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On Undetected Error Probability
of Binary Matrix Ensembles

Tadashi Wadayama†

Abstract— In this paper, an analysis of the undetected error
probability of ensembles ofm× n binary matrices is presented.
Two ensembles are considered: One is an ensemble of dense
matrices, while the other is an ensemble of sparse matrices.The
main contributions of this work are (i) derivation of the err or
exponent of the average undetected error probability and (ii)
closed form expressions for the variance of the undetected error
probability. It is shown that the behavior of the exponent for
a sparse ensemble is somewhat different from that for a dense
ensemble. The variance of undetected error probability leads to a
concentration result. Furthermore, as a byproduct of the proof of
the variance formulae, simple covariance formulae of the weight
distribution are derived.

I. I NTRODUCTION

Random codingis an extremely powerful technique to show
the existence of a code satisfying certain properties. It has been
used for proving the direct part (achievability) of many types
of coding theorems. Recently, the idea of random coding has
also come to be regarded as important from a practical point
of view. An LDPC (Low-density parity-check) code can be
constructed by choosing a parity check matrix from a sparse
matrix ensemble. Thus, there is a growing interest in randomly
generated codes.

One of the main difficulties associated with the use of
randomly generated codes is the difficulty in evaluating the
properties or performance of such codes. For example, it is
difficult to evaluate minimum distance, weight distribution,
ML decoding performance, etc. for these codes. To overcome
this problem, we can take aprobabilistic approach. In such an
approach, we consider an ensemble of parity check matrices:
i.e., probability is assigned to each matrix in the ensemble.
A property of a matrix (e.g., minimum distance, weight
distributions) can then be regarded as a random variable. It
is natural to consider statistics of the random variable such
as mean, variance, higher moments and covariance. In some
cases, we can show that a property is strongly concentrated
around its expectation. Such a concentration result justifies the
use of the probabilistic approach.

Recent advances in the analysis of average weight distri-
butions of LDPC codes, such as those described by Litsyn
and Shevelev [3][4], Burshtein and Miller [5] Richardson
and Urbanke [8], show that the probabilistic approach is a
useful technique for investigating typical properties of codes
and matrices, which are not easy to obtain. Furthermore, the
second moment analysis of the weight distribution of LDPC

†Nagoya Institute of Technology, email:wadayama@nitech.ac.jp. A part of
this work was presented at ITA workshop in UCSD, Feb. 2007.

codes [6][7] can be utilized to prove concentration resultsfor
weight distributions.

The evaluation of the error detection probability of a given
code (or given parity check matrix) is a classical problem in
coding theory [2], and some results on this topic have been
derived from the view point of a probabilistic approach. For
example, for a linear code ensemble the inequalityPU < 2−m,
has long been known, wherePU is the undetected error
probability andm is the number of rows of a parity check
matrix. Since the undetected error probability can be expressed
as a linear combination of the weight distribution of a code,
there is a natural connection between the expectation of the
weight distribution and the expectation of the undetected error
probability.

In this paper, an analysis of the undetected error probability
of ensembles of binary matrices of sizem × n is presented.
Two ensembles are considered: One is an ensemble of dense
matrices, called arandom ensemble, while the other is an
ensemble of sparse matrices, called asparse matrix ensemble.
An error detection scheme is a crucial part of a feedback error
correction scheme such as ARQ(Automatic Repeat reQuest).
Detailed knowledge of the error detection performance of a
matrix ensemble would be useful for assessing the perfor-
mance of a feedback error correction scheme.

The contents of this paper are arranged as follows: Firstly,
we will focus on the error exponent of average undetected
error probability. It will be shown that the asymptotic growth
rate of the weight distribution determines the exponent. Then,
the variance of undetected error probability will be discussed.
To derive the variance, we need to know the covariance of
the weight distribution. Simple covariance formulae for the
random ensemble and the sparse matrix ensemble are derived
based on a combinatorial approach.

II. AVERAGE UNDETECTED ERROR PROBABILITY

In this section, the ensemble average of the undetected error
probability of a given matrix ensemble is discussed.

A. Notation

For a givenm × n(m,n ≥ 1) binary parity check matrix
H , let C(H) be the binary linear code of lengthn defined by
H , namely,

C(H)
△
= {x ∈ Fn

2 : Hxt = 0}, (1)

whereF2 is the Galois field with two elements{0, 1} (the
addition overF2 is denoted by⊕). In this paper, a boldface
letter, such asx for example, denotes a binary row vector.
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Throughout the paper, a binary symmetric channel (BSC)
with crossover probabilityǫ (0 < ǫ < 1/2) is assumed.
We assume the conventional scenario for error detection: A
transmitter sends a codewordx ∈ C(H) to a receiver via
a BSC with crossover probabilityǫ. The receiver obtains a
received wordy = x ⊕ et, wheree denotes an error vector.
The receiver firstly computes the syndromes = Hyt and then
checks whethers = 0 holds or not.

An undetected error event occurs whenHet = 0 ande 6= 0.
This means that the error vectore ∈ C(e 6= x) causes an
undetected error event. Thus, the undetected error probability
PU (H) can be expressed as

PU (H) =
∑

e∈C(H),e 6=0

ǫw(e)(1 − ǫ)n−w(e) (2)

wherew(x) denotes the Hamming weight of vectorx. The
above equation can be rewritten as

PU (H) =
n
∑

w=1

Aw(H)ǫw(1 − ǫ)n−w, (3)

whereAw(H) is defined by

Aw(H)
△
=

∑

x∈Z(n,w)

I[Hxt = 0]. (4)

The set{Aw(H)}nw=0 is usually called theweight distribution
of C(H). The notationZ(n,w) denotes the set ofn-tuples with
weightw. The notationI[condition] is the indicator function
such thatI[condition] = 1 if condition is true; otherwise, it
evaluates to 0.

Suppose thatG is a set of binarym×n matrices(m,n ≥ 1).
Note thatG may contain some matrices with all elements
identical. Such matrices should be distinguished as distinct
matrices. A probabilityP (H) is associated with each matrix
H in G. Thus,G can be considered as anensembleof binary
matrices. Letf(H) be a real-valued function which depends
on H ∈ G. The expectation off(H) with respect to the
ensembleG is defined by

EG [f(H)]
△
=
∑

H∈G

P (H)f(H). (5)

The average weight distribution of a given ensembleG is given
by EG [Aw(H)]. This quantity is very useful for analyzing the
performance of binary linear codes, including analysis of the
undetected error probability.

B. Binary matrix ensembles

Attention is focused on two types of ensemble in this paper:
the random ensemble and the sparse matrix ensemble. In this
subsection, the definition and the average weight distribution
of both ensembles are briefly reviewed.

1) Random ensemble:The random ensembleRm,n in-
cludes all the binary matrices of sizem× n for (m,n ≥ 1).
From this definition, it is evident that the size ofRm,n is 2mn.
For each matrix inRm,n, an equal probabilityP (H) = 1/2mn

is assigned. It is well known [1] that the average weight
distribution ofRm,n is given by

ERm,n [Aw(H)] = 2−m

(

n

w

)

(6)

for w ∈ [0, n]. The notation[a, b] denotes the set of consec-
utive integers froma to b. Since a typical instance of this
ensemble containsO(n2) ones, the ensemble can be regarded
as an ensemble of dense matrices.

2) Sparse matrix ensemble:The sparse matrix ensemble
Tm,n,k contains all the binarym × n matrices (m,n ≥ 1),
whose elements are regarded as i.i.d. binary random variables

such that an element takes the value 1 with probabilityp
△
=

k/n. The parameterk(0 < k ≤ n/2) is a positive real number
which represents the average number of ones for each row. In
other words, a matrixH ∈ Tm,n,k can be considered as an
output from the Bernoulli source such that symbol 1 occurs
with probability p.

From the above definition, it is clear that a matrixH ∈
Tm,n,k is associated with the probability

P (H) = pw̄(H)(1− p)mn−w̄(H), (7)

where w̄(H) is the number of ones inH (i.e., Hamming
weight ofH). The average weight distribution of sparse matrix
ensemble is given by

ETm,n,k
[Aw(H)] =

(

1 + xw

2

)m(
n

w

)

(8)

for w ∈ [0, 1n] where x
△
= 1 − 2p. The average weight

distribution of this ensemble was first discussed by Litsyn and
Shevelev [3]. Ifk is a constant (i.e., not a function ofn), a
typical matrix in the ensemble containsO(n) ones. Thus, this
ensemble can be considered as an ensemble of sparse matrices.

C. Average undetected error probability of an ensemble

For a givenm × n matrix H , the evaluation of the unde-
tected error probabilityPU (H) is in general computationally
difficult, because we need to know the weight distribution of
C(H) for such evaluation. On the other hand, in some cases,
we can evaluate the average ofPU (H) for a given ensemble.
Such an average probability is useful for the estimation of the
undetected error probability of a matrix which belongs to the
ensemble.

Taking the ensemble average of the undetected error prob-
ability over a given ensembleG, we have

EG [PU (H)] = EG

[

n
∑

w=1

Aw(H)ǫw(1− ǫ)n−w

]

=
n
∑

w=1

EG [Aw(H)]ǫw(1− ǫ)n−w. (9)

In the above equations,H can be regarded as a random
variable. From this equation, it is evident that the average
of PU (H) can be evaluated if we know the average weight
distribution of the ensemble. For example, in the case of
the random ensembleRm,n, the average undetected error
probability has a simple closed form:
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Lemma 1:The average undetected error probability of ran-
dom ensembleRm,n is given by

ERm,n [PU (H)] = 2−m(1 − (1− ǫ)n). (10)

(Proof) Combining (6) and (9), we have

ERm,n [PU (H)] =

n
∑

w=1

ERm,n [Aw(H)]ǫw(1− ǫ)n−w

=

n
∑

w=1

2−m

(

n

w

)

ǫw(1− ǫ)n−w

= 2−m(1− (1− ǫ)n). (11)

The last equality is due to the binomial theorem.

D. Error exponent of undetected error probability

For a given sequence of(1 − R)n × n matrix ensembles
(n = 1, 2, 3, . . . , ), the average undetected error probability
is usually an exponentially decreasing function ofn, where
R is a real number satisfying0 < R < 1 (called thedesign
rate). Thus, the exponent of the undetected error probability is
of prime importance in understanding the asymptotic behavior
of the undetected error probability.

1) Definition of error exponent:Let {Gn}n>0 be a series
of ensembles such thatGn consists of(1 − R)n × n binary
matrices. In order to see the asymptotic behavior of the
undetected error probability of this sequence of ensembles, it
is reasonable to define the error exponent of undetected error
probability in the following way:

Definition 1: The asymptotic error exponent of the average
undetected error probability for a series of ensembles{Gn}n>0

is defined by

TGn

△
= lim

n→∞

1

n
log2EGn [PU ] (12)

if the limit exists.
Henceforth we will not explicitly express the dependence of
PU on H , writing insteadPU to denotePU (H) in all cases
where there is no fear of confusion.

The following example describes the exponent of one ran-
dom ensemble.

Example 1:Consider the series of random ensembles
{Rn,(1−R)n}n>0. It is easy to evaluateTR(1−R)n,n

:

TR(1−R)n,n
= lim

n→∞

1

n
log2 ER(1−R)n,n

[PU ]

= lim
n→∞

1

n
log2 2

−(1−R)n(1 − (1− ǫ)n)

= −(1−R). (13)

This equality implies that the average undetected error proba-
bility of the sequence of random ensembles behaves like

ER(1−R)n,n
[PU ] ≃ 2−n(1−R) (14)

if n is sufficiently large. Note that the exponent−(1 −R) is
independent from the crossover probabilityǫ.

2) Error exponent and asymptotic growth rate:Theasymp-
totic growth rate of the average weight distribution (for
simplicity henceforth abbreviated as the asymptotic growth
rate), which is the basis of the derivation of the error exponent,
is defined as follows.

Definition 2: Suppose that a series of ensembles{Gn}n>0

is given. If

lim
n→∞

1

n
log2EGn [Aℓn]

exists for0 ≤ ℓ ≤ 1, then we define theasymptotic growth
rate f(ℓ) by

f(ℓ)
△
= lim

n→∞

1

n
log2EGn [Aℓn]. (15)

The parameterℓ is callednormalized weight.
From this definition, it is clear that

EGn [Aℓn] = 2n(f(ℓ)+o(1)), (16)

where the notationo(1) denotes terms which converge to 0 in
the limit asn goes to infinity. The asymptotic growth rate of
some ensembles of binary matrices can be found in [3][4][5].

The next theorem gives the error exponent of the undetected
error probability for a series of ensembles{Gn}n>0.

Theorem 1:The error exponent of{Gn}n>0 is given by

TGn = sup
0<ℓ≤1

[f(ℓ) + ℓ log2 ǫ+ (1 − ℓ) log2(1− ǫ)], (17)

wheref(ℓ) is the asymptotic growth rate of{Gn}n>0.
(Proof) Based on the definition of asymptotic growth rate, we
can rewriteTGn in the form

TGn = lim
n→∞

1

n
log2 EGn [PU ]

= lim
n→∞

1

n
log2

n
∑

w=1

EGn [Aw]ǫ
w(1− ǫ)n−w

= lim
n→∞

1

n
log2

n
∑

w=1

2n(f(
w
n )+K(ǫ,n,w)+o(1)),

whereK(ǫ, n, w) is defined by

K(ǫ, n, w)
△
=
w

n
log2 ǫ+

(

1−
w

n

)

log2(1 − ǫ). (18)

Using a conventional technique for bounding summation, we
have the following upper bound onTGn :

TGn = lim
n→∞

1

n
log2

n
∑

w=1

2n(f(
w
n )+K(ǫ,n,w)+o(1))

≤ lim
n→∞

1

n
log2 n

n
max
w=1

2n(f(
w
n )+K(ǫ,n,w)+o(1))

= lim
n→∞

n
max
w=1

1

n
log2 2

n(f(w
n )+K(ǫ,n,w)+o(1))

= lim
n→∞

n
max
w=1

[

f
(w

n

)

+K(ǫ, n, w) + o(1)
]

= sup
0<ℓ≤1

[f(ℓ) + ℓ log2 ǫ + (1− ℓ) log2(1− ǫ)] . (19)

We can also show thatTGn is greater than or equal to the right-
hand side of the above inequality (19) in a similar manner.
This means that the right-hand side of the inequality is the
asymptote ofTGn in the limit as n tends to infinity.
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The next example discusses the case of a random ensemble.

Example 2:Let us again consider the series of random
ensembles given by{R(1−R)n,n}n>0. These ensembles have
the asymptotic growth ratef(ℓ) = h(ℓ)− (1−R), where the
functionh(x) is the binary entropy function defined by

h(x)
△
= −x log2 x− (1− x) log2(1− x). (20)

In this case, with respect to Theorem 1, we have

TR(1−R)n,n
= sup

0<ℓ≤1
[h(ℓ)−(1−R)+ℓ log2 ǫ+(1−ℓ) log2(1−ǫ)].

(21)
Let

Dℓ,ǫ
△
= ℓ log2

(

ℓ

ǫ

)

+ (1 − ℓ) log2

(

1− ℓ

1− ǫ

)

. (22)

By usingDℓ,ǫ, we can rewrite (21) as

TR(1−R)n,n
= sup

0<ℓ≤1
[−(1−R)−Dℓ,ǫ]. (23)

SinceDℓ,ǫ can be considered as the Kullback-Libler diver-
gence between two probability distributions(ǫ, 1 − ǫ) and
(ℓ, 1 − ℓ), Dℓ,ǫ is always non-negative andDℓ,ǫ = 0 holds
if and only if ℓ = ǫ. Thus, we obtain

sup
0<ℓ≤1

[−(1−R)−Dℓ,ǫ] = −(1−R), (24)

which is identical to the exponent obtained in expression (13).

Let g
(rnd)
ǫ (ℓ)

△
= h(ℓ) − (1 − R) + ℓ log2 ǫ + (1 −

ℓ) log2(1−ǫ). Figure 1 displays the behavior ofg(rnd)ǫ (ℓ) when
R = 0.5. This figure confirms the result that the maximum
(sup0<ℓ≤1 g

(rnd)
ǫ (ℓ) = −0.5) is attained atℓ = ǫ.
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Fig. 1. The curves ofgǫ(ℓ) for random ensembles withR = 0.5.

E. Error exponent of sparse matrix ensemble

The asymptotic growth rate of the sparse matrix ensemble
Tm,n,k [3] with a constantk and design rateR is given by

f(ℓ) = h(ℓ) + (1−R) log2

(

1 + e−2kℓ

2

)

. (25)

The error exponent of this ensemble shows quite a different
behavior from that for random ensembles.

Example 3:Consider the sparse matrix ensemble with pa-
rametersR = 0.5 andk = 20. Let

g(spm)
ǫ (ℓ)

△
= H(ℓ) + (1−R) log2

(

1 + e−2kℓ

2

)

+ ℓ log2 ǫ+ (1− ℓ) log2(1− ǫ). (26)
Figure 2 includes the curves ofg(spm)

ǫ (ℓ) where ǫ =

0.1, 0.2, 0.4. In contrast tog(rnd)ǫ (ℓ) of a random ensemble, we
can see thatg(spm)

ǫ (ℓ) is not a concave function. The shape of
the curve ofg(spm)

ǫ (ℓ) depends on the crossover probabilityǫ.
For largeǫ, gǫ(ℓ) takes its largest value aroundℓ = ǫ. On the
other hand, for smallǫ, g(spm)

ǫ (ℓ) has a supremum atǫ = 0.
Figure 3 presents the error exponent of sparse matrix

ensembles with parametersR = 0.3, 0.5, 0.7, 0.9 andk = 20.
As an example, consider the exponent forR = 0.5. In the
regime whereǫ is smaller than (around) 0.3, the error exponent
is a monotonically decreasing function ofǫ.
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The examples suggest that a sparse ensemble has a less
powerful error detection performance than that of a dense
ensemble (such as random ensemble) in terms of the error
exponent. However, if the crossover probability is sufficiently
large, the difference in exponent of sparse and dense ensembles
is negligible. For example, the exponent of the sparse matrix
ensemble in Fig. 3 is almost equal to that of random ensemble
whenǫ is larger than (around) 0.3.

The above properties of the error exponents of sparse matrix
ensembles can be explained with reference to their average
weight distributions (or asymptotic growth rate). Figure 4
displays the asymptotic growth rates of a random ensemble
and a sparse matrix ensemble.
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Fig. 4. Asymptotic growth rate of a random ensemble and a sparse matrix
ensemble.

The weight of typical error vectors is very close toǫn when
n is sufficiently large. For a large value ofǫ, such asǫ = 0.4,
the average weight distribution aroundw = 0.4n, namely
EG [A0.4n], dominates the undetected error probability. In such
a range, the difference of the average weight distributions
corresponding to random and sparse matrix ensembles is small.
On the other hand, if the crossover probability is small,
weight distributions of low weight become the most influential
parameter. The difference in the average weight distributions
of small weight results in a difference in the error exponent.

Note that the time complexity of the error detection op-
eration (multiplication of received vector and a parity check
matrix) is O(n2)-time for a typical instance of a random
ensemble, and isO(n)-time for a typical instance of a sparse
matrix ensemble. A sparse matrix offers almost same error
detection performance of a dense matrix with linear time
complexity if ǫ is sufficiently large.

The following lemma is useful in understanding the behav-
ior of the error exponent without detailed numerical optimiza-
tion.

Lemma 2: If f(ℓ) has the formf(ℓ) = h(ℓ) + α(ℓ), then
the following lower bound onTGn holds:

TGn ≥ max {α(0) + log2(1− ǫ), α(ǫ)} . (27)

(Proof) Let

gǫ(ℓ)
△
= f(ℓ) + ℓ log2 ǫ+ (1 − ℓ) log2(1− ǫ). (28)

It is obvious that

sup
0<ℓ≤1

[f(ℓ)+ℓ log2 ǫ+(1−ℓ) log2(1−ǫ)] ≥ max{gǫ(0), gǫ(ǫ)}

(29)
holds. Sinceh(0) = 0, we have

g(0) = α(0) + log2(1− ǫ). (30)

On the other hand,g(ǫ) is obtained in the following way:

g(ǫ) = h(ǫ) + α(ǫ) + ǫ log2 ǫ+ (1− ǫ) log2(1− ǫ)

= h(ǫ) + α(ǫ)−H(ǫ)

= α(ǫ). (31)

Combining Theorem 1 and these results, we get the claim of
the lemma.

III. VARIANCE OF UNDETECTED ERROR PROBABILITY

In this section, we first discuss variance of undetected error
probability for random ensemble. We then discuss the case of
sparse matrix ensemble.

A. Variance of undetected error probability: random ensemble

1) Covariance formula:In the previous section, we have
seen that the average weight distribution plays an important
role in the derivation of average undetected error probability.
Similarly, we need to examine thecovariance of weight
distribution in order to handle the variance of undetected error
probability.

Definition 3: For 0 ≤ w1, w2 ≤ n and a given ensembleG,
the covariance of weight distribution is defined by

CovG(Aw1 , Aw2)
△
= EG [Aw1Aw2 ]−EG [Aw1 ]EG [Aw2 ]. (32)

The next lemma forms the basis of the derivation of the
variance of the undetected error probability for a random
ensemble.

Lemma 3:For a random ensembleRm,n, the covariance of
Aw1 andAw2 is given by

CovRm,n(Aw1 , Aw2)

=

{

0, 0 < w1, w2 ≤ n,w1 6= w2

(1 − 2−m)2−m
(

n
w

)

, 0 < w1 = w2 ≤ n.
(33)

(Proof) See Appendix.
Remark 1:The variance of weight distribution, namely

CovRm,n(Aw, Aw) = (1 − 2−m)2−m
(

n

w

)

, has already been
shown in [8]. Thus, the new contribution of this lemma is the
caseCovRm,n(Aw1 , Aw2) = 0 whenw1 6= w2.

Remark 2:The covariance of the weight distribution for a
given ensembleG is useful not only for the evaluation of the
variance ofPU . Let X be a random variable represented by

X =

n
∑

w=0

α(w)Aw , (34)



6

whereα(w) is a real-valued function ofw. The covariance
of the weight distribution is required more generally for the
evaluation of the variance ofX , which is given by

σ2
X =

n
∑

w1=0

n
∑

w2=0

CovG(Aw1 , Aw2)α(w1)α(w2). (35)

A specialized version (the case whereX = PU ) of this
equation will be derived in the proof of Theorem 2. For
example, ifa(w) = 1(w ∈ [0, n]), X denotes the number of
codewords inC(H). Based on the covariance, we can derive
the variance of the number of codewords for a given ensemble
G.

2) Variance of undetected error probability:The variance
of the undetected error probabilityPU is given by

σ2
Rm,n

△
= ERm,n [(PU − µ)2]. (36)

The next theorem gives a closed form expression for the
varianceσ2

Rm,n
.

Theorem 2:For a random ensembleRm,n, variance of the
undetected error probabilityPU is given by

σ2
Rm,n

= (1− 2−m)2−m
(

(ǫ2 + (1− ǫ)2)n − (1− ǫ)2n
)

.
(37)

(Proof) We first consider the second moment of the undetected
error probability:

ERm,n [P
2
U ]

=ERm,n





(

n
∑

w=1

Awǫ
w(1− ǫ)n−w

)2




=ERm,n

[

n
∑

w1=1

n
∑

w2=1

Aw1Aw2ǫ
w1+w2(1 − ǫ)2n−w1−w2

]

=

n
∑

w1=1

n
∑

w2=1

ERm,n [Aw1Aw2 ] ǫ
w1+w2(1− ǫ)2n−w1−w2.(38)

The squared average undetected error probability can be
expressed as

ERm,n [PU ]
2 =ERm,n

[(

n
∑

w=1

Awǫ
w(1− ǫ)n−w

)]2

=

n
∑

w1=1

n
∑

w2=1

ERm,n [Aw1 ]ERm,n [Aw2 ]

× ǫw1+w2(1− ǫ)2n−w1−w2. (39)

Combining these equalities and the covariance of the weight
distribution (Lemma 3), the variance of undetected error
probabilityσ2

Rm,n
can be obtained in the following way:

σ2
Rm,n

=ERm,n [P
2
U ]− ERm,n [PU ]

2

=

n
∑

w1=1

n
∑

w2=1

CovRm,n [Aw1 , Aw2 ] ǫ
w1+w2(1− ǫ)2n−w1−w2

=

n
∑

w=1

CovRm,n [Aw, Aw] ǫ
2w(1− ǫ)2n−2w

=

n
∑

w=1

(1− 2−m)2−m

(

n

w

)

ǫ2w(1− ǫ)2n−2w. (40)

The last equalities are due to Lemma 3. We can further
simplify the expression using the binomial theorem,

σ2
Rm,n

= (1 − 2−m)2−m

n
∑

w=0

(

n

w

)

(ǫ2)w((1 − ǫ)2)n−w

− (1 − 2−m)2−m(1− ǫ)2n

= (1 − 2−m)2−m

×
(

(ǫ2 + (1− ǫ)2)n − (1− ǫ)2n
)

. (41)

The last equality is the claim of the theorem.
Example 4:Table I displays the weight distributions and

undetected error probabilities for the 4 matrices inR1,2. Since

TABLE I

WEIGHT DISTRIBUTIONS AND UNDETECTED ERROR PROBABILITIES

H C(H) A1(H) A2(H) PU (H)
(0,0) {00, 01, 10, 11} 2 1 2ǫ − ǫ2

(0,1) {00, 10} 1 0 ǫ− ǫ2

(1,0) {00, 01} 1 0 ǫ− ǫ2

(1,1) {00, 11} 0 1 ǫ2

an equal probability is assigned to each matrix, the averageof
PU can be written as

ER1,2 [PU ] =
(2ǫ− ǫ2) + 2(ǫ− ǫ2) + ǫ2

4

= ǫ−
1

2
ǫ2. (42)

On the other hand, from Lemma 1, we have

ER1,2 [PU ] = 2−1(1− (1 − ǫ)2)

= ǫ −
1

2
ǫ2, (43)

which is identical to expression (42).
We now consider the variance. From Table I, it is easy to

compute the second moment ofPU ,

ER1,2 [P
2
U ] =

(2ǫ− ǫ2)2 + 2(ǫ− ǫ2)2 + (ǫ2)2

4

=
3

2
ǫ2 − 2ǫ3 + ǫ4. (44)

Subtracting the squared first moment from the second moment,
we obtain the variance:

σ2
R1,2

= ER1,2 [P
2
U ]− ER1,2 [PU ]

2

=
3

2
ǫ2 − 2ǫ3 + ǫ4 −

(

ǫ−
1

2
ǫ2
)2

=
1

2
ǫ2 − ǫ3 +

3

4
ǫ4. (45)

Note that Theorem 2 yields

σ2
R1,2

= (1− 2−1)2−1
(

(ǫ2 + (1− ǫ)2)2 − (1− ǫ)4
)

=
1

2
ǫ2 − ǫ3 +

3

4
ǫ4, (46)

which is identical to expression (45).
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3) Concentration to average:The variance derived in The-
orem 2 can be used to show the following concentration result.

Corollary 1: The ratio ofPU andERm,n [PU ] converges to
1 in probability, namely,

PU

ERm,n [PU ]
→ 1 in probability (47)

asn goes to infinity if ǫ(0 < ǫ < 1/2) satisfies

1−R+ log2(ǫ
2 + (1− ǫ)2) < 0. (48)

(Proof) Let µ
△
= ERm,n [PU ] and σ

△
= σRm,n . From Cheby-

shev’s inequality, we have

Pr

[

PU

µ
∈ (1− α, 1 + α)

]

≤
σ2

α2µ2
, (49)

whereα is a positive real number. If the equation

lim
n→∞

σ2

µ2
= 0 (50)

holds, then the right-hand side of inequality (49) converges to
0 in the limit asn goes to infinity regardless of the choice of
α. This impliesPU/µ converges to 1 in probability.

We now discuss the asymptotic behavior of the ratioσ2/µ2.
This ratio can be rewritten into the following form:

σ2

µ2
=

(1− 2−m)2−m
(

(ǫ2 + (1− ǫ)2)n − (1− ǫ)2n
)

2−2m(1− (1− ǫ)n)2

=
(2m − 1)

(

(ǫ2 + (1 − ǫ)2)n − (1− ǫ)2n
)

(1− (1− ǫ)n)2

≤
2(1−R)n(ǫ2 + (1 − ǫ)2)n

(1 + o(1))2
. (51)

From the above inequality, we get

lim
n→∞

σ2

µ2
≤ lim

n→∞
2(1−R)n(ǫ2 + (1− ǫ)2)n (52)

= lim
n→∞

2n(1−R+log2(ǫ
2+(1−ǫ)2)). (53)

Thus it is clear thatσ2/µ2 converges to zero if the exponent
1−R+ log2(ǫ

2 + (1 − ǫ)2) takes a negative value.
Let ǫ∗ be the root of the equation

1−R+ log2(ǫ
∗2 + (1− ǫ∗)2) = 0. (54)

Table II presents some values ofǫ∗ for values ofR from 0.1 to
0.9. Whenǫ > ǫ∗, we have1−R+log2(ǫ

∗2+(1− ǫ∗)2) < 0.
In such a region,PU concentrates around its average value in
the limit asn tends to infinity.

B. Variance of undetected error probability: sparse matrix
ensemble

1) Covariance formula:The covariance of the weight dis-
tribution for a sparse matrix ensemble is given in the following
lemma.

Lemma 4:The covariance of the weight distribution for a
sparse matrix ensembleTm,n,k is given by

CovTm,n,k
(Aw1 , Aw2) = ψ(w1, w2), (55)

TABLE II

ROOTS OF1− R+ log2(ǫ
∗2 + (1− ǫ∗)2) = 0

R ǫ∗

0.1 0.366047
0.2 0.307193
0.3 0.259613
0.4 0.217375
0.5 0.178203
0.6 0.140933
0.7 0.104872
0.8 0.069564
0.9 0.034687

for 1 ≤ w1, w2 ≤ n. The functionψ(w1, w2) is defined by

ψ(w1, w2)

△
=

(

1 + xw1

2

)m(
1 + xw2

2

)m

×
w1
∑

j=1

(

n

w1

)(

w1

j

)(

n− w1

w2 − j

)

(

ξmw1,w2,j
− 1
)

, (56)

if 1 ≤ w1 ≤ w2 ≤ n. If 1 ≤ w2 < w1 ≤ n, ψ(w1, w2) is
defined by

ψ(w1, w2)
△
= ψ(w2, w1). (57)

The symbolξw1,w2,j represents

ξw1,w2,j
△
= 1−

xw1+w2 − xw1+w2−2j

(1 + xw1)(1 + xw2)
(58)

for 1 ≤ w1 ≤ w2 ≤ n, 0 ≤ j ≤ w1.
(Proof) See Appendix.

Remark 3:When k = n/2, a sparse matrix ensemble
coincides with a random ensemble becausep = 1/2 implies
P (H) = 1/2mn for anyH . We discuss this case here.

To simplify the discussion, we assume that1 ≤ w1 ≤ w2 ≤
n. Let p = 1/2 (i.e., k = n/2). In such a case, we have
x = 1− 2p = 0 andξw1,w2,j takes the following values:

ξw1,w2,j =







1 w1 < w2

1 w1 = w2, j < w1

2 w1 = w2, j = w1.
(59)

Substitutingx = 0 into equation (56), we get

Cov(Aw1 , Aw2) =

{

0, 1 ≤ w1 < w2 ≤ n
2−2m

(

n
w

)

(2m − 1), 1 ≤ w1 = w2 ≤ n.
(60)

These equations coincide with the covariance of a random
ensemble as given in Lemma 3.

2) Variance of undetected error probability:The variance
of the undetected error probability is a straightforward conse-
quence of Lemma 4.

Theorem 3:The variance of the undetected error probabil-
ity of a sparse matrix ensemble,σ2

Tm,n,k
is given by

σ2
Tm,n,k

=

n
∑

w1=1

n
∑

w2=1

ψ(w1, w2)ǫ
w1+w2(1 − ǫ)2n−w1−w2 .

(61)
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(Proof) From Lemma 4, the claim of the lemma follows as

σ2
Tm,n,k

=

n
∑

w1=1

n
∑

w2=1

CovTm,n,k
(Aw1 , Aw2)ǫ

w1+w2(1− ǫ)2n−w1−w2

=

n
∑

w1=1

n
∑

w2=1

ψ(w1, w2)ǫ
w1+w2(1− ǫ)2n−w1−w2 . (62)

Example 5:Let us consider the sparse matrix ensemble
with m = 1, n = 2 andk = 1/2(p = 1/4). From the definition
of a sparse matrix ensemble, the following probability is
assigned to each matrix:P ((0, 0)) = 9/16, P ((0, 1)) =
3/16, P ((1, 0)) = 3/16, P ((1, 1)) = 1/16. Combining the
undetected error probabilities presented in Table I and the
above probability assignment, we immediately have the first
and second moments:

ET1,2,1/2
[PU ] =

2

3
ǫ−

7

8
ǫ2 (63)

ET1,2,1/2
[P 2

U ] =
21

8
ǫ2 −

3

8
ǫ3 + ǫ4. (64)

From these moments, the variance can be derived,

σ2
T1,2,1/2

= ET1,2,1/2
[P 2

U ]− ET1,2,1/2
[PU ]

2

=
3

8
ǫ2 −

3

8
ǫ3 +

15

64
ǫ4. (65)

We can also, however, consider another route to derive the
variance. From the definition ofψ in equation (56), we have

ψ(1, 1) = 3/8 (66)

ψ(1, 2) = ψ(2, 1) = 3/16 (67)

ψ(2, 2) = 15/64. (68)

From Theorem 3, we obtain the variance

σ2
T1,2,1/2

=

2
∑

w1=1

2
∑

w2=1

ψ(w1, w2)ǫ
w1+w2(1 − ǫ)4−w1−w2

= ψ(1, 1)ǫ2(1− ǫ)2 + ψ(1, 2)ǫ3(1− ǫ)1

+ ψ(2, 1)ǫ3(1− ǫ)1 + ψ(2, 2)ǫ4(1− ǫ)0

= (3/8)ǫ2(1− ǫ)2 + (3/16)ǫ3(1− ǫ)

+ (3/16)ǫ3(1− ǫ) + (15/64)ǫ4

=
3

8
ǫ2 −

3

8
ǫ3 +

15

64
ǫ4,

which is identical to expression (65).
The next example facilitates an understanding of how the

average and variance ofPU behave.
Example 6:We consider a random ensemble withm =

20, n = 40, and a sparse matrix ensemble withm =
20, n = 40, k = 5. Figure 5 depicts the average undetected
error probabilities of the two ensembles. It can be observed
that the average undetected error probability of the random
ensemble monotonically decreases asǫ decreases. In contrast,
the curve for the sparse matrix ensemble has a peak around
ǫ ≃ 0.025. Figure 6 shows the variance ofPU for the above
two ensembles. The two curves have a similar shape, but the
variance of the sparse ensemble is always larger than that of
the random ensemble.
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10-4

10-2

100

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

M
ea

n
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Random ensemble:m = 20, n = 40, Sparse matrix ensemble:m = 20, n = 40, k = 5.

Fig. 5. Average undetected error probabilities.
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10-5

100

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

V
ar

ia
nc

e
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Sparse

Random ensemble:m = 20, n = 40, Sparse matrix ensemble:m = 20, n = 40, k = 5.

Fig. 6. Variance of undetected error probability.

3) Asymptotic behavior:We here discuss the asymptotic
behavior of the covariance of the weight distribution and
variance ofPU a for sparse matrix ensemble. The following
corollary explains the asymptotic behavior of the covariance
of the weight distribution, which is a consequence of Lemma
4.

Corollary 2: For 0 < ℓ1 ≤ ℓ2 ≤ 1, the equality

lim
n→∞

1

n
log2 ψ(ℓ1n, ℓ2n) = sup

0<κ≤ℓ1

L(ℓ1, ℓ2, κ), (69)

holds whereL(ℓ1, ℓ2, κ) is defined by

L(ℓ1, ℓ2, κ)

= −2(1−R) + h(ℓ1) + h

(

κ

ℓ1

)

+ h

(

ℓ2 − κ

1− ℓ1

)

+ (1 −R) log2

(

1 + e−2kℓ1 + e−2kℓ2 + e−2k(ℓ1+ℓ2−2κ)
)

.

(Proof) Let us assume that0 < w1 ≤ w2. In this case,
ψ(w1, w2) defined in equation (56) can be rewritten in the
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form

ψ(w1, w2)

=

(

1 + xw1

2

)m(
1 + xw2

2

)m

×
w1
∑

j=1

(

n

w1

)(

w1

j

)(

n− w1

w2 − j

)

(

ξmw1,w2,j
− 1
)

= 2−2m
w1
∑

j=1

(

n

w1

)(

w1

j

)(

n− w1

w2 − j

)

× (1 + xw1 + xw2 + xw1+w2−2j)m(1− δ), (70)

whereδ is defined by

δ
△
=

(

1 + xw1 + xw2 + xw1+w2

1 + xw1 + xw2 + xw1+w2−2j

)m

. (71)

In the above derivation, the following identity was used:

ξw1,w2,j

= 1−
xw1+w2 − xw1+w2−2j

(1 + xw1)(1 + xw2)

=
(1 + xw1)(1 + xw2)− xw1+w2 + xw1+w2−2j

(1 + xw1)(1 + xw2)

=
1 + xw1 + xw2 + xw1+w2−2j

(1 + xw1)(1 + xw2)
. (72)

Note that
1 + xw1 + xw2 + xw1+w2

1 + xw1 + xw2 + xw1+w2−2j
< 1 (73)

holds whenj > 0. This is becausex = 1− 2k/n < 1.
Letting w1 = ℓ1n,w2 = ℓ2n,m = (1 − R)n and

using equation (70), we can derive an upper bound for
(1/n) log2 ψ(ℓ1n, ℓ2n):

1

n
log2 ψ(ℓ1n, ℓ2n)

≤ −2(1−R) +
log2(ℓ1n)

n

+
ℓ1n
max
j=1

1

n
log2

((

n

ℓ1n

)(

ℓ1n

j

)(

n− ℓ1n

ℓ2n− j

))

+ (1−R) log2(1 + xℓ1n + xℓ2n + xℓ1n+ℓ2n−2j)

+
1

n
log2(1− δ). (74)

It is straightforward to see that the following limits are
obtained:

lim
n→∞

log2(ℓ1n)

n
= 0, (75)

lim
n→∞

1

n
log2

((

n

ℓ1n

)(

ℓ1n

j

)(

n− ℓ1n

ℓ2n− j

))

= h(ℓ1) + h

(

κ

ℓ1

)

+ h

(

ℓ2 − κ

1− ℓ1

)

, (76)

whereκ is a real number satisfying0 < κ ≤ ℓ1 and j = κn.
If k is a constant and0 ≤ ℓ ≤ 1, then, making use of Litsyn
and Shevelev’s [3] result that

lim
n→∞

(

1− 2

(

k

n

))ℓn

= lim
n→∞

xℓn

= e−2kℓ, (77)

we have

lim
n→∞

(1−R) log2(1 + xℓ1n + xℓ2n + xℓ1n+ℓ2n−2j)

= (1−R)

× log2(1 + e−2kℓ1 + e−2kℓ2 + e−2k(ℓ1+ℓ2−2κ)). (78)

Finally, from inequality (73), we get

1

n
log2(1 − δ) = 0. (79)

Applying these equations to inequality (74), we get

lim
n→∞

1

n
log2 ψ(ℓ1n, ℓ2n) ≤ sup

0<κ≤ℓ1

L(ℓ1, ℓ2, κ). (80)

On the other hand, in a similar way, we can also prove that

lim
n→∞

1

n
log2 ψ(ℓ1n, ℓ2n) ≥ sup

0<κ≤ℓ1

L(ℓ1, ℓ2, κ). (81)

Combining these two inequalities, we obtain the claim of the
corollary.

We now extend the definition ofL(ℓ1, ℓ2, κ) in order to
make it consistent with the definition ofψ(w1, w2):

L(ℓ1, ℓ2, κ)
△
= L(ℓ2, ℓ1, κ) (82)

if ℓ1 > ℓ2. The following corollary gives the asymptotic
growth rate of theσ2

T(1−R)n,n,k
.

Corollary 3: The asymptotic growth rate of the variance of
the undetected error is given by

lim
n→∞

1

n
log2 σ

2
T(1−R)n,n,k

= sup
0<ℓ1≤1

sup
0<ℓ2≤1

sup
0<κ≤ℓ1

U(ℓ1, ℓ2, κ),

(83)
whereU(ℓ1, ℓ2, κ) is given by

U(ℓ1, ℓ2, κ) = (ℓ1 + ℓ2) log2 ǫ+ (2− ℓ1 − ℓ2) log2(1− ǫ)

+ L(ℓ1, ℓ2, κ). (84)

(Proof) Applying Corollary 2 to Theorem 3, we obtain

lim
n→∞

1

n
log2 σ

2
Tm,n,k

= sup
0<ℓ1≤1

sup
0<ℓ2≤1

[ lim
n→∞

1

n
log2 ψ(ℓ1n, ℓ2n)

+ lim
n→∞

1

n
log2 ǫ

ℓ1n+ℓ2n(1− ǫ)2n−ℓ1n−ℓ2n

= sup
0<ℓ1≤1

sup
0<ℓ2≤1

[ sup
0κ≤ℓ1

L(ℓ1, ℓ2, κ)

+ (ℓ1 + ℓ2) log2 ǫ+ (2 − ℓ1 − ℓ2) log2(1− ǫ)]. (85)

IV. A PPENDIX

A. The proof of Lemma 3(Covariance for random ensemble)

1) Preparation of the proof:The second moment of the
weight distribution for a given ensembleG is given by

EG [Aw1Aw2 ]

= EG





∑

x∈Z(n,w1)

∑

y∈Z(n,w2)

I[Hxt = 0]I[Hyt = 0]



 .
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for 0 < w1, w2 ≤ n. Since

I[Hxt = 0]I[Hyt = 0] = I[Hxt = 0, Hyt = 0],

we have

EG [Aw1Aw2 ]

=EG





∑

x∈Z(n,w1)

∑

y∈Z(n,w2)

I[Hxt = 0, Hyt = 0]





=
∑

x∈Z(n,w1)

∑

y∈Z(n,w2)

EG

[

I[Hxt = 0, Hyt = 0]
]

=
∑

x∈Z(n,w1)

∑

y∈Z(n,w2)

∑

H∈G

P (H)I[Hxt = 0, Hyt = 0].(86)

For the case whereG = Rm,n, we obtain

ERm,n [Aw1Aw2 ]

=
∑

x∈Z(n,w1)

∑

y∈Z(n,w2)

#{H : Hxt = 0, Hyt = 0}

2mn
.(87)

We here encounter a problem of counting the matrices
which satisfy bothHxt = 0 andHyt = 0. In preparation to
solve this counting problem, we will introduce some notation:

Definition 4: For a given pair(x,y) ∈ Z(n,w1) × Z(n,w2),
the index setsI1, I2, I3, I4 are defined as follows:

I1
△
= {k ∈ [1, n] : xk = 1, yk = 0} (88)

I2
△
= {k ∈ [1, n] : xk = 1, yk = 1} (89)

I3
△
= {k ∈ [1, n] : xk = 0, yk = 1} (90)

I4
△
= {k ∈ [1, n] : xk = 0, yk = 0}, (91)

wherex = (x1, x2, . . . , xn) andy = (y1, y2, . . . , yn). These
regions are illustrated in Fig.7. The size of each index set is de-
noted byik = #Ik(k = 1, 2, 3, 4). Let h = (h1, h2, . . . , hn)
be a binaryn-tuple. The partial weight ofh corresponding to
an index setIk(k = 1, 2, 3, 4) is denoted bywk(h), namely

wk(h) = #{j ∈ Ik : hj = 1}. (92)

Fig. 7. The 4 regionsI1, I2, I3, I4.

Since the index sets are mutually exclusive, the equation
i1 + i2 + i3 + i4 = n holds andi2 can take the integer values
in the following range:

max{w1 + w2 − n, 0} ≤ i2 ≤ min{w1, w2}. (93)

The size of each index set can be expressed asi1 = w1 − i2,
i3 = w2 − i2, i4 = n− (w1 + w2 − i2).

The next lemma forms the basis of the proof of Lemma 3.
Lemma 5:For any x ∈ Z(n,w1) and y ∈ Z(n,w2)(0 <

w1, w2 ≤ n), the following equalities hold:

#{h ∈ Fn
2 : hxt = 0,hyt = 0} =

{

2n−2 x 6= y

2n−1 x = y.
(94)

(Proof) In the following, we are going to prove the claim of
the lemma for the conditions0 < w1 ≤ w2 ≤ n. The proof
for the final case0 < w2 ≤ w1 ≤ n then follows immediately
upon exchanging the variablesw2 andw1 in the proof.

Firstly, we will show that

#{h ∈ Fn
2 : hxt = 0,hyt = 0} = 2n−2 (95)

if 0 < w1 ≤ w2 ≤ n andx 6= y. Let the support sets ofx and

y be S(x)
△
= {i ∈ [1, n] : xi = 1} andS(y)

△
= {i ∈ [1, n] :

yi = 1}, respectively. We need to consider the following three
cases:

• Case (i):0 < i2 < w1 (i.e., S(x) andS(y) overlap but
S(y) does not includeS(x))

• Case (ii):i2 = 0 (i.e., S(x) andS(y) do not overlap)
• Case (iii): i2 = w1(i.e., S(y) includesS(x))

These 3-cases are depicted in Fig.8.

Case (i)

Case (ii)

Case (iii)

Fig. 8. The 3 cases.

Consider first Case (i). From the assumption0 < i2 < w1, it
is evident thatI1 6= ∅ (sincei2 < w1), I2 6= ∅ (sincei2 > 0),



11

I3 6= ∅ (sincew2 ≥ w1 > i2). For anyh ∈ Fn
2 , the equations

hxt = 0 andhyt = 0 hold if and only if

(w1(h) is even), (w2(h) is even) and (w3(h) is even)

or

(w1(h) is odd) , (w2(h) is odd) and (w3(h) is odd).

Thus, the number of vectors satisfying the above condition is
given by

Nh = 2× 2i1−1 × 2i2−1 × 2i3−1 × 2i4

= 2× 2w1−i2−1 × 2i2−1

× 2w2−i2−1 × 2n−w1−w2+i2

= 2n−2, (96)

whereNh is defined by

Nh
△
= #{h ∈ Fn

2 : hxt = 0,hyt = 0}.

In the above derivation, we used the equalitiesw1 = i1 +
i2, w2 = i2 + i3, i4 = n− (w1 + w2 − i2).

Note that equation (96)(and equations (97)(98)(100) to be
presented below) holds regardless of the size ofI4(i4 = 0 or
i4 > 0).

We now consider Case (ii). For this case,I1 6= ∅ (since
w1 > 0), I2 = ∅(since i2 = 0) and I3 6= ∅ (sincew2 > 0).
The equalitieshxt = 0 andhyt = 0 hold if and only if

(w1(h) is even) and (w3(h) is even).

The number of vectors satisfying the condition is given by

Nh = 2i1−1 × 2i3−1 × 2i4

= 2w1−1 × 2w2−1 × 2n−w1−w2

= 2n−2. (97)

The final case is Case (iii). For this case,I1 = ∅ (since
i2 = w1), I2 6= ∅(since i2 = w1 > 0) and I3 6= ∅ (since
x 6= y andw1 ≤ w2). These conditions lead to the following
condition

(w2(h) is even) and (w3(h) is even)

for hxt = 0,hyt = 0. Again,2n−2 n-tuples satisfy the above
condition, namely

Nh = 2i2−1 × 2i3−1 × 2i4

= 2i2−1 × 2w2−i2−1 × 2n−w2

= 2n−2. (98)

Combining the above results for Cases (i)(ii)(iii), we obtain
expression (95).

We then show that

Nh = 2n−1 (99)

holds if 0 < w1 = w2 ≤ n and x = y. For this case, we
have I1 = ∅, I2 6= ∅, I3 = ∅(sincex = y). The equations
hxt = 0,hyt = 0 hold if and only if

w2(h) is even.

The number ofn-tuples satisfying the above condition is given
by

Nh = 2i2−1 × 2i4

= 2i2−1 × 2n−i2

= 2n−1. (100)

The proof is completed.
2) Proof of Lemma 3:The proof of Lemma 3 consists of

two parts: The first part corresponds to the case where the
covariance becomes zero. The second part corresponds to the
case where the covariance becomes non-zero.

We commence with the first part of the proof: Assume that
0 < w1, w2 ≤ n,x 6= y. From Lemma 5 we obtain

#{H : Hxt = 0, Hyt = 0}

=

m
∏

k=1

#{h ∈ Fn
2 : hxt = 0,hyt = 0}

=

m
∏

k=1

2n−2

= 2m(n−2). (101)

Substituting into (87) we obtain

ERm,n [Aw1Aw2 ]

=
∑

x∈Z(n,w1)

∑

y∈Z(n,w2)

#{H : Hxt = 0, Hyt = 0}

2mn

=
∑

x∈Z(n,w1)

∑

y∈Z(n,w2)

2m(n−2)

2mn

= 2−2m
∑

x∈Z(n,w1)

∑

y∈Z(n,w2)

1

= 2−2m

(

n

w1

)(

n

w2

)

= ERm,n [Aw1 ]ERm,n [Aw2 ]. (102)

The last equality is equivalent toCovRm,n(Aw1 , Aw2) = 0.
We now consider the second part of the proof: Assume that

x = y. From Lemma 5 we have

#{H : Hxt = 0, Hyt = 0} = 2m(n−1), (103)

and so

ERm,n [A
2
w]

=
∑

x∈Z(n,w)

∑

y∈Z(n,w)

#{H : Hxt = 0, Hyt = 0}

2mn

=
∑

x∈Z(n,w)

∑

y∈Z(n,w)

I[x = y]2m(n−1)

2mn

+
∑

x∈Z(n,w)

∑

y∈Z(n,w)

I[x 6= y]2m(n−2)

2mn

= 2−m
∑

x∈Z(n,w)

∑

y∈Z(n,w)

I[x = y]

+ 2−2m
∑

x∈Z(n,w)

∑

y∈Z(n,w)

I[x 6= y]
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= 2−m

(

n

w

)

+ 2−2m

((

n

w

)(

n

w

)

−

(

n

w

))

= 2−2m

(

n

w

)(

n

w

)

+ 2−m

(

n

w

)

− 2−2m

(

n

w

)

= ERm,n [Aw]
2 + 2−m

(

n

w

)

− 2−2m

(

n

w

)

. (104)

The last equality is equivalent to

CovRm,n(Aw , Aw) = (1− 2−m)2−m

(

n

w

)

. (105)

The proof is now completed.

B. Proof of Lemma 4 (Covariance of sparse matrix ensemble)

Consider two binaryn-tuplesx ∈ Z(n,w1) andy ∈ Z(n,w2).
As in the proof of Lemma 3, we need to consider 3-cases: Case
(i) 0 < i2 < w1, Case (ii)i2 = 0, and Case (iii)i2 = w1.

We first study Case (i). Suppose that a binaryn-tupleh is
generated from a Bernoulli source withPr[hi = 1] = p(i ∈
[1, n]). Recall thatp is defined byp = k/n. We denote the
probability thath satisfieshxt = 0 andhyt = 0 under the
condition0 < i2 < w1 by Q1, that is

Q1
△
= Pr[hxt = 0,hyt = 0]. (106)

As in the proof of Lemma 3, we need to consider the condition:

(w1(h) is even) , (w2(h) is even) and (w3(h) is even)

or

(w1(h) is odd), (w2(h) is odd) and (w3(h) is odd).

It is well known that a binary vector(t1, t2, . . . , tu) generated
from a Bernoulli source has even weight with probability(1+
(1−2q)u)/2, whereq is the probability thatti(i ∈ [1, n]) takes
1 [1]. The probability that(t1, t2, . . . , tu) has an odd weight
is given by(1 − (1 − 2q)u)/2. For example, the probability
thatw1(h) becomes even is(1 + xw1)/2. wherex = 1− 2p.

Based on the above argument, we can write the probability
Q1 as a function ofx,

Q1=
(1 + xi1)(1 + xi2 )(1 + xi3 )

8

+
(1− xi1)(1 − xi2 )(1− xi3 )

8

=
1 + xi1+i2 + xi2+i3 + xi1+i3

4

=
1 + xw1 + xw2 + xw1+w2−2i2

4

=
1 + xw1 + xw2 + xw1+w2 − xw1+w2 + xw1+w2−2i2

4

=

(

1 + xw1

2

)(

1 + xw2

2

)

−
xw1+w2 − xw1+w2−2i2

4
.(107)

From a combinatorial argument, we can see that the number
of pairs (x,y) satisfying0 < i2 < w1, which is denoted by
A1(w1, w2), is given by

A1(w1, w2)
△
= #{(x,y) ∈ Z(n,w1) × Z(n,w2) : 0 < i2 < w1}

=

w1−1
∑

j=1

(

n

w1

)(

w1

j

)(

n− w1

w2 − j

)

(108)

for w1 ≤ w2.

We next consider Case (ii). For this case,i2 is assumed to
be zero. The probability thath satisfieshxt = 0 andhyt = 0
under the conditioni2 = 0 is given by

Q2 =

(

1 + xi1

2

)(

1 + xi3

2

)

=

(

1 + xw1

2

)(

1 + xw2

2

)

. (109)

The number of pairs(x,y) satisfyingi2 = 0 is given by

A2(w1, w2)
△
= #{(x,y) ∈ Z(n,w1) × Z(n,w2) : i2 = 0}

=

(

n

w1

)(

n− w1

w2

)

(110)

for w1 ≤ w2.
Finally we consider Case (iii). We first consider the case

i2 = w1,x 6= y The probability thath satisfieshxt =
0,hyt = 0 under the conditioni2 = w1,x 6= y is

Q3 =

(

1 + xi2

2

)(

1 + xi3

2

)

=

(

1 + xw1

2

)(

1 + xw2−w1

2

)

=
1 + xw1 + xw2−w1 + xw2

4

=

(

1 + xw1

2

)(

1 + xw2

2

)

−
xw1+w2 − xw2−w1

4
.(111)

We next consider the casex = y. For this case, we have

Q′
3 =

1 + xw1

2
. (112)

In both cases, the number of pairs(x,y) satisfyingi2 = w1

is given by

A3(w1, w2)
△
= #{(x,y) ∈ Z(n,w1) × Z(n,w2) : i2 = w1}

=

(

n

w1

)(

n− w1

w2 − w1

)

. (113)

We are now ready to derive the covariance of the weight
distribution. Assume thatw1 < w2. The second moment can
be expressed as

ETm,n,k
[Aw1Aw2 ]

=
∑

x∈Z(n,w1)

∑

y∈Z(n,w2)

Pr[Hxt = 0, Hyt = 0]

= A1(w1, w2)Q
m
1 +A2(w1, w2)Q

m
2

+ A3(w1, w2)Q
m
3 . (114)

Substituting theQi and Ai(w1, w2)(i = 1, 2, 3) obtained
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above into equation 114, we immediately have

ETm,n,k
[Aw1Aw2 ]

=

w1−1
∑

j=1

(

n

w1

)(

w1

j

)(

n− w1

w2 − j

)

×

((

1 + xw1

2

)(

1 + xw2

2

)

−
xw1+w2 − xw1+w2−2j

4

)m

+

(

n

w1

)(

n− w1

w2

)(

1 + xw1

2

)m(
1 + xw2

2

)m

+

(

n

w1

)(

n− w1

w2 − w1

)

×

((

1 + xw1

2

)(

1 + xw2

2

)

−
xw1+w2 − xw2−w1

4

)m

=

w1
∑

j=0

(

n

w1

)(

w1

j

)(

n− w1

w2 − j

)

×

((

1 + xw1

2

)(

1 + xw2

2

)

−
xw1+w2−xw1+w2−2j

4

)m

.

It is possible to retrieveETm,n,k
[Aw1 ]ETm,n,k

[Aw2 ] from the
right-hand side of the above equation:

ETm,n,k
[Aw1Aw2 ]

=

w1
∑

j=0

(

n

w1

)(

w1

j

)(

n− w1

w2 − j

)

×

(

1 + xw1

2

)m(
1 + xw2

2

)m

ξmw1,w2,j

=

(

n

w1

)(

n

w2

)(

1 + xw1

2

)m(
1 + xw2

2

)m

+

w1
∑

j=0

(

n

w1

)(

w1

j

)(

n− w1

w2 − j

)

×

(

1 + xw1

2

)m(
1 + xw2

2

)m
(

ξmw1,w2,j
− 1
)

= ETm,n,k
[Aw1 ]ETm,n,k

[Aw2 ]

+

(

1 + xw1

2

)m(
1 + xw2

2

)m

×
w1
∑

j=1

(

n

w1

)(

w1

j

)(

n− w1

w2 − j

)

(

ξmw1,w2,j
− 1
)

. (115)

In the last equality, the range of the summation onj was
changed from[0, w1] to [1, w1]. This is becauseξmw1,w2,j

−1 =
0 whenj = 0, that is

ξmw1,w2,0 − 1 =

(

1−
xw1+w2 − xw1+w2

(1 + xw1)(1 + xw2)

)m

− 1

= 0. (116)

In the derivation of equation (115), the following identitywas
also used,

w1
∑

j=0

(

n

w1

)(

w1

j

)(

n− w1

w2 − j

)

=

(

n

w1

)(

n

w2

)

. (117)

From equation (115), we obtain the covariance

CovTm,n,k
(Aw1 , Aw2) = ψ(w1, w2) (118)

for 1 ≤ w1 < w2 ≤ n. If 1 ≤ w2 < w1 ≤ n then

CovTm,n,k
(Aw1 , Aw2) = CovTm,n,k

(Aw2 , Aw1) = ψ(w2, w1).
(119)

Thus, it is reasonable to defineψ(w1, w2) = ψ(w2, w1) if
1 ≤ w2 < w1 ≤ n.

We now discuss the casew = w1 = w2. For this case, the
second moment has the form

ETm,n,k
[A2

w]

=
∑

x∈Z(n,w)

∑

y∈Z(n,w)

Pr[Hxt = 0, Hyt = 0]

= A1(w,w)Q
m
1 +A2(w,w)Q

m
2 +A3(w,w)Q

′m
3 ,

which can be written as

ETm,n,k
[A2

w]

=

w−1
∑

j=1

(

n

w

)(

w

j

)(

n− w

w − j

)

×

(

(

1 + xw

2

)2

−
x2w − x2w−2j

4

)m

+

(

n

w

)(

n− w

w

)(

1 + xw

2

)2m

+

(

n

w

)(

1 + xw

2

)m

=

w
∑

j=0

(

n

w

)(

w

j

)(

n− w

w − j

)

×

(

(

1 + xw

2

)2

−
x2w − x2w−2j

4

)m

+

(

n

w

)(

1 + xw

2

)m

−

(

n

w

)

(

(

1 + xw

2

)2

−
x2w − 1

4

)m

= E[Aw ]
2

+

(

1 + xw

2

)2m w
∑

j=1

(

n

w

)(

w

j

)(

n− w

w − j

)

(

ξmw,w,j − 1
)

+

(

n

w

)(

1 + xw

2

)m

−

(

n

w

)(

1 + xw

2

)m

= E[Aw ]
2 + ψ(w,w). (120)

From the last equation, we obtain the variance

CovTm,n,k
(Aw , Aw) = ψ(w,w). (121)

This completes the proof of Lemma 4.
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