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Abstract—In this work, a MIMO detection problem is con-
sidered. At first, we derive the Generalized Likelihood Rato
Test (GLRT) for arbitrary transmitted signals and arbitrar y
time-correlation of the disturbance. Then, we investigatedesign
criteria for the transmitted waveforms in both power-unlim ited
and power-limited systems and we study the interplay among
the rank of the optimized code matrix, the number of transmit
diversity paths and the amount of energy integrated along ezh
path. The results show that increasing the rank of the code ntaix
allows generating a larger number of diversity paths at the pice
of reducing the average signal-to-clutter level along eacpath.
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I. INTRODUCTION

We consider a detection system wherein both the receiver
and.the tra_nsmlttep Whlgh are not necessarily co Iocaltlael,. tool that can be used for trading diversity order for int¢igra
equipped with multiple widely spaced antennas. The scersri . ) : )

: : . is the code-matrix structure, and particularly its rank.
that typical of a Multiple-Input Multiple-Output (MIMO) @ar : . .
. . . . This paper is organized as follows. In Secfidn Il, the proble

architecture, as outlined in [1] and analyzed in [2], [3] may : Lo )

) ; . under investigation is described. In Secfioh Ill, the GLiRBed
also describe the tasks of a sensor network with widely gpac . . ; . o .

. . . etector is derived. Finally, the diversity-integratioade-offs

nodes, wherein both the transmit and the receive array eit.'snefor different code design criteria are analyzed in Sediigh |
exhibit no coherence. In this situation, the MIMO architeet g y

can be advocated to improve the detectability of targeth wit Il. PROBLEM STATEMENT

fluctuating radar cross section either through an incret®0  Consider a detection architecture where the transmittér an
diversity order [1], [2] or through beam-forming in the s&in the receiver consist of\/ and L widely spaced antennas,
space [3] or through a combination of these two strateghes: trespectively, and are not necessarily co-located as debint

degree of freedom which allows jumping from one strategiigure1. We assume the following general model for the signa
to another is the structure of the transmitted signals, @and {ransmitted by then-th antenna (node)

particular the rank of the space-time code matrix used at the
transmitter. s
In the above context, this paper makes the following contri-" "
butions. At the receiver-design level, we first derive thex&e ) ) ] ) N
alized Likelihood Ratio Test (GLRT) for arbitrary transteid Where IV is the signal-space dimensiofig,(t)},-, is an
waveforms and arbitrary time-correlation of the disturtran Orthonormal ba:spls_ of the considered signal spaeg, =
Building upon [2], [3], two design criteria for the spaceaé (@1.m: - - ’aN=m)2 is the codeword associated with the-th
code are then presented and discussed. The figure of méxit is fansmitter|ja., || is the energy transmitted by antennaand
Mutual Information (MI) [4] between the received signalsian T, is the time durgtlon of the transmitted signal. Subsumed b_y
the channel vectors generated by a prospective target,evhda€ above model is the case of a pulsed-MIMO radar, wherein
maximization is related to the ability to estimate unknowi¥n(t) = p(t—(n—1)T), with p(-) a pulse of duratior;, <T
characteristics of the target as shown in [5], and also to tf&d7 = T/N the pulse-repetition time (PRT) [2]. _
maximization of the detection probability) for a fixed false 1 ne Signal observed at the receive nodes may contain or
alarm probability £;.) as pointed out in [2], [3]. We examine not the echo of a target scattering located at a given distanc

both the case of power-unlimited systems, wherein a cdnstra ! N€ bandwidth of the transmitted signal induces a partitibn

is forced upon theeceivedaverage signal-to-disturbance ratio € controlled area in a finite number of range cells, diyed

and the case of power-limited systems, wherein the consigai © the delay with which a target echo is heard at the receiving
instead on théransmittecenergy. Finally, closed-form formulas N0des. Denoting by, (?) the signal received at thie-th receive
for P, and P; are given, showing that there is an inherenffode at a given delay,, we thus have:
trade-off between number of diversity paths and amount of M N
Hl : Z Z an,m(bn (t - TO)am,E + wl(t)

Fig. 1. Considered scenario.

N
()= anmon(t), 0<t<T,,m=1,... M, (1)
n=1

energy integration along each path, which is a direct comfirm ; 5
tion of the well-known fact that no uniformly optimum (e.g., re(t) m=1n=1 )
for any signal-to-disturbance ratio) coding strategy ®xi$he Hy :we(t)
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for ¢ = 1,...,L. In the above equation, which subsumes
the model outlined in [2]w,(t) is a Gaussian process which LEIN M~/2 — BsBE |- ||*
models the overall disturbance originating from the super-
position of receiver noise and spurious scattering from the S LT,
surrounding environment (denoted as clutter) which tylpica
exhibits time correlation. In writing dowr](2), the folloag re |
three assumptions have been made. a) The transmitted signal
are narrowband [1], namely all of the receive sensors see the
target as belonging to the same range@]céi) The spacing of

the antennas at both the transmitter and the receiver is wide ) ) )
enough as to allovangle diversity[1], [6], i.e., to generate un-quantized versions of the,’s are made available. Next,

different aspect angles which justifies the use of ther We investigate two design criteria for the code matAx so
different coupling coefficientsy,, ; for m = 1 M and @s to elicit the interplay between the transmitted waveform
m, - Yty

¢=1,...,L. c) The target is either stationary or has a knowri1(t); ---»sn(t) and detection performance.
Doppler shift which is compensated for at the receiver [7]. "

In principle, Analog-to-Digital (A/D) conversion would e

quire undertaking a Kelly-Root expansion of the received Lacking prior information as t_o the target statistics, thg
(vector) signal [8], which would inevitably lead to an A/D Neyman-Pearson test cannot be implemented, whereby a wise

stage depending on the clutter covari@hdhis would in turn des_ign strategy for the d(_atector is the Generalized leehh
lead to a hardly implementable receiver and would preveﬁtatlo Test (GLRT) [7] which, under the modél (3), yields:

M~? — BsBy' ||’ —

Fig. 2. GLRT statistic computation.

. DETECTORSTRUCTURE

any subsequent step towards adaptive systems, wherein such H,
a covariance is assumed unknown [3]. As a consequencer — max In flry,..rrlHy e, ap) Z . (5)
we adopt the customary - albeit sub-optimum - approach of 1 XL f(ry,...,rL|Ho) H,

projecting the received observations onto the signal space

which yields the following binary hypothesis testing preml.  Where f(r1,....7r[Hy, o, ..., ar) and f(ry,... 7r[Ho)
denote the conditional densities of the observations utider

| HiAay +wy _ two alternative hypotheses, whilgis the detection threshold,
Ty = é—l,...7L7 (3) . .
Hy :wy to be set based upon the desired false alarm probabitity,
- ) ) say. The maximization involved by](5) is obviously tied to
whereay, = (a1¢;- .., )" IS the M—dimensional vector e sirycture ofA, which can be in principle arbitrary, and

modeling the scattering of the target - hit by thetransmitted particular to its ranks, which in turn may take on any

waveforms in [(L) - towards thé—th receive node fof = jyeqer value froml to A. Straightforward derivations lead

L., L; A = (a1,...,an) is the N x M code matrix 4 the following general form of the GLRT, which holds for
containing the N —dimensional codeword transmitted by thearbitrary code-matrixA:

m~—th transmit node as its»—th column;tr{AA#} is the

total transmitted energy; finallyw, represents the overall L L 273
disturbance at the—th receive antenna and is modeled as T= Z HPM*1/2AM7 / T‘eH <M (6)
an N—dimensional Gaussian vector with known (full-rank) =1 Hy

correlation matrixM .
For future reference, we defin® = min{N, M} and§ =
rank{A}, with 1 < § < A. Also, we define the received

average signal-to-clutter ratio (SCR) as of M~1/2A, whereB is a unitaryN x N matrix containing

1 L o2 the left singular vectorsD is an N x M matrix containing

SCR= mEa ZafAHMflAaz :Watr{AHMflA} , the singular values on the main diagonal wif], ; > --- >
(=1 [Dla,a > 0, and C is a unitary M x M matrix containing

L o (4) the right singular vectors. Under raaksoding, the orthogonal
where the expectation is over the realizations of the vester . . . o .
aprolector in [6) can be written a8, 1,2 4 = BsBj', wherein

veei (e, ..., )}, tr{-} denotes trace and the assumption h B; is the N x § matrix containing the first columns of B.

been made that|[a,all] = 021y for ¢ =1,... L. : X
Given the above ingredients, we first derive a distribution-—rhree relevant cases are subsumed by this solution.

. . - i - H 1
free test for[(B), namely a test whose implementation doeés no 1) Under rank-1 coding, we have that = aq _W'th_
require prior knowledge of the target parameters: in thiskwo a N-—dimensional andg unit-energy/ —dimensional;
we assume that detection takes place at a fusion centeriwhere ~ N€Nce, in this case the orthogonal projector reduces to

Prr-1/24 = (aHM_la)71 M2aa" M1/,

whereinP, ;1,2 4 represents the orthogonal projector onto the
range span of the matridZ —1/2 A.
Let BDCH be the singular value decomposition (SVD) [9]

1This assumption can be relaxed through cell synchronizatio

2This becomes the conventional Karhunen-Loewe expansidpetander- . .
taken at each receive antenna when, as assumed througli®tutly, the 2) Under rankA (i.e., full-rank) coding andV < M, we

clutter exhibits temporal correlation, but no spatial etation. have Py;-1/24 = In.



3) Finally, under rankA coding andN > M, we have M- 2AAYM-2 whereA = DD¥ = diag{\,...,\n}

with \; > ... > Ay > 0. Since the rank constraint forces
PM*1/2A _ M—I/QA(AHM—IA)—IAHM—I/Q ) 1 = = AN Z

Xg+1 = ... = An =0, the problem[(B) can also be recast as
Notice thatM —1/2r, represents the output of a filter aimed 0
at whitening the disturbance impinging on theth transmit max Zlog?(l +02)\))
antenna, whereby the computation of the GLRT test stafistic A120,, 2020 £7
(6) may be undertaken based on the scheme of Higure 2. 28 (10)
The performances of the above test can be expressed in s.t. SCR= ﬁZx\j <v

closed - albeit implicit - form under very general conditon J=1
In particular, under rank-coding, we have: A straightforward application of the Jensen inequality [4]

SL—1 4 allows now deriving the following condition for optimality

Pra=e Y T @) —
k! Nv  NSCR |
k=0 7:W:W’ j:l,...,@, (11)
P;=Eq 28,/2n)| , 8 « «
! {QM (\/_ﬁ \/_77)] (®) which in turn implies that the optimall should be such that
where§ = Zle all AEM~1Aay, and Q. (-, ) denotes the ) . NSCR
generalized Marcum Q function of ordet. Notice that [[¥) M 2AA"M™ = = 02 ByBj' . (12)
and [8) generalize previous results derived in [2] foe= A %a
and in [3] for§ = 1, respectively. According to [11) and(12), the optimal space-time code must
have rank{A} = § = 6 (i.e., the code must exploit the
IV. CODE DESIGN AND PERFORMANCEBOUNDS maximum possible number of degrees of freedom as permitted

Code optimization requires determining a meaningful peby the rank constraint) anBCR = v; whereby, both inequality
formance measure to be optimized. Paralleling the argusmespnstraints in[(9) can equivalently be replaced with a tstric
of [2], we assign a prior to the vectors of the scatteringquality. The following remarks are now in order.
coefficients; in particular, we assume thatconsists of LM For a targetSCR and a given rank constraifit the above
independent and identically distributed circularly-syetric  coding strategy amounts to generatthgndependent and iden-
Gaussian random variables with equal variam¢e At this tically distributed diversity paths at each receive anteraiso,
point, a reasonable design criterion in the GLRT frameeach path enjoys the same average signal-to-clutter raim g
work is to chooseA so as to maximize the MI betweenby NSCR/6. Notice that increasing the number of diversity
the received observations, ..., r; and the channel vectors pathsf at each receive antenna (i.e., increasing the rani)of
ay,...,op underHy, i.e., I(r,...,r;01,...,ar|Hy) = comes at the price of reducing the received average SCR per
Llog, [det (In + 02M~3 AA" M~%)] [4]. Indeed, since path. This intuition will be farther exploited in what folls.
the GLRT amounts to writing the conditional likelihood give  The solution in [(Ill) coincides with the solution that we
the unknown target parameters and replacing them througiould obtain if, under a definite rank constraint, we adopied
their maximum-likelihood estimates performed based updawer Chernoff-bound on the detection probability as otijec
the available observations, maximizing the Ml between thiinction. This result was first observed in [2] for full-rank
received signals and the channel vectors is expected tairapr coding (i.e.,0 = A).
the GLRT performance [5]. Finally, we point out that the optimal code matrix complying

To make the maximization non-trivial, a set of physicawith (I2) is not unique. In fact, leU X4V} be the SVD
constraints onA should be added. In the following we discusof A, whereU,4 is a unitary N x N matrix containing the
two relevant cases: |I) a power-unlimited system, wherein weft singular vectors¥ 4 is an N x M matrix containing the
constrain the normalized received average SCRn (4); Il) @ingular values on the main diagonal ai%, is a unitary
power-limited system, wherein we constrain the transmhitte}/ x M matrix containing the right singular vectors. Also, let
energy per signal dimension, i.er{ AA"}/N. In both cases, Uy A,; U} be the spectral decomposition & ~!, where
an additional constraint can be imposed upon the rand of UM1 = (up1,---,upm,n) IS @n N x N unitary matrix and

L. A_ = diag 1 )\M,la---,l /\1\4_’]\7 with 1 /\1\4_’1 > .2
A. Power-unlimited system 1/1\){M7N > 0. {Tr{en, () ca{I be rgwritten a/\s

The problem to be solved is the following:

. _ NSCR
max log [det (IN + aiM_%AAHM_f)} UnAy PUHULS . = \| g5z Be- (13)
2
s.t. SCR= ZaTr {AHMflA} <v ®)  Itis clear that the unitary matri¥’4 can be arbitrarily chosen
rank{AfV< 0 since it does not come into play ih{13). Also, it is instrueti

to consider the class of optimal solutions obtained by regtti
with v > 0 andd € {1,2,...,A}. Let BABY be the U, = Uy. In this case, the right singular vectors of
spectral decomposition of the positive semi-definite mafti=  are matched to théV eigenvectors of the noise matrix/



which in turn define as many orthogonal modes in the sigr , Power-unlimited: N =4, M =4, L =1, Pry =10~
space. The position of thé non-zero singular values i 4 W ———n ‘ ‘ ‘
determines which subset of orthogonal modes is employed "
transmission. In particular, let(1),...,n(6) be the row (or
column) indexes corresponding to the non-zero singularesl

in 3 4. Condition [I3) is fulfilled by setting

/ NSCR T
B alant) = M) gz J =L (14 107

It is seen from[(14) that more energy must be allocated to me
interfered modes in order to equalize their received awere
SCR’s. Among all the possible choices, setting) = j for

d

j =1,...,0 minimizes the total transmit energy{Z =4}
required to achieve a giveBCR since transmission takes plac 1072 ‘

. -10 -5 0 5 10 15 20 25
along the least interfered modes. SCR [ap)

1) Analysis and trade-offsThe detection performance of
the GLRT under rank* optimal coding in[(Ill) has a simple
closed-form expression. Indeed, since the constrainSGR g power-limited system
allows generating exactl§l. independent diversity paths with
one and the same received average SCR giveiWBLR/0,
the test statistic[{6) is a Gamma random variable with shape (. log, [det (IN I 02M7%AAHM7%)}
parameterd and scale parametdr+ NSCR/6 under Hy, A “

Fig. 3. Probability of miss versuSCR for the optimal coding in[{1I1).

In power-limited systems, the problem to be solved is

implying that s.t. tr{AA"} < N¢ (16)
oLt | , rank{A} <0
Py = exp{—$_} Z — <#) ) where £ > 0 is the available transmit energy per signal
1+ NSCR/9) = ¢ \1+NSCR/6 dimension andd € {1,2,...,A}. A solution to [16) was

The inherent trade-off between number of generated diyersfl€rived in [3] forf = N < M. Also, maximizing the objective
pathsfL and amount of energy integration granted on eadinction in [16) foré = 1 amounts to maximizingCR in
path NSCR/¢ is visible already at this stage, and is confirmed4) and the solution to this problem under a transmit energy
by the asymptotic behavior (for increasingly lai§@R) of the ~CoOnstraint can again be found in [3]. In the following, the

detection probability, i.e.: solution to [I6) for arbitrary values &f is discussed.
' oL Notice first that the probleni (16) can be recast as
1 n 2
Py~1-— L) (1 n wa) . (15) I%lé;%( log, 1[det (IIN +0.T)]
st. tr{M3TM?} < NE (17)

Notice that no strategy is uniformly superior in terms of
detection performance, but the optimal value tfdepends rank{T} <6

upon the operatingCR, as also confirmed by Figure 3. Indeed,yhere we recall” = BABX . Since the rank constraint forces
while for largeSCR the asymptotic behavior ifi (IL5) indicates),., = ... = \y = 0, (I7) is also equivalent to

that maximizing the diversity order (i.e., choosiig= A) ;

amounts to maximizing the detection probability, in the low 2

signal-to-clutter regime this trend does not hold anymdce. Agio,nlé}XBezIe ;IOgQ(l o) (18)
have an intuitive justification of this fact, recall that iresing ) H

the number of diversity paths eventually leads to more and s.t. tr{ByAsBy M} < N&

more constrained target amplitude fluctuations. On therothethere Ag = diag{\1,..., g}, Bg = (b1,...,by) and b, is
hand, [8) reveals that the detection probability is in themfo the j—th column of the unitary matrixB = (by,...,by).
Py = Eg[F(8,m)] = Eg, [F(BrmsBo,n)], whereg,.,.s is the Observe that the choice d8y only affects the feasible region
root mean square value of the random variaBlewhile 5,  of the problem[(I8). As a consequence, the optiBBalmust

is a random variable with unit rms valué:(3,7), regarded ensure the largest feasible set fAp which rules the value
as a function ofg, is a cumulative distribution function and, of the objective function. This implies that the fistcolumns
therefore, exhibits a sigmoidal shape (i.e.lisconvex in the of B must be equal to the eigenvectouS, 1, ..., un g Of
regionS,s — 0, while beingn-convex in the regiors,.,,, — M corresponding to thé smallest eigenvalues [10, Lemma
o0). Under these circumstances, more and more constraingdi.1.h]. The lastV — 6 columns of B can be arbitrarily
fluctuations (i.e., lower dispersion ratios of the paramé&le chosen (provided thaB is unitary) since they do not come
typically result in larger values of?; in the N—convexity into play in the optimization[(18). Therefore, we can assume
region, while being detrimental in the—convexity region. in the following that B = U,s, which in turn implies



1 1
UA — UM and T — UMAI\,[Z PAAM2 U]@ W|th PA — Powcr-lil‘nitcd: N=4, M=4,L=1, Py, = 1074, p=10.7
A28 = diag{pa1,...,p46,0...,0}. Hence, [(IB) reduces
to the following standard water-filling problem [4]

6 0'2]?
A,j
max E 1+ Zalfa,j
pa,1>0,...,p4,620 )\M,j

0 7=t (19)
st. Y paj < NE

J=1

10 . T T T T T 3

1-P

whose solution is simply given by

2
Oa

(4
AM.
pa,j = max (0# - M"J> ; ZPA,J' =N&.  (20)
=1
’ 7 [dB]

Some remarks are now in order. Unde{AA”} < N& Fig. 4. Probability of miss versus for the optimal coding in[{20).
andrank{A} < ¢, the optimal code matrixd = Uy X,V I

is recovered (up to a right multiplication by ah/ x M 1+ 05 NE/ Ay under Hy, implying that

R T £ SR PV
J = L. PA,; ) Alj,j — d=8XP\ T T one . NN a2 NE/ Nrr o
j =6+1,...,A. This solution (which subsumes the results 1+ 0iNE/ M ) O \1+ 0aNE/Aara

in [3] for the special case8 = 1 and¢ = N < M) has This result confirms the basic intuition that, when the traits
a nice physical interpretation. The optimized code dissar@nergy is scarce or if the target is weak, we should give up
the noisiestV — ¢ modes defined byM in the signal space. diversity and concetrate all the energy along the leastfaried
Also, since the remaining orthogonal directions present adirection in the signal space in order to maximize the resmbiv
different disturbance level, more energy is allocated taemoaverage signal-to-disturbance ratio. A similar resulo dlslds
reliable modes according t@_(20). The number of activated MIMO point-to-point wireless channels [6].
modes depends not only upon the upper rank constfaibit ~ On the other hand, i is large enough, relaxing the rank
also upon the available transmit energ§ythe target strength constrainté allows generatingd > 1 orthogonal modés In
o7 and the eigenvaluesy;; < ... < A of the disturbance our example, if—6.1dB < v < 2.3dB up to three modes can
covariance matrix. f€o?2 /A0 — oo, thenpyy > --- > be activated; instead, full rank coding becomes possibligibn
pae > 0andé = rank{ A} = 6. Instead, if not enough energy v > 2.3 dB. For a fixeds, it is clear that increasing the number
is available for transmission or if the target is weak, addil 5 of modes (i.e., diversity branches) again cames at the price
modes may be switched off. Also, notice that the activatesf reducing the energy transmitted (and therefore the geera
modes have in general different received average sigral-t8CR ratio received) along each path. As a consequence, there
clutter ratio’s given byoZ2pa /A for j = 1,...,6 < 6 s no strategy which is uniformly optimal for all values of
(more on thisinfra).

We emphasize that the situation here is dramatically differ
from what observed in the previous section under a received altl E. Fishler, A. Haimovich, R. Blum, L. Cimini, D. Chizhikand R. Valen-

. . . . zuela, “Spatial diversity in radars - Models and detectienfqrmance,

erage SCR constraint, wherein the transmitter always atetv IEEE Trans. Signal Processvol. 54, no. 3, pp. 823-838, Mar. 2006.
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