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Abstract—Low-density parity-check (LDPC) coding for a mul- words, this code does not achieve e’ of the capacity
titude of equal-capacity channels is studied. First, basedn of the BSC.
numerous observations, a conjecture is stated that when the In this work, we design LDPC codes that have strong

belief propagation decoder converges on a set of equal-capty . . . . .
channels, it would also converge on any convex combinatiorf o UNiversal properties. For a given channel capaCityve find

those channels. Then, it is proved that when the stability aaditon LDPC codes that perform well on any channel with this
is satisfied for a number of channels, it is also satisfied forry  capacity. The main body of this paper consists of: (1) stoglyi

channel in their convex hull. For the purpose of code design, code design and stability analysis for convex combinatibn o
a method is proposed which can decompose every symmetric n; -hannels of equal capacity, and (2) decomposition of all

channel with capacity C into a set of identical-capacity basis h | ith it int b f basis ch Is of
channels. We expect codes that work on the basis channels te b channels with capacity into a number of basis channels o

suitable for any channel with capacity C. Such codes are found the same capacity.
and in comparison with existing LDPC codes that are designed  In Section[ll, we study code design for the convex com-

for specific channels, our codes obtain considerable codirgpins  pinations of a set of equal-capacity channels (see Sediibn |

when used across a multitude of channels. for definition). We conjecture that under belief propagatio
decoding, to design a code for all the convex combinations

. INTRODUCTION of N binary-input symmetric-output (BISO) channels, it is

) - _ ~ sufficient to find a code which converges only on thdsge

Design of codes for specific channels is a mature subjeghannels. We also prove that when stability condition [10] i

A code optimized for one channel, however, may not perforgyisfied forN' BISO channels, it is also satisfied for all their
well if used on other channel types [1]. Thus, recently, éhetonyvex combinations. As a result, if a set of basis channels

has been an increasing interest in universal codes, i.66scoith capacityC can be found, a code designed only for the

that perform well on a multitude of channels [2]-[4]. Suclyssis channels has strong universal properties.

codes reduce system complexity by removing a need fory sectiorTV, a channel decomposition method is suggested
frequent code ghanges_ln the system and by allowing for ongghich decomposes any BISO channel with capadityin
and-for-all coding solutions. terms of basis channels of the same capacity with nonnegativ
Low-density parity-check (LDPC) codes [5] are extremelyoefficients. This decomposition method is not similar to
strong error correcting codes. Interestingly, varioushats existing techniques that decompose the channel over BSCs of
have observed “universal properties” of these codes [3], [4arious capacities [11]. Our technique is exhaustive, aBy
[6]-[8]. Chung [6] points out that LDPC codes optimized foghannel with a given capacity can be spanned with nonnegativ
the Gaussian channel perform well on some other channglfficients over our suggested basis.
such as the Rayleigh channel. In a more general setup, Shigr any given capacity, a code designed only for our
and Wesel [4] discuss the universal properties of finite lbloguggested basis channels is expected to have strong wtivers
length codes. behavior over all channels with capaci; Examples are
Penget al. [8] design LDPC codes for a number of channelgrovided in Sectiofil)V. Simulations confirm that compared to

(in this case, the Gaussian channel, the binary erasureehaodes designed for specific channels, our codes have signifi-
(BEC) and the Rayleigh channel). They argue that for a setgdntly better universal properties.
channels, usually one channel can be taken as the surrogate.

They design the code only for the surrogate channel. This !l PRELIMINARIES: LDPC CODE DESIGN AND
code works satisfactorily on all the given channels, but not SYMMETRIC CHANNEL REPRESENTATIONS
necessarily on other channel types. In this paper, an ensemble of LDPC codes is defined by a

Despite some universal properties of LDPC codes, tlpair of distributiong )\, p) in the polynomial form, i.e.A(z) =
performance of a code designed for one channel, can be pdof., \iz'~! andp(z) = Y ,o, piz'™*, where); (p;) is the
on another channel with the same capacity. For examplefraction of edges connected to the variable (check) nodes of
rate one-half LDPC code with maximum node degred@f degree:.
(taken from [9]), achieving more th&9.7% of the capacity of = LDPC code design means optimizing degree distributions
a BEC with capacityC = 0.5, does not converge on a binaryin order to maximize a cost function which can be usually
symmetric channel (BSC) with capaci/ = 0.63. In other the code threshold or the code rate. In threshold maxinozati
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given a fixed rate, we seek a code working under the worst
channel condition, hence minimum gap between the given
rate and channel capacity. In rate maximization given a fixed
channel, the code which exhibits maximum rate and providgsTx
reliable communication over the given channel is found.

In this work, we focus on finding codes suitable for a
multitude of channels rather than a single channel. We adopt
the rate maximization approach which allows us to find a .___________________________ )

code working on a finite number of channels. Using the rate o _ ,
Fig. 1. Convex combination of two subchannels where eacis biansmitted

maX|m|zat|on apprpac_h, _COde deS|gn fora num_ber of Idelqtlc"{?‘nrough CH with the probability ofy. The LLR densities of subchannels are
capacity channels is similar to what has been discusse@]n [1p, and g,.

We assume that transmission of LDPC codes takes place on
a memoryless BISO channel, i.€X, W (Y| X), Y) where the
input alphabett = {0, 1} is uniformly distributed, W (Y'|X) Every valid pdf overp < [0, 3] can be seen as a symmetric
is the conditional pdf of the channel afd C R is the channel. In fact, this representation decomposes a synemetr
output alphabet of the channel. In this section, three cblanghannel into the convex hull of BSCs of different crossover
representations for a BISO channel are presented. A Bl$®obabilities. The fraction of bits passing through eactCBS
channel is a channel for which we have is captured ing(p). According to [11], the channel capacity is

1

WYX =1)=W(-Y|X =0). pl

WX == wEriae=o) ¢ = E{Casa} =1 | hplg(r)ds
At the receiver side, given the outptf, the sufficient 0
statistics forX is P{X = 0|Y") which depends only on the where h(p) is the binary entropy function and integration

conditional pdf of the channel. For a symmetric channel, thiecludes the mass pointsat= 0 and. Also, g(p) is obtained

log-likelihood ratio (LLR) is defined as by
Pr(X =0]Y) 1 ( 1 —p) 1
= log o — 212 ) =—— a, (log—=), Vpelo,=
M = log PIX = 1]Y) 9(p) o0 —p) 2l \ '8 p€0,5]

Itis straightforward to see that is another sufficient statistics where &,,(z) is the pdf of the absolute value of LLR, i.e.,
for X, i.e., I(X;Y) = I(X;M). Assuming that the all- e

zero codeword is transmitted, we denote the pdfidéfas Bm|(2) = &z)(1 +€7%), Vo 2 0.

a(z) which fully characterizes the channel and satisfies theTne three channel representations presented in this sectio

symmetric property @-x) = e~ "a(x) [10]. Since the channel gre interchangeable as long as the input is uniformly dis-
is symmetric and input symbols are equiprobable, the mutyghyted [11].

information is the same as capacity [13]. We denote the nhutua

information/(X; Y) associated with (@) by Z(af defined as  11l. UNIVERSAL CODES FORCONVEX COMBINATION OF
Two CHANNELS AND STABILITY ANALYSIS
I(a) =1 —/a(:c) logy (1 + e~ %)d. In this section, we consider universal codes for convex

combination of two channels. We start with the definition of
convex combination of two channels.
P — min {Pr(X =0[Y),Pr(X = 1|y)} Fig. [ illustrates a channel composed of two subchannels
of capacityC and LLR densities pand g,. Each bit is passed
be a random variable ovéd, 3] with the pdf denoted by(p) through subchannel 1 with probability € [0,1] or passed
which completely characterizes the channel [11]. Thisairt,f through the other subchannel with probability bf- . We
is the probability of error based on observation of the outpuiefer to this channel as a convex combination of subcharinels
Since the pdf ofP, i.e., g(p), should not satisfy any symmetryand 2 since the LLR density for this combinatioryis, +74,.
property, we will use this representation in Sec{ion IV. The same equation holds for the pdf of error probability. We
Let A, (z) be the Dirac delta function at= z. Also, for an denote the set of channels in the convex hull pfapd g by
e € [0,1], definee = 1 — e. A BSC with crossover probability o _
€ ca[n b]e represented by the pdf of LLR and the pdf of error €(Po- Go) = {7 + 7G|y € [0, 1]}
probability as Since both of the subchannels have capacityfor every
_ channel 3 € €(p,,q,), I(a,) =C.
A) = €A 1og(2) () + Eiog() () The seafup irE Foigﬁl ca(lflrybe viewed as an arbitrarily varying
andg(p) = A.(p), respectively. channel [14] with a Bernoulli distributed set of states. As a
straightforward generalization, we can extend this coméigu
1For ease of notations, sometimes the argument of LLR dessitidropped. tion to N subchannels.

Let



Throughout this paper, we assume that the receiver has theput distributions of the check nodes are Gaussian, which
channel state information and computes correct LLRs. i is a usual assumption in the literature [6]. Therefore, we
fixed, one can design a single good LDPC code for the chane&pect codes designed based on this conjecture to have stron
with LLR density ofyp,+7q,. However, ify varies over time, universal properties.
finding a code which works for al} € [0,1] is a challenging . ,
problem. In fact, we seek a single universal code which doBs Stability Analysis
not need to be changed over time, even with variations.of ~ Convergence analysis of an LDPC code over a symmetric

) . . channel is often performed by characterizing the fixed goint
Remark 1: If the transmitter knew through which of theof density evolution given in{1). Let

subchannels the next transmitted bit would pass (which tis no
the case in most practical situations), it could use twcedéht B(a) = /a(x)e‘I/de
codes for two subchannels.

A. Code Design for Two Channels and

1
_ - —(lz/2|+=/2)
For code design, we use density evolution [10]. Consider a P@) =3 /a(x)e dz
degree distribution paif}, p) and a BISO channel with LLR

density @ which can be either por q,. Density evolution is be the Bhattacharyya constant and error probability aatexti

with a symmetric density (&), respectively. It is noticeable

stated as (im1) that these two functionals are linear with respect to symmet
_ " densities. Also, it is well-known that
agzao®2)\i(2pk6§('f 1)) ) ,
i k 2P(a) < B(a) < 2[7>(a)73(a)} 2, (2)

where (-)®¢=1 and (-)®¥(* -1 denote the operation of a
degreet variable node and a degréeeheck node, respec-
tively.

Let us first assume that there are only two possible case
~v =0 andv = 1. Similar to code design for one channel, an
by considering the convergence constraints on both chann
codes that are suitable for both channels can be design

Similarly, if v takes only a finite number of values, the same Theorem 1: For every channel irg(py, q,), once the de-

approach can be used. While the objective function remai@&der gets close to the perfect decoding, it will converge to

the same, the number of constraints grows almost lineatly Wihe error-free fixed pointX..), provided that the given LDPC
the number of channels. Thus, this approach can be inefﬂci@ade converges on two sub(':hanne(]wpd %

when+y can take many values. In genefainay take all values

in [0,1]. Proof: Let & = [yp, + 70] € €(py, dy) for av € [0, 1].
Our numerous experiments show that if we guarantee cgXecording to [13], the Bhattacharyya functional is muliial-

vergence for two values of, the code will converge for all the tive under® operation. Also, it can be shown that for two

values ofy in between. Therefore, in order to design a code fgfymmetric densities u and v, we have

the channel model given in Fi§] 1, whenis unknown, we

force convergence of the code only for= 0 andy = 1. B(uKv) < B(u) + B(v) — B(u)B(v)

Our extensive experimental results have been consistentyjAere the upper bound becomes tight for two BEC channels.
verifying the following conjecture. Hence, by induction it is straightforward to see that

Conjecture 1: An LDPC code which converges over two B(um) <1—(1—B(u)*.
channels with LLR pdfs pand g, will also converge over ) )
any channel in the convex hull of those channels, i.e., olver hketting te = B(a), we arrive at

8 € €(Po: Go)- te < B(a)A(1 — p(1 — te1)) @3)

Remark 2. The above conjecture can be proved under thgnich coincides with the density evolution for the BEC by

assumption that the distribution of the output messages éﬁbstituting the inequality with an equality. Expandifg (3
variable nodes depends only on the information they begiound zero, we get

and the structure of the code. According to central limit

theorem, the distribution of random messages at the output te < B(ao)XN' (0)p' (1)te—1 + O(t7 ).
of a variable node is close to a Gaussian distribution. Thus
the input distribution of a check node is a mixture of Gaussiqo
distributions [6], [15] which is uniquely characterizes the
degree distributions and the input mutual information.slt i
noticeable that in this approach, we do not assume that the B(py)N (0)p'(1) < 1

From [1), one can see that for every symmetric chankgl,is

a fixed point of density evolution corresponding to the petrfe

deFoding. It is desirable that the perfect decoding fixeahipoi
@' stable, which means that once the probability of erros get
all enough, the decoder converges to the error-freetglensi

) [13]. The following theorem shows the stability 4f..

'From the necessity part of the stability condition theorem
r the belief propagation decoding [10], [16], since theegi
LDPC code converges over the two subchannels, we must have



and where
Ba)N(0)p'(1) < 1, [ elaydady =1
D(C)

hence B(a) N (0)p'(1) < 1. One can see that there exist . .
py > 0 andpy > 0 such thatB(p,) X (0)p/(1) + 1 < 1 The following theorem shows that for any symmetric chan-

and B(q,) N (0)0' (1) + pa < 1. Therefore, nel, there exists a two dimensional pdfz, y). Before stating
, , the theorem, it is important to note that if the given channel
B(2g)A'(0)p"(1) +p <1 has a mass point at = &, then for somé& € [0, 1], we can

wherey = yu1 +7p2 andy > 0. For sufficiently small- > 0 write its pdf asg(p) = 6A¢ (p)+5r(p_) and proceed withr(p)
and some € N, t,_; < 7, i.e., getting close enough to thewhich does not have any mass pointpat ¢.

fect decoding, Its i : .
periect decoding, resufts in Theorem 2: Given a capacityC, every pdf of error proba-

te < (B(ag)N' (0)p' (1) + p)te—1 < te—1. bility g(p) associated with a symmetric channel can be written
It shows that as/ — oo, t; — 0. For a small error @S
probability, from [2) we have g9(p) = /( : (2, Y)9a,y(p)dady,
D(C
2P(a) < B(a) < 24/P(a).

for some pdfy(x,y) defined overD(C) = {(z,y) € [0,£] x
Now let{ = 72/4. If P(ay) < ¢, thent, < 7. Thus, ad tends  [¢, 1]} where¢ = = (H).
to infinity, P(a¢x) — 0 and a — A.. [ ]

Proof: Defining
The result can immediately be extended to a multitude of

subchannels and their convex hull. o(z,y) = — gz(I)gr(y?( —.
2 alx,y
IV. CHANNEL DECOMPOSITION J& gr(T)alz, 7) s dr

In this section, we propose a channel decomposition meth@ae can verify thatp(x, y) is a valid pdf and[(4) holds. More
based on the pdf of error probability defined in Seckion Il. Weiscussions o (z, y) and detailed proof are provided in [17].
show that every symmetric channel with capadtycan be u
decomposed into a number of basis channels with the same

capacity. By the result of Sectign]lll, a code that works om th Without Ioss_of_g_eneralit_y and _f(_)r practical reasons, we
basis channels with capacifyis expected to be suitable foraSsume ”_“"4_0 | is f!n|te. Having a finite alphabet also means
all channels in the convex hull of those basis channels. having a finite basis, because the number of channels that sat

We seek an identical-capacity basis for a given capa(tityiSfy @) is finite. Assuming that the quantization levels sueh
and contend that the sought basis is in the form of that there aréV, levels less thag and V. levels greater than

&, the cardinality of basis channels set{@C)| = Ny x N,.
9z.y(p) = a(@,y) Az (p) + (2, y) Ay (p)

wherea(z,y) € [0,1] is a constant depending on the channel _. he ch | _ dth ber of _
capacity and the location of mass pointsandy. Since the  CGIVen the channel capacity and the number of quantiza-

basis channel,_,(p) must have capacity of, by defining tion Ieyels, we can de_termine_z the set of basis chan@@'s)
H—1-C we Havea(a: Yh(z) + a(z,y)h(y) = H which for which we can design a single LDPC code. According to
results in B PO Conjecture[11, this code is expected to exhibit good perfor-
_ h(y) —H mance on all channels in the convex hull of basis channels, i.
a(z,y) = h(y) — h(z) Q[Q(C)]. For a given code, we define the universal threshold
_ o . C¥ as the minimum capacity on which convergence of the
Let ¢ = h=1(H) be the crossover probability of a single’* . i .
BSC v§ith capa(citic where functionh—e  [0,1] L 0, 1] isg code is guaranteed. Using Conjectlife 1 and Thedtem 2, the
the inverse of the binary entropy function. By the capacitlylmversal thresh_old’u can b.e fognd by a binary search.
constraint, in order to have a nonnegativer, y), we must b For alll the simulations |nbthrlls secltlo(n,ijlle have ushbd
. Lo it resolution to quantize subchannels (i8] = 64 at the
< > & ; !
have min{z,y} < ¢ andmaxiz,y} = ¢ Without loss of receiver) and &-bit sum-product decoder [18]. We follow the

generality we assume that< y. . . . ) .
Now we prove that every symmetric channel with capacit%u'delmes in the literature and consider only two conseeut

C falls into the convex hull of the basis channels egree.s fqrp(a:). Better universal codes can be obtalngd
by optimizing p(z), but the performance loss due to this

G(C) = {gzy(®)|(z,y) € D(C)} simplifying assumption is minor.
whereD(C) = {(x,y) € [0,£] x [¢, }]}. To this end, we find a Fig.[2 depicts a bit error rate comparison between a(ate

two dimensional pdi>(z, y) which fully describes the channel€0de optimized for an additive white Gaussian noise (AWGN)
according to channel with a maximum variable node degreé @i [9], and

a rate0.6 universal code with the suggested method having
g(p) = / 0(2,Y) gy (p)dxdy (4) maximum variable node @f0. Despite the fact that the AWGN
D(C) code performs slightly better on the AWGN channel, we can

V. SIMULATION RESULTS
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in the convex hull of these channels, if the decoder getsclos
to the perfect decoding, then it will converge.

We proposed a channel decomposition technique which
allowed for spanning any given channel with capadityn
a number of basis channels with identical capacity. Then,
we designed codes for those basis channels. As expected,
the codes designed following this method exhibited strong
universal performance. Specifically, in comparison with ex
isting LDPC codes designed for a given channel, significant
performance gain was obtained when transmission took place
over various channels of equal capacity. Defining a universa
threshold for a code, we observed that our codes have better
universal threshold compared to codes designed for specific

m

n

0.55 0.6 0.65 0.7
capacity (bpcu)

(1]
Fig. 2. Comparison between bit error rate of a rat universal code and
a rate0.6 code designed specifically for AWGN on various channelshBot [2]
codes are randomly constructed ar@D, 000 bits long.

[3

—

see that the universal code outperforms the AWGN code on
other channels. ]
The universal threshold for the AWGN coded$ = 0.662
while the universal threshold of the less complex universal
code isC = 0.628. Using density evolution, we tested [
both codes or 0,000 randomly generated channels with the[ﬁ]
capacity of their universal threshold. The codes performeid
on all channels. (7]
It can be seen that the universal code has similar perfor-

channels.
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