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Abstract—In this paper we consider the problem of reversible
information hiding in the case when the attacker uses only
discrete memoryless channels (DMC), the decoder knows only
the class of channels, but not the DMC chosen by the attacker,
the attacker knows the information-hiding strategy, probability
distributions of all random variables, but not the side informa-
tion.

We introduce the notion of reversible information hiding E-
capacity, which expresses the dependence of the information
hiding rate on the error probability exponent E and the distortion
levels for the information hider, for the attacker and for the host
data approximation. The random coding bound for reversible
information hiding E-capacity is found. We obtain the lower
bound for reversibility information hiding capacity for E → 0.

In particular, we have analyzed two special cases of the
general problem formulation, pure reversibility and pure message
communications.

I. I NTRODUCTION

Problem of information transmission over state dependent
channels rises in the situation when the transmitter has a
certain prior knowledge about the environment or channel.
Such a situation is typical in data hiding where the main goalis
to communicate information message embedded into the body
of a media file over a certain channel [1]. It is also relevant to
simultaneous transmission of digital and analog information
in audio broadcasting [2].

A corresponding research area of communications over
channels with side information available at the transmitter
has attracted considerable attention in information theory. The
main problem was to establish the highest possible rates of
reliable communications in such channels [3]-[6] that is related
to the optimal solution to the problem of channel interference
cancellation.

However, in certain cases one is rather interested not in
maximizing the rate of pure information transmission [7] but in
the most accurate estimate of the channel interference (channel
state). Such a problem arises in simultaneous broadcasting
of analog and digital audio [2] where digital data designed
in a way to enhance the overall reception quality can be
considered as interference degrading the communication of
analog information.

The problem of accurate channel state estimation at the out-
put of the state-dependent channel (reversibility) was studied
in communication and data hiding formulation. Sutivong et
al. [7] considered the problem of simultaneous channel state
transmission in addition to the pure information. They present
the optimal protocol design and rate distortion region for pure

information transmission / partial channel state recoveryfor
the state-dependent channel. Similar results were obtained in
[8] for multimedia authentication formulation of the problem.
The maximum achievable rates for pure information transmis-
sion in the case of complete recovery of the channel state at
the decoder are analyzed in [9]. One should also mention the
work of Eggers et al. [10], who considered the reversibility
of quantization-based data hiding as structured codebook ap-
proximation of random binning. Finally, the analysis of [11]
considers a formulation where the communication protocol
is specifically optimized to a particular pure information
communication regime while reversibility is analyzed as a by-
product of this design. Similarly to the previous cases, therate-
distortion region of pure information transmission and channel
state recovery is defined.

In this paper we would like to make one step forward
with respect to the existing results justifying joint information
transmission rates and channel state estimation accuracy at the
output of the data hiding channel and to establish the error
exponents that can be attained in the reversible information
hiding protocols in terms of E-capacity [12]-[14].

II. PROBLEM FORMULATION

We use capital lettersX to denote random variables (RV)
and corresponding small lettersx for their realizations. Small
bold lettersx designate length-N vectorsx = [x1, x2, ..., xN ]
with nth elementxn. Calligraphic fontsX denote sets and|X |
denotes the cardinality of setX . All logarithms and exponents
in the paper are of the base2. We use the following notation
m = 1, |M| for m = 1, 2, . . . , |M|. Information-theoretic
quantities, such as conditional entropy of RVY relative to
RV X with probability density (PD)P0, V = {V (y|x), x ∈
X , y ∈ Y} will be denoted asHP0,V (Y |X); the conditional
mutual information of the RVS andŜ relative to RV byK is
IQ,Q2

(S ∧ Ŝ|K); the informational divergence of the PDQ∗

andQ is denoted byD(Q‖Q∗) and the conditional informa-
tional divergence of joint PDQ∗◦Q2◦P ◦V andQ∗◦Q2◦P ◦A
by D(Q∗◦Q2◦P ◦V ‖Q∗◦Q2◦P ◦A) = D(V ‖A|Q∗, Q2, P ).
We denote the types or empirical distributions by small letters.
The set of all vectorsk of typeq0 we denote byT N

q0
(K). The

set of all vectorss ∈ SN of conditional typeq1 for given
k ∈ T N

q0
(K) we denote byT N

q1
(S|k). It is called alsoq-shell

of vectork. The notation|a|+ will be used formax(a, 0).
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Figure 1. Reversible information hiding system
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A reversible information hiding system is presented in
Figure 1. It is supposed that a messagem to be transmitted to
the receiver is uniformly distributed over the message setM.
Host data source is described by the RVS, which takes values
in the discrete finite setS and generatesN -length sequences
of independent and identically distributed (i.i.d.) components.
The side information source is described by the RVK, which
takes values in the discrete finite setK, and in the most general
case has the given joint PDQ∗ = {Q∗(s, k), s ∈ S, k ∈ K}
with the RV S. When the side information is a cryptographic
key, S and K are independent. The side information in the
form of i.i.d. N -length sequences is available to the encoder

and decoder. It is assumed thatQ∗N (s,k) =
N
∏

n=1
Q∗(s, k).

The information hider(encoder) embeds the messagem ∈
M in the host data blockss ∈ SN using the side information
k ∈ KN . The resulting codewordx ∈ XN is transmitted
via attack channelA = {A(y|x), x ∈ X , y ∈ Y} with the
finite input and output alphabetsX and Y. The attacker,
trying to modify or remove the messagem, produces corrupted
blocksy ∈ YN based onx ∈ XN , respectively. The decoder,
possessing side information, derives the messagem′ and the
approximationŝ of the original data block, within the fixed
distortion level usingy.

Let the mappingsd0 : S × Ŝ → [0,∞), d1 : S × X →
[0,∞), d2 : X ×Y → [0,∞), be single-letter distortion func-
tions. The distortion functions are supposed to be symmetric:
d0(s, ŝ) = d0(ŝ, s), d1(s, x) = d1(x, s), d2(x, y) = d2(y, x)
for all s ∈ S, ŝ ∈ Ŝ, x ∈ X , y ∈ Y and assume that
d0(s, ŝ) = 0, if s = ŝ, d1(s, x) = 0, if s = x, d2(x, y) = 0,
if x = y. Distortion functions for theN -length vectors

are defined asdN
0 (s, ŝ) = 1

N

N
∑

n=1
d0(sn, ŝn), dN

1 (s,x) =

1
N

N
∑

n=1
d1(sn, xn), dN

2 (x,y) = 1
N

N
∑

n=1
d2(xn, yn).

Definition 1.The information hidingN -length code is a pair
of mappings(fN , gN ) subject to distortions∆0,∆1, where
fN : M × SN × KN → XN is the encoder, mapping
host data blocks, the messagem and side informationk
to x = fN (s,m,k), which satisfies the following distortion
constraint:

dN
1 (s, fN (s,m,k)) ≤ ∆1, (1)

andgN : YN ×KN → M×ŜN is the decoding, mapping the
received sequencey and side informationk to the decoded
messagem′ and ŝ, which satisfies the following distortion
constraint:dN

0 (s, ŝ) ≤ ∆0.
Note that the definition of the distortion constraint (1) means

that the maximum distortion constraint with respect tos,k
and m is used, as distinct from [17], where the average

distortion constraint is considered, and the maximum distortion
constraint is mentioned as a more difficult case.

The attack channel, defined byAN (y|x) =
N
∏

n=1
A(yn|xn),

subject to distortion∆2, satisfies the following constraint:
∑

x∈XN

∑

y∈YN

dN
2 (x,y)AN (y|x)pN (x) ≤ ∆2.

Definition 2. The nonnegative numberR = 1
N

log |M| is
called the information hiding code rate.

For anyQ = Q0 ◦ Q1 = {Q(s, k) = Q0(k)Q1(s|k), s ∈
S, k ∈ K} and ∆0, denote byQ2(Q,∆0) the set of all
conditional PDsQ2(ŝ|s, k), for which the following inequality
takes place:

∑

s,ŝ,k

Q(s, k)Q2(ŝ|s, k)d0(s, ŝ) ≤ ∆0. (2)

Definition 3. A memoryless covert channelP , subject to
distortion ∆1, is a PD P = P0 ◦ P1 = {P (u, x|s, ŝ, k) =
P0(u|s, ŝ, k)P1(x|u, s, ŝ, k), u ∈ U , x ∈ X , s ∈ S, ŝ ∈
Ŝ, k ∈ K} such that for anyQ andQ2 ∈ Q2(Q,∆0):

∑

u,x,s,ŝ,k

Q(s, k)Q2(ŝ|s, k)P (u, x|s, ŝ, k)d1(s, x) ≤ ∆1, (3)

whereU is an auxiliary RV taking values in the finite setU and
forming the following Markov chain(K,S, Ŝ, U) → X → Y .

Denote byP(Q,Q2,∆1) the set of all covert channels

PN (u,x|s, ŝ,k) =
N
∏

n=1
P (un, xn|sn, ŝn, kn), subject to dis-

tortion ∆1.
Definition 4. A memoryless attack channelA, subject to

distortion ∆2, under the condition of covert channelP ∈
P(Q,Q2,∆1), is defined by a PDA, for which for Q and
Q2 ∈ Q2(Q,∆0)

∑

u,x,s,ŝ,k,y

Q(s, k)Q2(ŝ|s, k)P (u, x|s, ŝ, k)A(y|x)d2(x, y) ≤ ∆2.

Denote byA(Q,Q2, P,∆2) the set of all attack chan-
nels, under the condition of covert channelP ∈
P(Q,Q2,∆1) and subject to distortion level∆2. The sets
Q2(Q,∆0),P(Q,Q2,∆1) and A(Q,Q2, P,∆2) are defined
by linear inequality constraints and hence are convex.

Denote byg−1
N,k(m, ŝ) the set of ally which for a givenk are

decoded into(m, ŝ): g−1
N,k(m, ŝ) = {y : gN (y,k) = (m, ŝ)}.

Definition 5.The probability of erroneous reconstruction of
the messagem ∈ M and the approximation of data block
s ∈ SN for k ∈ KN obtained at the output of the channelA
is:

e(m, s,k, A) = 1 − AN







⋃

ŝ: d(s,̂s)≤∆0

g−1
N,k(m, ŝ)|fN (m, s,k)







.

The error probability of the messagem averaged over all
(s,k) ∈ SN ×KN equals to:

e(m, A) =
∑

(s,k)∈ SN×KN

Q∗N (s,k)e(m, s,k).



Denote by∆ = [∆0,∆1,∆2] the collection of distortion
levels, fixed for the current system.

The error probability of the code, for any messagem ∈
M, maximal over all attack channels fromA(Q,Q2, P,∆2)
is denoted by:

e(m) = max
A∈A(Q,Q2,P,∆2)

e(m,A).

The maximal error probabilityof the code over all attack
channels fromA(Q,Q2, P,∆2) is equal to:e = max

m∈M
e(m),

and theaverage error probabilityof the code, maximal over
all attack channels fromA(Q,Q2, P,∆2) equals to:e =

1
|M|

∑

m∈M

e(m).

III. R EVERSIBLE INFORMATION HIDING E-CAPACITY

Consider the codes whose maximal error probability expo-
nentially decreases with the given exponentE > 0, (called
reliability), i.e., e ≤ exp{−NE}.

Denote byM(Q∗, E,N,∆) the highest volume of the code,
satisfying this condition for the given reliabilityE and the
distortion levels∆.

The rate-reliability-distortion function, which we callre-
versible information hidingE-capacity by analogy with the
E-capacity of ordinary channel [12], is defined as:

R(Q∗, E,∆) = C(Q∗, E,∆)
△
= lim

N→∞

1

N
log M(Q∗, E,N,∆).

By C(Q∗, E,∆) andC(Q∗, E,∆) we denote the reversible
information hidingE-capacity defined for maximal and aver-
age error probabilities respectively.

In this paper the lower bound of reversible information
hiding E-capacity for maximal and average error probabilities
is constructed.

Consider the following function, which we callthe random
coding bound

Rr(Q
∗, E,∆) = min

Q
max

Q2∈Q2(Q,∆0)
max

P∈P(Q,Q2,∆1)

min
A∈A(Q,Q2,P,∆2)

min
V :D(Q◦Q2◦P◦V ‖Q∗◦Q2◦P◦A)≤E

∣

∣IQ,Q2,P,V (Y ∧ U |K) − IQ,Q2,P0(S ∧ U, Ŝ|K)

+D(Q ◦ Q2 ◦ P ◦ V ‖Q∗ ◦ Q2 ◦ P ◦ A) − E|
+

. (4)

Theorem. For any E > 0, for reversible information hiding
system with distortion levels∆

Rr(Q
∗, E,∆) ≤ C(Q∗, E,∆) ≤ C(Q∗, E,∆).

Corollary 1. WhenE → 0, we obtain the lower bound of
reversible information hiding capacity based on (4) :

Rr(Q
∗, E,∆) = max

Q2∈Q2(Q∗,∆0)
max

P∈P(Q∗,Q2,∆1)
min

A∈A(Q∗,Q2,P,∆2)

{

IQ∗,Q2,P,A(Y ∧ U |K) − IQ∗,Q2,P0(S ∧ U, Ŝ|K)
}

.

Corollary 2: pure reversibility. If ∆0 = 0 from (4) we have

Rr(Q
∗, E,∆) = min

Q
max

P∈P(Q,∆1)
min

A∈A(Q,P,∆2)

min
V :D(Q◦P◦V ‖Q∗◦P◦A)≤E

|IQ,P,V (Y ∧ U |K)

−HQ(S|K) + D(Q ◦ P ◦ V ‖Q∗ ◦ P ◦ A) − E|
+

. (5)

Corollary 3: pure message communications.If ∆0 → ∞
then

Rr(Q
∗, E,∆) = min

Q
max

P∈P(Q,∆1)
min

A∈A(Q,P,∆2)

min
V :D(Q◦P◦V ‖Q∗◦P◦A)≤E

|IQ,P,V (Y ∧ U |K)

−IQ,P (S ∧ U |K) + D(Q ◦ P ◦ V ‖Q∗ ◦ P ◦ A) − E|
+

. (6)

In (5) and (6),P = {P (u, x|s, k), u ∈ U , x ∈ X , s ∈
S, k ∈ K} and∆ = (∆1,∆2).

IV. PROOF OF THETHEOREM

The theorem is proved using Shannon’s random coding
argument, the method of types, covering lemma and a gen-
eralization of packing lemma [12], [15], [16].

To prove the random coding bound, we must show the ex-
istence of a code withR satisfying (4) ande ≤ exp{−N(E−
ε)}, for any 0 < ε < E.

We will construct the encoding and the decoding and
explore the errors caused by each.

For encoding we use the idea of Gelfand-Pinsker [5].
The decoding is based onminimum divergencemethod, first

introduced by E. Haroutunian [12] and developed in [13],
[14]. The extension of this method adopted to data hiding can
be considered assemi-universal decoding, since the decoder
needs to know only the specific class of channels, instead of
a particular one, used by the attacker.

Encoding.
Step 1. Denote byQ(Q∗, E) = {q : D(q‖Q∗) ≤ E} and

T E
Q∗(S,K) =

⋃

q∈Q(Q∗,E)

T N
q (S,K). (7)

We will construct the code only for(s,k) from T E
Q∗(S,K),

because for sufficiently largeN , the probability of(s,k) /∈
T E

Q∗(S,K) is exponentially small:

Q∗N







⋃

q /∈Q(Q∗,E)

T N
q (S, K)







=
∑

q /∈Q(Q∗,E)

Q∗N{T N
q (S, K)}

≤
∑

q /∈Q(Q∗,E)

exp{−ND(q‖Q∗)}

< (N + 1)|S||K| exp{−NE} ≤ exp{−N(E − ε1)}, (8)

whereε1 > 0.
Step 2.Denoteq̂1(ŝ|k) =

∑

s

q2(ŝ|s, k)q1(s|k).

Covering lemma. For every typeq, conditional typeq2,
vector k ∈ KN , there exists a collection of vectors{ŝj ∈
T N

q̂1
(Ŝ|k), j = 1, J1}, where

J1 = exp
{

N
(

Iq,q2(S ∧ Ŝ|K) + δ/2
)}

, δ > 0



such that the set
{

T N
q,q2(S |̂sj ,k) j = 1, J1

}

coversT N
q1 (S|k) for N

large enough:

T N
q1 (S|k) ⊂

J
⋃

j=1

T N
q,q2(S |̂sj ,k).

For the proof of covering lemma see [15].
For type q ∈ Q(Q∗, E) and conditional typeq2 ∈

Q2(q,∆0) denote

S(q, q2, j) = T N
q,q2

(S |̂sj ,k)\
⋃

j′<j

T N
q,q2

(S |̂sj′ ,k),

therefore for the vectorss from S(q, q2, j), we put into
correspondence the vectorŝj , j ∈ [1, J1].

Taking into account the inequality (2), we can show that
for typesq ∈ Q(Q∗, E), q2 ∈ Q2(q,∆0) and anyj = 1, J1,
s ∈ S(q, q2, j), ŝj

d0(s, ŝj) = N−1
∑

s,ŝ

n(s, ŝ|s, ŝj)d0(s, ŝ)

=
∑

s,ŝ,k

q(s, k)q2(ŝ|s, k)d0(s, ŝ) ≤ ∆0, j = 1, J1.

Step 3. Fix the typep = p0 ◦ p1 ∈ P(q, q2,∆1). For fixed
p0, E, for each typeq ∈ Q(Q∗, E), q2 ∈ Q(q,∆0) and vectors
ŝ, k, we choose independently, at random fromT N

q0,p0
(U |̂s,k)

|M| collectionsJ2(m),m = 1, |M|, of vectorsuj(m), j =
1, J2, where

J2 = exp
{

N
(

Iq,q2,p0(S ∧ U |Ŝ, K) + δ/2
)}

(δ > 0).

Then, for eachs ∈ T N
q (S|k) we select suchuj(m) from

J2(m), that uj(m) ∈ T N
q,q2,p0

(U |s, ŝ,k). Denote this vector
by u(m, s, ŝ,k).

If for somes there is no such a vector inJ2(m), we choose
u(m, s, ŝ,k) at random from theT N

q,q2,p0
(U |s, ŝ,k). Denote

the probability of such an event byPr{bq,q2,p0
(m, s, ŝ,k)}.

Pr{bq,q2,p0(m, s, ŝ,k)}

= Pr

{

J2
⋂

j=1

uj(m) /∈ T N
q,q2,p0

(U |s, ŝ,k)

}

≤

J2
∏

j=1

[1 − Pr{uj(m) ∈ T N
q,q2,p0

(U |s, ŝ,k)}]

≤

[

1 −
|T N

q,q2,p0
(U |s, ŝ,k)|

|T N
q0,p0(U |̂s,k)|

]J2

≤ [1 − exp{−N(Iq,q2,p0(S ∧ U |Ŝ, K)

+δ/4)}]exp{N(Iq,q2,p0
(S∧U|Ŝ,K)+δ/2)}.

Using the inequality(1− t)n ≤ exp{−nt}, which holds for
any n and t ∈ (0, 1), we can see that

Pr{bq,q2,p0
(m, s, ŝ,k)} ≤ exp{− exp{Nδ/4}}. (9)

Notice that for eachm, the code containsJ = J1 × J2 =

exp
{

N
(

Iq,q2,p0
(S ∧ U, Ŝ|K) + δ

)}

(δ > 0) vectorsu.

Step 4. The codewordx is constructed in the following way.
For eachm = 1, |M|, ŝ, s and k we choose at random a
vectorx(m, s, ŝ,k) from T N

q,q2,p(X|u(m, s, ŝj ,k), s, ŝ,k).
It is easy to demonstrate that such an encoding satisfies the

distortion constraint. Indeed, for typesp ∈ P(q, q2,∆1), q ∈
Q(Q∗, E), q2 ∈ Q2(q,∆0), taking into account the inequality
(3), we have

dN
1 (s,x(m, s, ŝ,k)) = N−1

∑

s,x

n(s, x|s,x)d1(s, x)

=
∑

u,x,s,ŝ,k

q(s, k)q2(ŝ|s, k)p(u, x|s, ŝ, k)d1(s, x) ≤ ∆1.

Denote byeE(m) the encoding error probabilityfor any
m ∈ M:

eE(m) ≤
∑

(s,k)/∈T E
Q∗ (S,K)

Q∗N (s,k)

+
∑

(s,k)∈T E
Q∗ (S,K)

Q∗N (s,k) Pr{bq,q2,p0(m, s, ŝ,k)}.

Now taking into account (7), (8) and (9):

eE(m) ≤ exp{−N(E − ε1)}

+
∑

q∈Q(Q∗,E)

Q∗N
{

T N
q (S, K)

}

exp{− exp{Nδ/4}}.

As the number of typesq in Q(Q∗, E) does not exceed
(N + 1)|S||K| according to type counting lemma [15], [16]
andQ∗N

{

T N
q (S,K)

}

≤ 1, we can write

eE(m) ≤ exp{−N(E − ε1)} + exp{− exp{Nδ/4} + ε1}, (10)

for N large enough.
The attacker chooses the attack channelA from the set

A(q, q2, p,∆2) as he knows probability distributions of all
random variables. It is clear, that in this case the average
distortion constraint is satisfied, since:

∑

x∈XN

∑

y∈YN

dN
2 (x,y)AN (y|x)pN (x)

= EdN
2 (XN , Y N ) =

1

N

N
∑

n=1

Ed2(xn, yn)

=
∑

u,x,s,ŝ,k,y

q(s, k)q2(ŝ|s, k)p(u, x|s, ŝ, k)A(y|x)d2(x, y) ≤ ∆2.

Decoding. For brevity the vector pair
u(m, s, ŝ,k),x(m, s, ŝ,k) is denoted byu,x(m, s, ŝ,k).

We use the following decoding rule: every pair of
y and k is decoded to suchm and ŝ that y ∈
T N

q,q2,p,v(Y |u,x(m, s, ŝ,k), s, ŝ,k), whereq, q2, p, v are such
that min

A∈A(q,q2,p,∆2)
D(q ◦ q2 ◦p◦v‖Q∗ ◦ q2 ◦p◦A) is minimal.

The decoder can make an error when the messagem ∈ M
is transmitted and(s,k) ∈ T E

Q∗(S,K). However, there exist
such typesq′, q′2, p

′, v′, vectors′ and pair(m′, ŝ′) thatm′ 6= m
or m′ = m, d0(s, ŝ

′) > ∆0, with

y ∈ T N
q,q2,p,v(Y |u,x(m, s, ŝ,k), s, ŝ,k)



⋂

Tq′,q′
2
,p′,v′(Y |u′,x′(m′, s′, ŝ′,k), s′, ŝ′,k)

and min
A∈A(q′,q′

2
,p′,∆2)

D(q′ ◦ q′2 ◦ p′ ◦ v′‖Q∗ ◦ q′2 ◦ p′ ◦ A)

≤ min
A∈A(q,q2,p,∆2)

D(q ◦ q2 ◦ p ◦ v‖Q∗ ◦ q2 ◦ p ◦ A). (11)

Denote byD = {q, q′, p, p′, q2, q
′
2, v, v′ : (11) is valid} and

F = T N
q,q2,p,v(Y |u,x(m, s, ŝ,k), s, ŝ,k)

⋂ ⋃

(m′ ,̂s′):
{

m′ 6=m or

m′=m, d0(s,̂s′)>∆0

}

⋃

s′∈T N

q′,q′
2

(S|̂s′,k)

T N
q′,q′

2
,p′,v′(Y |u′,x′(m′, s′, ŝ′,k), s′, ŝ′,k) .

The decoding error probabilityeD(m) of messagem ∈ M,
maximal over all attack channelsA ∈ A(q, q2, p,∆2), can be
estimated in the following way:

eD(m) ≤ max
A∈A(q,q2,p,∆2)

∑

(s,k)∈T E
Q∗ (S,K)

Q∗N (s,k)

×AN

{

⋃

D

F |x(m, s, ŝ,k)

}

≤
∑

D

|F |

× max
A∈A(q,q2,p,∆2)

∑

(s,k)∈T E
Q∗ (S,K)

Q∗N (s,k)AN (y|x).

The last inequality is true, because for fixed types ofx and
y the probabilityAN (y|x) is constant.

For the estimation of decoding error probability we use the
statement of the following lemma, which is the modification
of packing lemma from [14].
Packing Lemma. For any E > 2δ ≥ 0, fixedq ∈ Q(Q∗, E),
q2 ∈ Q2(q,∆0) and covert channelp ∈ P(q, q2,∆1), there
exists a code with

|M| = exp

{

N min
A∈A(q,q2,p,∆2)

min
v:D(q◦q2◦p◦v‖Q∗◦q2◦p◦A)≤E

|Iq,q2,p,v(Y ∧ U |K) − Iq,q2,p0(S ∧ U, Ŝ|K)

+D(q ◦ q2 ◦ p ◦ v‖Q∗ ◦ q2 ◦ p ◦ A) − E − 2δ|+
}

,

such that
1) for eachk, s and ŝ, the vector pairsu,x(m, s, ŝ,k) are

distinct for differentm ∈ M,
2) for sufficiently largeN the following inequality holds

for any typesq′ ∈ Q(Q∗, E), q′2 ∈ Q2(q
′,∆0), p′ ∈

P(q′, q′2,∆1), v, v′, and for all m = 1, |M|, (s,k) ∈
T N

q (S,K), ŝ ∈ T N
q2

(Ŝ|s,k)

|F | ≤ |T N
q,q2,p,v(Y |u,x(m, s, ŝ,k), s, ŝ,k)|×exp {−N |E

− min
A∈A(q′,q′

2,p′,∆2)
D(q′ ◦ q′2 ◦ p′ ◦ v′‖Q∗ ◦ q′2 ◦ p′ ◦ A)

∣

∣

∣

∣

+
}

.

(12)
The lemma guarantees the existence of a good code, the

codewords of which must be far from each other in a sense
that all q, v-shells have possibly small intersections.

Using (11) and (12) it is easy to see that forN large enough

eD(m) ≤ exp{−N(E − ε2)}, (13)

whereε2 > 0.
From (10) and (13) one can see that the error probability

of the messagem ∈ M is small enough.
Taking into account the continuity of all expressions, when

N → ∞, arbitrary probability distributions can be considered
instead of types. The theorem is proved.
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