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Abstract—Low-density parity-check (LDPC) coding for a mul-
titude of equal-capacity channels is studied. First, basedon
numerous observations, a conjecture is stated that when the
belief propagation decoder converges on a set of equal-capacity
channels, it would also converge on any convex combination of
those channels. Then, it is proved that when the stability condition
is satisfied for a number of channels, it is also satisfied for any
channel in their convex hull. For the purpose of code design,
a method is proposed which can decompose every symmetric
channel with capacity C into a set of identical-capacity basis
channels. We expect codes that work on the basis channels to be
suitable for any channel with capacity C. Such codes are found
and in comparison with existing LDPC codes that are designed
for specific channels, our codes obtain considerable codinggains
when used across a multitude of channels.

I. I NTRODUCTION

Design of codes for specific channels is a mature subject.
A code optimized for one channel, however, may not perform
well if used on other channel types [1]. Thus, recently, there
has been an increasing interest in universal codes, i.e., codes
that perform well on a multitude of channels [2]–[4]. Such
codes reduce system complexity by removing a need for
frequent code changes in the system and by allowing for once-
and-for-all coding solutions.

Low-density parity-check (LDPC) codes [5] are extremely
strong error correcting codes. Interestingly, various authors
have observed “universal properties” of these codes [3], [4],
[6]–[8]. Chung [6] points out that LDPC codes optimized for
the Gaussian channel perform well on some other channels
such as the Rayleigh channel. In a more general setup, Shi
and Wesel [4] discuss the universal properties of finite block
length codes.

Penget al. [8] design LDPC codes for a number of channels
(in this case, the Gaussian channel, the binary erasure channel
(BEC) and the Rayleigh channel). They argue that for a set of
channels, usually one channel can be taken as the surrogate.
They design the code only for the surrogate channel. This
code works satisfactorily on all the given channels, but not
necessarily on other channel types.

Despite some universal properties of LDPC codes, the
performance of a code designed for one channel, can be poor
on another channel with the same capacity. For example, a
rate one-half LDPC code with maximum node degree of100
(taken from [9]), achieving more than99.7% of the capacity of
a BEC with capacityC = 0.5, does not converge on a binary
symmetric channel (BSC) with capacityC = 0.63. In other

words, this code does not achieve even80% of the capacity
of the BSC.

In this work, we design LDPC codes that have strong
universal properties. For a given channel capacityC, we find
LDPC codes that perform well on any channel with this
capacity. The main body of this paper consists of: (1) studying
code design and stability analysis for convex combination of
N channels of equal capacity, and (2) decomposition of all
channels with capacityC into a number of basis channels of
the same capacity.

In Section III, we study code design for the convex com-
binations of a set of equal-capacity channels (see Section III
for definition). We conjecture that under belief propagation
decoding, to design a code for all the convex combinations
of N binary-input symmetric-output (BISO) channels, it is
sufficient to find a code which converges only on thoseN
channels. We also prove that when stability condition [10] is
satisfied forN BISO channels, it is also satisfied for all their
convex combinations. As a result, if a set of basis channels
with capacityC can be found, a code designed only for the
basis channels has strong universal properties.

In Section IV, a channel decomposition method is suggested
which decomposes any BISO channel with capacityC in
terms of basis channels of the same capacity with nonnegative
coefficients. This decomposition method is not similar to
existing techniques that decompose the channel over BSCs of
various capacities [11]. Our technique is exhaustive, i.e., any
channel with a given capacity can be spanned with nonnegative
coefficients over our suggested basis.

For any given capacityC, a code designed only for our
suggested basis channels is expected to have strong universal
behavior over all channels with capacityC. Examples are
provided in Section V. Simulations confirm that compared to
codes designed for specific channels, our codes have signifi-
cantly better universal properties.

II. PRELIMINARIES: LDPC CODE DESIGN AND

SYMMETRIC CHANNEL REPRESENTATIONS

In this paper, an ensemble of LDPC codes is defined by a
pair of distributions(λ, ρ) in the polynomial form, i.e.,λ(x) =
∑

i≥2 λix
i−1 andρ(x) =

∑

i≥2 ρix
i−1, whereλi (ρi) is the

fraction of edges connected to the variable (check) nodes of
degreei.

LDPC code design means optimizing degree distributions
in order to maximize a cost function which can be usually
the code threshold or the code rate. In threshold maximization
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given a fixed rate, we seek a code working under the worst
channel condition, hence minimum gap between the given
rate and channel capacity. In rate maximization given a fixed
channel, the code which exhibits maximum rate and provides
reliable communication over the given channel is found.

In this work, we focus on finding codes suitable for a
multitude of channels rather than a single channel. We adopt
the rate maximization approach which allows us to find a
code working on a finite number of channels. Using the rate
maximization approach, code design for a number of identical-
capacity channels is similar to what has been discussed in [12].

We assume that transmission of LDPC codes takes place on
a memoryless BISO channel, i.e.,(X ,W (Y |X),Y) where the
input alphabetX = {0, 1} is uniformly distributed,W (Y |X)
is the conditional pdf of the channel andY ⊆ R is the
output alphabet of the channel. In this section, three channel
representations for a BISO channel are presented. A BISO
channel is a channel for which we have

W (Y |X = 1) = W (−Y |X = 0).

At the receiver side, given the outputY , the sufficient
statistics forX is Pr(X = 0|Y ) which depends only on the
conditional pdf of the channel. For a symmetric channel, the
log-likelihood ratio (LLR) is defined as

M = log
Pr(X = 0|Y )

Pr(X = 1|Y )
.

It is straightforward to see thatM is another sufficient statistics
for X , i.e., I(X ;Y ) = I(X ;M). Assuming that the all-
zero codeword is transmitted, we denote the pdf ofM as
a(x) which fully characterizes the channel and satisfies the
symmetric property a(−x) = e−xa(x) [10]. Since the channel
is symmetric and input symbols are equiprobable, the mutual
information is the same as capacity [13]. We denote the mutual
informationI(X ;Y ) associated with a(x) by I(a)1 defined as

I(a) = 1−

∫

a(x) log2(1 + e−x)dx.

Let

P = min
{

Pr(X = 0|Y ),Pr(X = 1|Y )
}

be a random variable over[0, 12 ] with the pdf denoted byg(p)
which completely characterizes the channel [11]. This, in fact,
is the probability of error based on observation of the output.
Since the pdf ofP , i.e.,g(p), should not satisfy any symmetry
property, we will use this representation in Section IV.

Let ∆z(x) be the Dirac delta function atx = z. Also, for an
ǫ ∈ [0, 1], defineǭ = 1− ǫ. A BSC with crossover probability
ǫ can be represented by the pdf of LLR and the pdf of error
probability as

a(x) = ǫ∆− log( ǭ

ǫ
)(x) + ǭ∆log( ǭ

ǫ
)(x)

andg(p) = ∆ǫ(p), respectively.

1For ease of notations, sometimes the argument of LLR densities is dropped.
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Fig. 1. Convex combination of two subchannels where each bitis transmitted
through CH1 with the probability ofγ. The LLR densities of subchannels are
p
0

and q
0
.

Every valid pdf overp ∈ [0, 1
2 ] can be seen as a symmetric

channel. In fact, this representation decomposes a symmetric
channel into the convex hull of BSCs of different crossover
probabilities. The fraction of bits passing through each BSC
is captured ing(p). According to [11], the channel capacity is

C = E{CBSC(p)} = 1−

∫ 1

2

0

h(p)g(p)dp

where h(p) is the binary entropy function and integration
includes the mass points atp = 0 and 1

2 . Also,g(p) is obtained
by

g(p) =
1

p(1− p)
a|m|

(

log
1− p

p

)

, ∀p ∈ [0,
1

2
]

where a|m|(x) is the pdf of the absolute value of LLR, i.e.,

a|m|(x) = a(x)(1 + e−x), ∀x ≥ 0.

The three channel representations presented in this section
are interchangeable as long as the input is uniformly dis-
tributed [11].

III. U NIVERSAL CODES FORCONVEX COMBINATION OF

TWO CHANNELS AND STABILITY ANALYSIS

In this section, we consider universal codes for convex
combination of two channels. We start with the definition of
convex combination of two channels.

Fig. 1 illustrates a channel composed of two subchannels
of capacityC and LLR densities p0 and q0. Each bit is passed
through subchannel 1 with probabilityγ ∈ [0, 1] or passed
through the other subchannel with probability of1 − γ. We
refer to this channel as a convex combination of subchannels1
and 2 since the LLR density for this combination isγp0+ γ̄q0.
The same equation holds for the pdf of error probability. We
denote the set of channels in the convex hull of p0 and q0 by

C(p0, q0) =
{

γp0 + γ̄q0|γ ∈ [0, 1]
}

.

Since both of the subchannels have capacityC, for every
channel aγ ∈ C(p0, q0), I(aγ) = C.

The setup in Fig. 1 can be viewed as an arbitrarily varying
channel [14] with a Bernoulli distributed set of states. As a
straightforward generalization, we can extend this configura-
tion to N subchannels.



Throughout this paper, we assume that the receiver has the
channel state information and computes correct LLRs. Ifγ is
fixed, one can design a single good LDPC code for the channel
with LLR density ofγp0+γ̄q0. However, ifγ varies over time,
finding a code which works for allγ ∈ [0, 1] is a challenging
problem. In fact, we seek a single universal code which does
not need to be changed over time, even with variations ofγ.

Remark 1: If the transmitter knew through which of the
subchannels the next transmitted bit would pass (which is not
the case in most practical situations), it could use two different
codes for two subchannels.

A. Code Design for Two Channels

For code design, we use density evolution [10]. Consider a
degree distribution pair(λ, ρ) and a BISO channel with LLR
density a0 which can be either p0 or q0. Density evolution is
stated as

aℓ = a0 ⊛
∑

i

λi

(

∑

k

ρka⊠(k−1)
ℓ−1

)⊛(i−1)

(1)

where (·)⊛(i−1) and (·)⊠(k−1) denote the operation of a
degree-i variable node and a degree-k check node, respec-
tively.

Let us first assume that there are only two possible cases of
γ = 0 andγ = 1. Similar to code design for one channel, and
by considering the convergence constraints on both channels,
codes that are suitable for both channels can be designed.
Similarly, if γ takes only a finite number of values, the same
approach can be used. While the objective function remains
the same, the number of constraints grows almost linearly with
the number of channels. Thus, this approach can be inefficient
whenγ can take many values. In generalγ may take all values
in [0, 1].

Our numerous experiments show that if we guarantee con-
vergence for two values ofγ, the code will converge for all the
values ofγ in between. Therefore, in order to design a code for
the channel model given in Fig. 1, whenγ is unknown, we
force convergence of the code only forγ = 0 and γ = 1.
Our extensive experimental results have been consistent in
verifying the following conjecture.

Conjecture 1: An LDPC code which converges over two
channels with LLR pdfs p0 and q0, will also converge over
any channel in the convex hull of those channels, i.e., over all
aγ ∈ C(p0, q0).

Remark 2: The above conjecture can be proved under the
assumption that the distribution of the output messages of
variable nodes depends only on the information they bear
and the structure of the code. According to central limit
theorem, the distribution of random messages at the output
of a variable node is close to a Gaussian distribution. Thus,
the input distribution of a check node is a mixture of Gaussian
distributions [6], [15] which is uniquely characterizes bythe
degree distributions and the input mutual information. It is
noticeable that in this approach, we do not assume that the

output distributions of the check nodes are Gaussian, which
is a usual assumption in the literature [6]. Therefore, we
expect codes designed based on this conjecture to have strong
universal properties.

B. Stability Analysis

Convergence analysis of an LDPC code over a symmetric
channel is often performed by characterizing the fixed points
of density evolution given in (1). Let

B(a) =
∫

a(x)e−x/2dx

and

P(a) =
1

2

∫

a(x)e−(|x/2|+x/2)dx

be the Bhattacharyya constant and error probability associated
with a symmetric density a(x), respectively. It is noticeable
that these two functionals are linear with respect to symmetric
densities. Also, it is well-known that

2P(a) ≤ B(a) ≤ 2
[

P(a)P(a)
]

1

2 . (2)

From (1), one can see that for every symmetric channel,∆∞ is
a fixed point of density evolution corresponding to the perfect
decoding. It is desirable that the perfect decoding fixed point
be stable, which means that once the probability of error gets
small enough, the decoder converges to the error-free density
(∆∞) [13]. The following theorem shows the stability of∆∞.

Theorem 1: For every channel inC(p0, q0), once the de-
coder gets close to the perfect decoding, it will converge to
the error-free fixed point (∆∞), provided that the given LDPC
code converges on two subchannels p0 and q0.

Proof: Let a0 = [γp0 + γ̄q0] ∈ C(p0, q0) for a γ ∈ [0, 1].
According to [13], the Bhattacharyya functional is multiplica-
tive under⊛ operation. Also, it can be shown that for two
symmetric densities u and v, we have

B(u⊠ v) ≤ B(u) + B(v)− B(u)B(v)

where the upper bound becomes tight for two BEC channels.
Hence, by induction it is straightforward to see that

B(u⊠k) ≤ 1− (1 − B(u))k.

Letting tℓ = B(aℓ), we arrive at

tℓ ≤ B(a0)λ(1 − ρ(1− tℓ−1)) (3)

which coincides with the density evolution for the BEC by
substituting the inequality with an equality. Expanding (3)
around zero, we get

tℓ ≤ B(a0)λ′(0)ρ′(1)tℓ−1 +O(t2ℓ−1).

From the necessity part of the stability condition theorem
for the belief propagation decoding [10], [16], since the given
LDPC code converges over the two subchannels, we must have

B(p0)λ
′(0)ρ′(1) < 1



and
B(q0)λ

′(0)ρ′(1) < 1,

henceB(a0)λ′(0)ρ′(1) < 1. One can see that there exist
µ1 > 0 and µ2 > 0 such thatB(p0)λ

′(0)ρ′(1) + µ1 < 1
andB(q0)λ

′(0)ρ′(1) + µ2 < 1. Therefore,

B(a0)λ′(0)ρ′(1) + µ < 1

whereµ = γµ1+ γ̄µ2 andµ > 0. For sufficiently smallτ > 0
and someℓ ∈ N, tℓ−1 ≤ τ , i.e., getting close enough to the
perfect decoding, results in

tℓ ≤ (B(a0)λ
′(0)ρ′(1) + µ)tℓ−1 < tℓ−1.

It shows that asℓ → ∞, tℓ → 0. For a small error
probability, from (2) we have

2P(a) ≤ B(a) ≤ 2
√

P(a).

Now let ζ = τ2/4. If P(aℓ) ≤ ζ, thentℓ ≤ τ . Thus, asℓ tends
to infinity, P(aℓ) → 0 and aℓ → ∆∞.

The result can immediately be extended to a multitude of
subchannels and their convex hull.

IV. CHANNEL DECOMPOSITION

In this section, we propose a channel decomposition method
based on the pdf of error probability defined in Section II. We
show that every symmetric channel with capacityC can be
decomposed into a number of basis channels with the same
capacity. By the result of Section III, a code that works on the
basis channels with capacityC is expected to be suitable for
all channels in the convex hull of those basis channels.

We seek an identical-capacity basis for a given capacityC
and contend that the sought basis is in the form of

gx,y(p) = α(x, y)∆x(p) + ᾱ(x, y)∆y(p)

whereα(x, y) ∈ [0, 1] is a constant depending on the channel
capacity and the location of mass pointsx and y. Since the
basis channelgx,y(p) must have capacity ofC, by defining
H = 1 − C we haveα(x, y)h(x) + ᾱ(x, y)h(y) = H which
results in

α(x, y) =
h(y)−H

h(y)− h(x)
.

Let ξ = h−1(H) be the crossover probability of a single
BSC with capacityC where functionh−1 : [0, 1] 7→ [0, 12 ] is
the inverse of the binary entropy function. By the capacity
constraint, in order to have a nonnegativeα(x, y), we must
havemin{x, y} ≤ ξ and max{x, y} ≥ ξ. Without loss of
generality we assume thatx ≤ y.

Now we prove that every symmetric channel with capacity
C falls into the convex hull of the basis channels

G(C) = {gx,y(p)|(x, y) ∈ D(C)}

whereD(C) = {(x, y) ∈ [0, ξ]× [ξ, 12 ]}. To this end, we find a
two dimensional pdfϕ(x, y) which fully describes the channel
according to

g(p) =

∫

D(C)

ϕ(x, y)gx,y(p)dxdy (4)

where ∫

D(C)

ϕ(x, y)dxdy = 1.

The following theorem shows that for any symmetric chan-
nel, there exists a two dimensional pdfϕ(x, y). Before stating
the theorem, it is important to note that if the given channel
has a mass point atp = ξ, then for someδ ∈ [0, 1], we can
write its pdf asg(p) = δ∆ξ(p)+ δ̄r(p) and proceed withr(p)
which does not have any mass point atp = ξ.

Theorem 2: Given a capacityC, every pdf of error proba-
bility g(p) associated with a symmetric channel can be written
as

g(p) =

∫

D(C)

ϕ(x, y)gx,y(p)dxdy,

for some pdfϕ(x, y) defined overD(C) = {(x, y) ∈ [0, ξ]×
[ξ, 1

2 ]} whereξ = h−1(H).

Proof: Defining

ϕ(x, y) =
gℓ(x)gr(y)

∫ 1

2

ξ gr(τ)α(x, τ)
ᾱ(x,y)
ᾱ(x,τ)dτ

,

one can verify thatϕ(x, y) is a valid pdf and (4) holds. More
discussions onϕ(x, y) and detailed proof are provided in [17].

Without loss of generality and for practical reasons, we
assume that|Y| is finite. Having a finite alphabet also means
having a finite basis, because the number of channels that sat-
isfy (4) is finite. Assuming that the quantization levels aresuch
that there areNℓ levels less thanξ andNr levels greater than
ξ, the cardinality of basis channels set is|G(C)| = Nℓ ×Nr.

V. SIMULATION RESULTS

Given the channel capacityC and the number of quantiza-
tion levels, we can determine the set of basis channelsG(C)
for which we can design a single LDPC code. According to
Conjecture 1, this code is expected to exhibit good perfor-
mance on all channels in the convex hull of basis channels, i.e.,
C
[

G(C)
]

. For a given code, we define the universal threshold
C∗
u as the minimum capacity on which convergence of the

code is guaranteed. Using Conjecture 1 and Theorem 2, the
universal thresholdC∗

u can be found by a binary search.
For all the simulations in this section, we have used6-

bit resolution to quantize subchannels (i.e.,|Y| = 64 at the
receiver) and a9-bit sum-product decoder [18]. We follow the
guidelines in the literature and consider only two consecutive
degrees forρ(x). Better universal codes can be obtained
by optimizing ρ(x), but the performance loss due to this
simplifying assumption is minor.

Fig. 2 depicts a bit error rate comparison between a rate0.6
code optimized for an additive white Gaussian noise (AWGN)
channel with a maximum variable node degree of100 [9], and
a rate0.6 universal code with the suggested method having
maximum variable node of50. Despite the fact that the AWGN
code performs slightly better on the AWGN channel, we can
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Fig. 2. Comparison between bit error rate of a rate0.6 universal code and
a rate0.6 code designed specifically for AWGN on various channels. Both
codes are randomly constructed and100, 000 bits long.

see that the universal code outperforms the AWGN code on
other channels.

The universal threshold for the AWGN code isC∗
u = 0.662

while the universal threshold of the less complex universal
code is C∗

u = 0.628. Using density evolution, we tested
both codes on10, 000 randomly generated channels with the
capacity of their universal threshold. The codes performedwell
on all channels.

It can be seen that the universal code has similar perfor-
mance on all channels whereas the code that is designed for a
specific channel only performs well on the channel for which
it is designed. Degree distributions for the AWGN code taken
from [9] are

ρ(x) = 0.5x12 + 0.5x13,

λ(x) = 0.1499x+ 0.1621x2 + 0.0224x5 + 0.1764x6

+ 0.0077x7 + 0.1166x16 + 0.0307x27 + 0.0319x28

+ 0.0438x30 + 0.0278x31 + 0.0048x42 + 0.2258x99

while for the universal code are

ρ(x) = 0.5806x11 + 0.4194x12,

λ(x) = 0.1689x+ 0.1924x2 + 0.0604x5 + 0.2069x6

+ 0.0763x10 + 0.0457x29 + 0.2495x49.

VI. CONCLUSION

Design of universal LDPC codes over symmetric channels
was discussed. We conjectured that, codes that converge on a
set of equal-capacity channels, also converge on the convex
hull of those channels. Therefore, we expect codes that are
designed using this result to exhibit stronger universal proper-
ties than codes designed for specific channels. We also proved
the stability of decoder in the convex hull of a set of equal-
capacity channels. In other words, for a code which converges
on a number of identical-capacity channels and on any channel

in the convex hull of these channels, if the decoder gets close
to the perfect decoding, then it will converge.

We proposed a channel decomposition technique which
allowed for spanning any given channel with capacityC on
a number of basis channels with identical capacity. Then,
we designed codes for those basis channels. As expected,
the codes designed following this method exhibited strong
universal performance. Specifically, in comparison with ex-
isting LDPC codes designed for a given channel, significant
performance gain was obtained when transmission took place
over various channels of equal capacity. Defining a universal
threshold for a code, we observed that our codes have better
universal threshold compared to codes designed for specific
channels.
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