lead
to the following general form of the GLRT, which holds for
arbitrary code-matrixA:

T =

L
∑

ℓ=1

∥

∥

∥
PM−1/2AM−1/2rℓ

∥

∥

∥

2 H1
>
<
H0

η , (6)

whereinPM−1/2A represents the orthogonal projector onto the
range span of the matrixM−1/2A.

Let BDCH be the singular value decomposition (SVD) [9]
of M−1/2A, whereB is a unitaryN ×N matrix containing
the left singular vectors,D is an N × M matrix containing
the singular values on the main diagonal with[D]1,1 ≥ · · · ≥
[D]∆,∆ ≥ 0, andC is a unitaryM × M matrix containing
the right singular vectors. Under rank-δ coding, the orthogonal
projector in (6) can be written asPM−1/2A = BδB

H
δ , wherein

Bδ is theN × δ matrix containing the firstδ columns ofB.
Three relevant cases are subsumed by this solution.

1) Under rank-1 coding, we have thatA = aqH with
a N−dimensional andq unit-energyM−dimensional;
hence, in this case the orthogonal projector reduces to

PM−1/2A =
(

aHM−1a
)−1

M−1/2aaHM−1/2 .

2) Under rank-∆ (i.e., full-rank) coding andN ≤ M , we
havePM−1/2A = IN .



3) Finally, under rank-∆ coding andN ≥ M , we have

PM−1/2A = M−1/2A(AHM−1A)−1AHM−1/2 .

Notice thatM−1/2rℓ represents the output of a filter aimed
at whitening the disturbance impinging on theℓ−th transmit
antenna, whereby the computation of the GLRT test statisticin
(6) may be undertaken based on the scheme of Figure 2.

The performances of the above test can be expressed in
closed - albeit implicit - form under very general conditions.
In particular, under rank-δ coding, we have:

Pfa = e−η
δL−1
∑

k=0

ηk

k!
, (7)

Pd =Eα

[

QδL

(

√

2β,
√

2η
)]

, (8)

whereβ =
∑L

ℓ=1 α
H
ℓ AHM−1Aαℓ andQm(·, ·) denotes the

generalized Marcum Q function of orderm. Notice that (7)
and (8) generalize previous results derived in [2] forδ = ∆
and in [3] for δ = 1, respectively.

IV. CODE DESIGN AND PERFORMANCEBOUNDS

Code optimization requires determining a meaningful per-
formance measure to be optimized. Paralleling the arguments
of [2], we assign a prior to the vectors of the scattering
coefficients; in particular, we assume thatα consists ofLM
independent and identically distributed circularly-symmetric
Gaussian random variables with equal varianceσ2

α. At this
point, a reasonable design criterion in the GLRT frame-
work is to chooseA so as to maximize the MI between
the received observationsr1, . . . , rL and the channel vectors
α1, . . . ,αL underH1, i.e., I (r1, . . . , rL;α1, . . . ,αL|H1) =
L log2

[

det
(

IN + σ2
αM

− 1

2AAHM− 1

2

)]

[4]. Indeed, since
the GLRT amounts to writing the conditional likelihood given
the unknown target parameters and replacing them through
their maximum-likelihood estimates performed based upon
the available observations, maximizing the MI between the
received signals and the channel vectors is expected to improve
the GLRT performance [5].

To make the maximization non-trivial, a set of physical
constraints onA should be added. In the following we discuss
two relevant cases: I) a power-unlimited system, wherein we
constrain the normalized received average SCR in (4); II) a
power-limited system, wherein we constrain the transmitted
energy per signal dimension, i.e.,tr{AAH}/N . In both cases,
an additional constraint can be imposed upon the rank ofA.

A. Power-unlimited system

The problem to be solved is the following:


















max
A

log2

[

det
(

IN + σ2
αM

− 1

2AAHM− 1

2

)]

s.t. SCR=
σ2
α

N
Tr

{

AHM−1A
}

≤ ν

rank{A} ≤ θ

(9)

with ν > 0 and θ ∈ {1, 2, . . . ,∆}. Let BΛBH be the
spectral decomposition of the positive semi-definite matrix T =

M− 1

2AAHM− 1

2 , whereΛ = DDH = diag{λ1, . . . , λN}
with λ1 ≥ . . . ≥ λN ≥ 0. Since the rank constraint forces
λθ+1 = . . . = λN = 0, the problem (9) can also be recast as



























max
λ1≥0,...,λθ≥0

θ
∑

j=1

log2(1 + σ2
αλj)

s.t. SCR=
σ2
α

N

θ
∑

j=1

λj ≤ ν

(10)

A straightforward application of the Jensen inequality [4]
allows now deriving the following condition for optimality:

λj =
Nν

θσ2
α

=
NSCR
θσ2

α

, j = 1, . . . , θ , (11)

which in turn implies that the optimalA should be such that

M− 1

2AAHM− 1

2 =
NSCR
θσ2

α

BθB
H
θ . (12)

According to (11) and (12), the optimal space-time code must
have rank{A} = δ = θ (i.e., the code must exploit the
maximum possible number of degrees of freedom as permitted
by the rank constraint) andSCR= ν; whereby, both inequality
constraints in (9) can equivalently be replaced with a strict
equality. The following remarks are now in order.

For a targetSCR and a given rank constraintθ, the above
coding strategy amounts to generatingθ independent and iden-
tically distributed diversity paths at each receive antenna; also,
each path enjoys the same average signal-to-clutter ratio given
by NSCR/θ. Notice that increasing the number of diversity
pathsθ at each receive antenna (i.e., increasing the rank ofA)
comes at the price of reducing the received average SCR per
path. This intuition will be farther exploited in what follows.

The solution in (11) coincides with the solution that we
would obtain if, under a definite rank constraint, we adoptedthe
lower Chernoff-bound on the detection probability as objective
function. This result was first observed in [2] for full-rank
coding (i.e.,θ = ∆).

Finally, we point out that the optimal code matrix complying
with (12) is not unique. In fact, letUAΣAV

H
A be the SVD

of A, whereUA is a unitaryN × N matrix containing the
left singular vectors,ΣA is anN ×M matrix containing the
singular values on the main diagonal andVA is a unitary
M ×M matrix containing the right singular vectors. Also, let
UMΛ

−1
M UH

M be the spectral decomposition ofM−1, where
UM = (uM,1, . . . ,uM,N ) is an N × N unitary matrix and
Λ

−1
M = diag{1/λM,1, . . . , 1/λM,N} with 1/λM,1 ≥ . . . ≥

1/λM,N > 0. Then, (12) can be rewritten as

UMΛ
−1/2
M UH

MUAΣA =

√

NSCR
θσ2

α

Bθ . (13)

It is clear that the unitary matrixVA can be arbitrarily chosen
since it does not come into play in (13). Also, it is instructive
to consider the class of optimal solutions obtained by setting
UA = UM . In this case, the right singular vectors ofA
are matched to theN eigenvectors of the noise matrixM



which in turn define as many orthogonal modes in the signal
space. The position of theθ non-zero singular values inΣA

determines which subset of orthogonal modes is employed for
transmission. In particular, letn(1), . . . , n(θ) be the row (or
column) indexes corresponding to the non-zero singular values
in ΣA. Condition (13) is fulfilled by setting

[ΣA]n(j),n(j) =

√

λM,n(j)
NSCR
θσ2

α

, j = 1, . . . , θ . (14)

It is seen from (14) that more energy must be allocated to more
interfered modes in order to equalize their received average
SCR’s. Among all the possible choices, settingn(j) = j for
j = 1, . . . , θ minimizes the total transmit energytr{ΣAΣ

H
A}

required to achieve a givenSCR since transmission takes place
along the least interfered modes.

1) Analysis and trade-offs:The detection performance of
the GLRT under rank-θ optimal coding in (11) has a simple
closed-form expression. Indeed, since the constraint onSCR
allows generating exactlyθL independent diversity paths with
one and the same received average SCR given byNSCR/θ,
the test statistic (6) is a Gamma random variable with shape
parameterθL and scale parameter1 + NSCR/θ underH1,
implying that

Pd = exp

{

− η

1 +NSCR/θ

} θL−1
∑

ℓ=0

1

ℓ!

(

η

1 +NSCR/θ

)ℓ

.

The inherent trade-off between number of generated diversity
pathsθL and amount of energy integration granted on each
pathNSCR/θ is visible already at this stage, and is confirmed
by the asymptotic behavior (for increasingly largeSCR) of the
detection probability, i.e.:

Pd ∼ 1− 1

(θL)!

(

η

1 +NSCR/θ

)θL

. (15)

Notice that no strategy is uniformly superior in terms of
detection performance, but the optimal value ofθ depends
upon the operatingSCR, as also confirmed by Figure 3. Indeed,
while for largeSCR the asymptotic behavior in (15) indicates
that maximizing the diversity order (i.e., choosingθ = ∆)
amounts to maximizing the detection probability, in the low
signal-to-clutter regime this trend does not hold anymore.To
have an intuitive justification of this fact, recall that increasing
the number of diversity paths eventually leads to more and
more constrained target amplitude fluctuations. On the other
hand, (8) reveals that the detection probability is in the form
Pd = Eβ [F (β, η)] = Eβ0

[F (βrmsβ0, η)], whereβrms is the
root mean square value of the random variableβ, while β0

is a random variable with unit rms value.F (β, η), regarded
as a function ofβ, is a cumulative distribution function and,
therefore, exhibits a sigmoidal shape (i.e., is∪−convex in the
regionβrms → 0, while being∩-convex in the regionβrms →
∞). Under these circumstances, more and more constrained
fluctuations (i.e., lower dispersion ratios of the parameter β)
typically result in larger values ofPd in the ∩−convexity
region, while being detrimental in the∪−convexity region.
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Fig. 3. Probability of miss versusSCR for the optimal coding in (11).

B. Power-limited system

In power-limited systems, the problem to be solved is










max
A

log2

[

det
(

IN + σ2
αM

− 1

2AAHM− 1

2

)]

s.t. tr{AAH} ≤ NE
rank{A} ≤ θ

(16)

where E > 0 is the available transmit energy per signal
dimension andθ ∈ {1, 2, . . . ,∆}. A solution to (16) was
derived in [3] forθ = N ≤ M . Also, maximizing the objective
function in (16) for θ = 1 amounts to maximizingSCR in
(4) and the solution to this problem under a transmit energy
constraint can again be found in [3]. In the following, the
solution to (16) for arbitrary values ofθ is discussed.

Notice first that the problem (16) can be recast as










max
T�0

log2
[

det
(

IN + σ2
αT

)]

s.t. tr{M 1

2TM
1

2 } ≤ NE
rank{T } ≤ θ

(17)

where we recallT = BΛBH . Since the rank constraint forces
λθ+1 = . . . = λN = 0, (17) is also equivalent to











max
Λθ�0, BH

θ
Bθ=Iθ

θ
∑

j=1

log2(1 + σ2
αλj)

s.t. tr{BθΛθB
H
θ M} ≤ NE

(18)

whereΛθ = diag{λ1, . . . , λθ}, Bθ = (b1, . . . , bθ) and bj is
the j−th column of the unitary matrixB = (b1, . . . , bN ).
Observe that the choice ofBθ only affects the feasible region
of the problem (18). As a consequence, the optimalBθ must
ensure the largest feasible set forΛθ which rules the value
of the objective function. This implies that the firstθ columns
of B must be equal to the eigenvectorsuM,1, . . . ,uM,θ of
M corresponding to theθ smallest eigenvalues [10, Lemma
9.H.1.h]. The lastN − θ columns ofB can be arbitrarily
chosen (provided thatB is unitary) since they do not come
into play in the optimization (18). Therefore, we can assume
in the following that B = UM , which in turn implies



UA = UM and T = UMΛ
− 1

2

M PAΛ
− 1

2

M UH
M with PA =

ΣAΣ
H
A = diag{pA,1, . . . , pA,θ, 0 . . . , 0}. Hence, (18) reduces

to the following standard water-filling problem [4]



























max
pA,1≥0,...,pA,θ≥0

θ
∑

j=1

(

1 +
σ2
αpA,j

λM,j

)

s.t.
θ

∑

j=1

pA,j ≤ NE
(19)

whose solution is simply given by

pA,j = max

(

0, µ− λM,j

σ2
α

)

,
θ

∑

j=1

pA,j = NE . (20)

Some remarks are now in order. Undertr{AAH} ≤ NE
and rank{A} ≤ θ, the optimal code matrixA = UAΣAV

H
A

is recovered (up to a right multiplication by anM × M
unitary matrix) by forcingUA = UM , [ΣA]j,j =

√
pA,j for

j = 1, . . . , θ and pA,j given by (20), and[ΣA]j,j = 0 for
j = θ + 1, . . . ,∆. This solution (which subsumes the results
in [3] for the special casesθ = 1 and θ = N ≤ M ) has
a nice physical interpretation. The optimized code discards
the noisiestN − θ modes defined byM in the signal space.
Also, since the remainingθ orthogonal directions present a
different disturbance level, more energy is allocated to more
reliable modes according to (20). The number of activated
modes depends not only upon the upper rank constraintθ, but
also upon the available transmit energyE , the target strength
σ2
α and the eigenvaluesλM,1 ≤ . . . ≤ λM,θ of the disturbance

covariance matrix. IfEσ2
α/λM,θ → ∞, then pA,1 ≥ · · · ≥

pA,θ > 0 andδ = rank{A} = θ. Instead, if not enough energy
is available for transmission or if the target is weak, additional
modes may be switched off. Also, notice that the activated
modes have in general different received average signal-to-
clutter ratio’s given byσ2

αpA,j/λM,j for j = 1, . . . , δ ≤ θ
(more on thisinfra).

We emphasize that the situation here is dramatically different
from what observed in the previous section under a received av-
erage SCR constraint, wherein the transmitter always activates
the largest possible number of orthogonal modes permitted by
the rank constraint and pumps into them as much energy as to
make these paths equivalent at the receiver side.

1) Analysis and trade-offs:In Figure 4, we report1 − Pd

(probability of miss) for the optimal water-filling solution in
(20). We assumePfa = 10−4, M = N = 4 andL = 1; also,
we consider an exponentially-shaped disturbance covariance
matrix with [M ]i,j = σ2

d0.7
|i−j|, whose eigenvalues are

{0.203, 0.318, 0.754, 2.725}σ2
d. To elicit the joint effects of the

transmit energy constraint and the target strength, the curves
are plotted versus the parameterγ = Eσ2

α/σ
2
d.

Notice first that, ifγ → 0, the optimal code matrix acti-
vates only the least interfered mode,independentof the rank
constraintθ; in this case, the test statistic (6) is a Gamma
random variable with shape parameterL and scale parameter
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Fig. 4. Probability of miss versusγ for the optimal coding in (20).

1 + σ2
αNE/λM,1 underH1, implying that

Pd = exp

{

− η

1 + σ2
αNE/λM,1

} L−1
∑

ℓ=0

1

ℓ!

(

η

1 + σ2
αNE/λM,1

)ℓ

.

This result confirms the basic intuition that, when the transmit
energy is scarce or if the target is weak, we should give up
diversity and concetrate all the energy along the least interfered
direction in the signal space in order to maximize the received
average signal-to-disturbance ratio. A similar result also holds
in MIMO point-to-point wireless channels [6].

On the other hand, ifγ is large enough, relaxing the rank
constraintθ allows generatingδ ≥ 1 orthogonal modes3. In
our example, if−6.1 dB < γ < 2.3 dB up to three modes can
be activated; instead, full rank coding becomes possible only if
γ > 2.3 dB. For a fixedE , it is clear that increasing the number
δ of modes (i.e., diversity branches) again cames at the price
of reducing the energy transmitted (and therefore the average
SCR ratio received) along each path. As a consequence, there
is no strategy which is uniformly optimal for all values ofγ.
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