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On Undetected Error Probability
of Binary Matrix Ensembles

Tadashi Wadayana

Abstract—In this paper, an analysis of the undetected error codes [6][7] can be utilized to prove concentration resfdts
probability of ensembles ofm x n binary matrices is presented. weight distributions.
Two ensembles are considered: One is an ensemble of dense The evaluation of the error detection probability of a given

matrices, while the other is an ensemble of sparse matrice¥he d . ity check tix) i lassical bl .
main contributions of this work are (i) derivation of the err or code (or given parity check matrix) is a classical problem in

exponent of the average undetected error probability and § coding theory [2], and some results on this topic have been
closed form expressions for the variance of the undetectedrer  derived from the view point of a probabilistic approach. For

probability. It is shown that the behavior of the exponent fa example, for a linear code ensemble the inequatity< 2™,
a sparse ensemble is somewhat different from that for a dense has long been known, wher®; is the undetected error

ensemble. The variance of undetected error probability leds to a babilit dm is th b f f ity check
concentration result. Furthermore, as a byproduct of the pioof of probability andm 1S the number of rows of a parity chec

the variance formulae, simple covariance formulae of the wight ~Matrix. Since the undetected error probability can be esqme
distribution are derived. as a linear combination of the weight distribution of a code,

there is a natural connection between the expectation of the
weight distribution and the expectation of the undetecteore
|. INTRODUCTION probability.

Random codings an extremely powerful technique to show In this paper, an_analysis O_f the und_etected_error profybili
the existence of a code satisfying certain properties.dtieen '(I)'f ensemblebT of binary ”?g”'cz_s (())f Sine>x n 1S preslentida
used for proving the direct part (achievability) of many egp WO ensem ”ez are c(;)n5| ered. bne rllsl anhenserr]n € of dense
of coding theorems. Recently, the idea of random coding h trlcebsl, C? ed aandom enserr|1| Jewhile the other is gln
also come to be regarded as important from a practical poﬁﬂsem € of sparse mat”c‘?s’ ca es_icarse matrix ensemble
of view. An LDPC (Low-density parity-check) code can pd\N error detection scheme is a crucial part of a feedback erro
constructed by choosing a parity check matrix from a Sparggrre_ctlon scheme such as ARQ(Automanc Repeat reQuest).
matrix ensemble. Thus, there is a growing interest in ranylonPeta”ed knowledge of the error detection performance of a
generated codes matrix ensemble would be useful for assessing the perfor-

One of the main difficulties associated with the use JF2"¢€ of a feedback error correction scheme.

randomly generated codes is the difficulty in evaluating the The contents of this paper are arranged as follows: Firstly,

properties or performance of such codes. For example, itV will f(t))czﬁ_tonltthgllek)rrorhexportlﬁnttt(r)]f averagiz ?ndm:ted
difficult to evaluate minimum distance, weight distributjo error probabiiity. it will be shown that the asymptotic g

ML decoding performance, etc. for these codes. To overco e of _the weight distribution determine;lthe gxpongnEnTh
this problem, we can takegarobabilistic approachin such an the variance of undetected error probability will be dismads

approach, we consider an ensemble of parity check matric Q. derive the variance, we need to know the covariance of

i.e., probability is assigned to each matrix in the ensembf € weight distribution. Simple covaria_nce formulae foe th.
A property of a matrix (e.g., minimum distance, weigh andom ensemble_ and Fhe sparse matrix ensemble are derived
distributions) can then be regarded as a random variable. ﬂsed on a combinatorial approach.
is natural to consider statistics of the random variablehsuc
as mean, variance, higher moments and covariance. In some
cases, we can show that a property is strongly concentratedn this section, the ensemble average of the undetected erro
around its expectation. Such a concentration result jastifie probability of a given matrix ensemble is discussed.
use of the probabilistic approach.

Recent advances in the analysis of average weight disti- Notation
butions of LDPC codes, such as thosg describeq by Litsyngor a givenm x n(m,n > 1) binary parity check matrix
and Shevelev [3][4], Burshtein and Miller [5] Richardsory |et (1) be the binary linear code of lengthdefined by
and Urbanke [8], show that the probabilistic approach is &, namely,
useful technique for investigating typical properties ofles N
and matrices, which are not easy to obtain. Furthermore, the C(H) ={xz € F}' : Hz' = 0}, (1)
second moment analysis of the weight distribution of LDPS:V

Il. AVERAGE UNDETECTED ERROR PROBABILITY

here F, is the Galois field with two element§0, 1} (the

tNagoya Institute of Technology, email:wadayama@nitecjpaA part of addition overF? is denoted b@)- In this paper, a boldface
this work was presented at ITA workshop in UCSD, Feb. 2007. letter, such ag for example, denotes a binary row vector.
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Throughout the paper, a binary symmetric channel (BS®) assigned. It is well known [1] that the average weight
with crossover probabilitye (0 < e < 1/2) is assumed. distribution of R,, ,, is given by
We assume the conventional scenario for error detection: A n
transmitter sends a codeword € C(H) to a receiver via Ex,, . [Aw(H)] = 2m< > (6)
a BSC with crossover probability. The receiver obtains a w
received wordy = x @ e, wheree denotes an error vector.for w € [0,n]. The notation[a, b] denotes the set of consec-
The receiver firstly computes the syndrome- Hy® and then utive integers froma to b. Since a typical instance of this
checks whetheg = 0 holds or not. ensemble contain®(n?) ones, the ensemble can be regarded
An undetected error event occurs whde’ = 0 ande # 0.  as an ensemble of dense matrices.
This means that the error vecterc C(e # x) causes an 2) Sparse matrix ensembleéfhe sparse matrix ensemble
undetected error event. Thus, the undetected error priitgabi7..».x contains all the binaryn x n matrices {n,n > 1),

Py (H) can be expressed as whose elements are regarded as i.i.d. binary random vasiabl
o o such that an element takes the value 1 with probabﬂi@
Py(H)= > - @ (2)  k/n. The parametek(0 < k < n/2) is a positive real number
ecCc(H),e+0 which represents the average number of ones for each row. In

other words, a matrix! € 7, can be considered as an
output from the Bernoulli source such that symbol 1 occurs
with probability p.

wherew(x) denotes the Hamming weight of vectasr The
above equation can be rewritten as

n From the above definition, it is clear that a matiik €
Py(H) = Z Ay (H)e" (1 —e)" ", (3) Tk is associated with the probability
w=1 _ _

P(H) _ pw(H)(l _p)mn—w(H)7 (7)

where A, (H) is defined b
() Y where w(H) is the number of ones i (i.e., Hamming

Ay (H) A Z I[Ha' = 0]. (4) weight ofH). T_he average weight distribution of sparse matrix
ensemble is given by

Tez(nw)

. . o 1 w\ ™
The set{ A,,(H)}"_, is usually called theweight distribution Er,, . i [Aw(H)] = < +2I ) <n) (8)
of C(H). The notationZ (™) denotes the set of-tuples with w

weightw. The notationl[condition] is the indicator function

ot _ Hs T for w o€ [0,1n] where z 29— 2p. The average weight

such thatl[condition] = 1 if condition is true; otherwise, it gistribution of this ensemble was first discussed by Litsyd a

evaluates to 0. _ _ Shevelev [3]. Ifk is a constant (i.e., not a function af), a
Suppose tha§ is a set of binaryn xn matrices(m, n > 1).  typical matrix in the ensemble contaif¥n) ones. Thus, this

Note thatG may contain some matrices with all elementgnsemple can be considered as an ensemble of sparse matrices
identical. Such matrices should be distinguished as distin

matrices. A probabilityP(H) is associated with each matrix
H in G. Thus,G can be considered as amsemblef binary ] . )
matrices. Letf(H) be a real-valued function which depends FOr @ givenm x n matrix H, the evaluation of the unde-
on H € G. The expectation off(H) with respect to the tected error probability?; (H) is in general computationally

C. Average undetected error probability of an ensemble

ensembleg is defined by difficult, because we need to know the weight distribution of
C(H) for such evaluation. On the other hand, in some cases,
Eglf(H)] & Z P(H)f(H). (5) We can evaluate the averagefaf (H) for a given ensemble.
freo Such an average probability is useful for the estimatiorhef t

) S ) ) undetected error probability of a matrix which belongs te th
The average weight distribution of a given ensentbls given  ansemble.

by Eg[A.,(H)]. This quantity is very useful for analyzing the = Taking the ensemble average of the undetected error prob-
performance of binary linear codes, including analysishef t 5jjity over a given ensemblg, we have

undetected error probability.

EglPy(H)] = FEg|Y Au(H)e"(1—e)" "
B. Binary matrix ensembles w=1

Attention is focused on two types of ensemble in this paper:
the random ensemble and the sparse matrix ensemble. In this
subsection, the definition and the average weight distdbut In the above equationsd can be regarded as a random
of both ensembles are briefly reviewed. variable. From this equation, it is evident that the average

1) Random ensembleThe random ensembl&,, , in- of Py(H) can be evaluated if we know the average weight
cludes all the binary matrices of size x n for (m,n > 1). distribution of the ensemble. For example, in the case of
From this definition, it is evident that the size®f,, ,, is2™". the random ensembl®&,, ,, the average undetected error
For each matrix iR, ,, an equal probability?(H) = 1/2™"  probability has a simple closed form:

> EglAw(H)e(1— "™ (9)



Lemma 1:The average undetected error probability of ran- 2) Error exponent and asymptotic growth rat€he asymp-

dom ensembl&,,, ,, is given by totic growth rate of the average weight distribution (for
- simplicity henceforth abbreviated as the asymptotic ghowt
Er,, JPu(H)]=2""(1-(1-¢€)"). (10) rate), which is the basis of the derivation of the error exgran

is defined as follows.

(Proof) Combining[(6) and_{9), we have Definition 2: Suppose that a series of ensemb]€s},.~0

n is given. If
ERp o [Po(H)] = Z By [Aw(H)le (1 = €)" lim E log, Eg,, [Aen]
w=1 n—oo N
¢ g—m (M) S exists for0 < ¢ < 1, then we define theasymptotic growth
- 2—:1 w)E A0 rate f(¢) by
= 27"(1-(1-¢"). (11) FO 2 tim Liog, Eg, [Ae]. (15)
n—oo N
The last equality is due to the binomial theorem. [0 The parametef is callednormalized weight 0
From this definition, it is clear that
D. Error exponent of undetected error probability Eg, [Agy] = 27O +e) (16)

For a given sequence d¢fi — R)n x n matrix ensembles \yhere the notation(1) denotes terms which converge to 0 in
(n =1,2,3,...,), the average undetected error probabilityhe |imit asn goes to infinity. The asymptotic growth rate of
is usually an exponentially decreasing functionrofwhere some ensembles of binary matrices can be found in [3][4][5].
R is a real number satisfying < R < 1 (called thedesign  The next theorem gives the error exponent of the undetected
rate). Thus, the exponent of the undetected error probability é¢ror probability for a series of ensemblgs,, } 0.
of prime importance in understanding the asymptotic beftavi Theorem 1:The error exponent 0fGn tnso IS given by
of the undetected error probability.

1) Definition of error exponentLet {G,},-o be a series 16, = Oi‘l}gl[f(é) + llogy e+ (1 = £)logy(1 —¢)],  (17)
of ensembles such th&, consists of(1 — R)n x n binary -
matrices. In order to see the asymptotic behavior of tieéheref(£) is the asymptotic growth rate dG,, },~o.
undetected error probability of this sequence of ensemhles(Proof) Based on the definition of asymptotic growth rate, we
is reasonable to define the error exponent of undetected e@n rewriteZg, in the form

probability in the following way: |
Definition 1: The asymptotic error exponent of the average Tg, :nlggo n logy Eg, [Fu]
undetected error probability for a series of ensemblgs .~ 1 n
is defined by = lim —log, z_:lEg" [Aple® (1 — )"
a1 Y
Ig, = lim —log, Eg, [Pu] (12) ~ Jim X log, 3 27U (4K (enw)+o(1)),

n—oo n
w=1

if the limit exists.

O . .
Henceforth we will not explicitly express the dependence ¥fhereK (e, n,w) is defined by
Py on H, writing insteadP;; to denotePy (H) in all cases AW w
where there is no fear of confusion. K(e,n,w) = n logy € + (1 N E) logy(1 —€). (18)
The following example describes the exponent of one ragsing a conventional technique for bounding summation, we
dom ensemble. have the following upper bound df,,:
Example 1:Consider the series of random ensembles n
{Rn,1—Rr)n}n>0- It is easy to evaluatér, . .- Ty, = lim 1 log, Z on(f(2)+K (e;n,w)+0(1))
n—,oo N el
TRG e = Jim —10g Eriy gy, [PU] < Tim L log, i 91U () H cme)+o(1)
. 1 —(1—-R)n n noeen =
= lim ~log, 2 A=Rn — (1 —e)™) — lim m%xllogg 9gn(f () +K (e;n,w)+o(1))
= —(1-R). (13) noec w=lm

= Jim e [ (57) + K eom ) 001

This equality implies that the average undetected errobgro o
bility of the sequence of random ensembles behaves like =S [£(€) 4+ €1ogy € + (1 — £)logy (1 — €)] . (19)

ER,pyun [PU] = 9—n(1-R) (14) We can also show thdlg, is greater than or equal to the right-
’ hand side of the above inequalify {19) in a similar manner.
if n is sufficiently large. Note that the exponenfl — R) is This means that the right-hand side of the inequality is the
independent from the crossover probability ] asymptote oflg, in the limit as n tends to infinity.



The error exponent of this ensemble shows quite a different
The next example discusses the case of a random ensentiddavior from that for random ensembiles.
Example 3:Consider the sparse matrix ensemble with pa-
Example 2:Let us again consider the series of randoframetersk = 0.5 andk = 20. Let
ensembles given bYR(1_ryn.nn>0. These ensembles have

the asymptotic growth raté(¢) = h(¢) — (1 — R), where the glsPm) (0) A H(0) + (1 — R)log, (1 + G_W)
function h(z) is the binary entropy function defined by ‘ 2
+ Llogye+ (1 —4)logy(1—e). (26)
AN 2 2
h(z) = —zlogy w — (1 — z)log, (1 — x). (20) Figure [2 includes the curves of*"™ () where ¢ =
In this case, with respect to Theoréin 1, we have 0.1,0.2,0.4. In contrast thET"d) (¢) of a random ensemble, we

can see thag{*"™ (¢) is not a concave function. The shape of
the curve ofgﬁs”m)(é) depends on the crossover probability
(21) For largee, g.(¢) takes its largest value arourid= ¢. On the
Let ' 1—¢ other hand, for smak, ¢**""(¢) has a supremum at= 0.
Dy = llog, (—) + (1 —2¢)log, (—) (22) Figure [3 presents the error exponent of sparse matrix
€ 1-e ensembles with parameteRs= 0.3,0.5,0.7,0.9 and k = 20.

TR gy = sup [h(€)—(1—R)+Llogy e+(1—¢)logy(1—¢)].
0<t<1

By using D, ., we can rewrite[(21) as As an example, consider the exponent #or= 0.5. In the
regime where is smaller than (around) 0.3, the error exponent
TR s = swp [(1-R)=DpJ. (3 9 . in (around) P
0<t<1 is a monotonically decreasing function af

Since Dy . can be considered as the Kullback-Libler diver-

gence between two probability distributioris, 1 — ¢) and 0 o4
(¢,1 -1, D, is always non-negative anfd, . = 0 holds €02
if and only if £ = e. Thus, we obtain 02k

sup [—(1 = R) — D] = —(1 - R), (24) .«

0<e<1 0.4 |

which is identical to the exponent obtained in expresdid@).(1
(rnd) A

gE(SPm)(D

Let g¢ "“(¢) = h(¢) — (1 — R) + flogge + (1 — -06 |-
. . . d
0)log,(1—e¢). Figurel displays the behavior gf "® (¢) when
R = 0.5. This figure confirms the result that the maximum 08 [\
d . . \
(SUPg< <1 g )(f) = —0.5) is attained a¥ = «. 0
1 I I I I
0.4 : 0 0.1 0.2 0.3 0.4 0.5
€=04 —— i i
602 Normalized weight
-0.5 — — — e=0.1 The curves ofgiSpm) (£) correspond to the parameters= 0.1, 0.2, 0.4 are presented. The parameters
g B R = 0.5, k = 20 are assumed. As a reference, line-ef(1 — R) = —0.5 is also included in the figure.
06 Fig. 2. The curves of*?™ (¢) for sparse matrix ensembles.
g orp S R
08}
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09 | 1 01}
-0.2
1 I I I I
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Normalized weight 2
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The curves ngirnd) (£) correspond to the parametets= 0.1, 0.2, 0.4 from left to right are presented. As a é -0.4 -
reference, line of— (1 — R) = —0.5 is also included in the figure. §
o -05F
Fig. 1. The curves of.(¢) for random ensembles witk = 0.5. 06 |
R=03 ——
0.7 + R=0.5 -
. R=0.7 -
E. Error exponent of sparse matrix ensemble og LRSS ‘ ‘ ‘
0 0.1 0.2 0.3 0.4 0.5

The asymptotic growth rate of the sparse matrix ensemble
T .k [3] With a constant and design rate? is given by
1+ e 2kt
)

Crossover probability €

The curves of '~ correspond to the parametefs = 0.3, 0.5, 0.7, 0.9 and k = 20. are presented.
m,n

k

ﬂ@=M@+O—mb&<

(25) Fig. 3. Error exponent of sparse matrix ensemble.



The examples suggest that a sparse ensemble has a lkeissobvious that
powerful error detection performance than that of a dense
ensemble (such as random ensemble) in terms of the err6iP [f(£)+{logy e+(1—0)logy(1—€)] = max{gc(0), ge(€)}
exponent. However, if the crossover probability is suffitig o<t=t (29)
large, the difference in exponent of sparse and dense eis®MmRo|ds. Sinceh(0) = 0, we have
is negligible. For example, the exponent of the sparse matri
ensemble in Fid.13 is almost equal to that of random ensemble 9(0) = a(0) + log, (1 —¢). (30)
whene is larger than (around) 0.3.

The above properties of the error exponents of sparse mafdR the other handy(e) is obtained in the following way:

ensembles can be explained with reference to their average

weight distributions (or asymptotic growth rate). Figure 4 g9(e) = hle) +ale) +elogy e+ (1 —¢)logy (1 —¢)
displays the asymptotic growth rates of a random ensemble = h(e)+ale) — H(e)
and a sparse matrix ensemble. = af(e). (31)
06 Combining Theorerhl1 and these results, we get the claim of
the lemma. 0
0.4
[ /
8 I11. VARIANCE OF UNDETECTED ERROR PROBABILITY
£ 02
§ In this section, we first discuss variance of undetected erro
£ ok probability for random ensemble. We then discuss the case of
g e sparse matrix ensemble.
E | e
< 02
A. Variance of undetected error probability: random enskmb
-0.4 - Random ensemble (R=0.5) —— B
Sparse matrix ensemble (R=0.5, k=20) —— 1) Covariance formula:In the previous section, we have
0 0.05 0.1 0.15 0.2 0.25 0.3

seen that the average weight distribution plays an impobrtan
role in the derivation of average undetected error prokgbil
Fig. 4. Asymptotic growth rate of a random ensemble and assparatrix  Similarly, we need to examine theovariance of weight
ensemble. distributionin order to handle the variance of undetected error
probability.

The weight of typical error vectors is very closeeto when Definition 3: For0 < wy, w2 < n and a given ensemblg,
n is sufficiently large. For a large value ef such as = 0.4, the covariance of weight distribution is defined by
the average weight distribution around = 0.4n, namely A
Eg[Ap.4n], dominates the undetected error probability. In sucHCovg (Aw,, Aw,) = EglAw, Aw,] — Eg[Aw, | Eg[Aw,]. (32)
a range, the difference of the average weight distributions

corresponding to random and sparse matrix ensembles i smal . T

weight distributions of low weight become the most influehti Variance of the undetected error probability for a random
parameter. The difference in the average weight distasti €nsemble.
of small weight results in a difference in the error exponent Lemma 3:For a random ensembfe,., ,, the covariance of
Note that the time complexity of the error detection opAw, and A, is given by
eration (multiplication of received vector and a parity cke
matrix) is O(n?)-time for a typical instance of a random Covr,,, ., (Auns Aws)
ensemble, and i®(n)-time for a typical instance of a sparse _{ 0, 0 < wi,wz < n,wp # we
matrix ensemble. A sparse matrix offers almost same error | (1 —=27")27"(}), 0 < wy = wy < n.
detection performance of a dense matrix with linear tim&roof) See Appendix
complexity if e is sufficiently large. i N . S =
The following lemma is useful in understanding the behav- Remark 1:The variance 3‘; Wf;?“ﬁ distribution, namely
ior of the error exponent without detailed numerical optiai COVRW_" (Aw, 4y) = (1 —277)2 . (w) has _already b_een
tion. shown in [8]. Thus, the new contribution of this lemma is the
Lemma 2:1f f(¢) has the formf(¢) = h(¢) + a(¢), then C3SECOVR.... (Auwy, Auy) =0 Whenw, ws.
the following lower bound off;. holds: _ Remark 2:The_covar|ance of the weight dlstrlbL_mon for a
" given ensemblg; is useful not only for the evaluation of the
Tg, > max {a(0) + logy(1 —€), r(e)} . (27) variance ofPy. Let X be a random variable represented by

(Proof) Let
ge(0) & F(0) + logy e + (1 — O)logy(1 —¢).  (28)

Normalized weight

(33)

X = i a(w)Ay, (34)

w=0



where o(w) is a real-valued function ofv. The covariance  _ Xn:(l _g~m)gm (n)EQw(l _e)nw (40)

of the weight distribution is required more generally foe th = w
evaluation of the variance of, which is given by .
The last equalities are due to Lemrha 3. We can further

" simplify the expression using the binomial theorem,
% = Z Z Covg(Aw, s Aw, ) a(wr)a(ws). (35) implify Xp on using ! !

w1=0w2=0 n

2 1 —9—m)p—m TL) 2\w 1— 2\n—w
A specialized version (the case whefé = Py) of this TR ( ) wz::O (w ()" (=97
equation will be derived in the proof of Theorelh 2. For —myo—m 2n
) (1—-27™)27"™(1—¢)
example, ifa(w) = 1(w € [0,n]), X denotes the number of

codewords inC'(H). Based on the covariance, we can derive = (1272
the variance of the number of codewords for a given ensemble x ((E+(1-e*)"=(1-e)). (41)
G.

2) Variance of undetected error probabilityfthe variance Thé last qull'_tyblls E]hz.d"’}'m ofr:he thgc;]reg\.. ibuti 0 d
of the undetected error probabilify;; is given by xampie 4. 1able Isplays the weight distributions an

undetected error probabilities for the 4 matriceRin,. Since
2 A

=2 _ 2
The next theorem gives a closed form expression for the WEIGHT DISTRIBUTIONS AND UNDETECTED ERROR PROBABILITIES
variancess, , . H CH) A0 A Pu(H)
Theorem 2:For a random ensembg,,, ,,, variance of the (0,00 {00,01, 10,11} 2 1 2 — 522
ili is Qi (0,2) {00, 10} 1 0 €e—e¢
undetected error probability’;; is given by (L0) f00 01 1 0 ‘TS
2
U’?Zmyn — (1 _ 27m)27m ((62 + (1 _ 6)2)71 _ (1 _ 6)2n) ) 1,1 {00, 11} 0 1 €
(37) I . .
(Proof) We first consider the second moment of the undetecfdy €qual probability is assigned to each matrix, the aveohge
error probability: Py can be written as
2¢ — €2) + 2(e — €2) + €2
ERm’n[Pé] ER1,2[PU] = ( ) 4( )
2
:ERm,n <Z Awew(l — E)n’u)) = € — 56 . (42)
w=1

On the other hand, from Lemnla 1, we have

n

:ERm,n [Z i AwlAw2€w1+w2(1 _ 6)2n—w1—w2

Br,,[Pu] = 271 - (1-¢)?)

’u}1:1 7JJ2:1 1
=>" > Er,., [Auw, Aw,] €T (1 — )17 2(38) 2

w1 =1 wa=1 which is identical to expression (42).

The squared average undetected error probability can b&Ve now consider the variance. From Tafle |, it is easy to
expressed as compute the second moment Bf;,
" 2 Fr,,[P2] (26 — €)% + 2(e — €2)? + (€2)?
ERm)n [PU]2 — ERm’n [(Z Awew(l _ E)nw)] Ri,2 U - 3 4
o w=l1 = 562 — 263 + ¢, (44)
- Z ZERM)TL [Aw] ER,,p [Aws] Subtracting the squared first moment from the second moment,

w1 =1 w2:1

we obtain the variance:

X ewrtwa(] — ¢)ZnTwimwa (39)
o7 = Egr,,[P3] - Er,,[Pv)?

Combining these equalities and the covariance of the weight Ra2 RalFo] = Bra o [PU] )
distribution (Lemmal13), the variance of undetected error _ §62 BV S (6 _ 1€2>
probabilitya%m _ can be obtained in the following way: 2

) _ 1 2 3 3 4
U72€m,n = € ¢ + 1€ (45)
=Er,,.[P3] - Er,,..[Pv]? Note that Theorerfll2 yields

= Z Z CovR,, , [Awys A, €1792(1 — )" w172 03{1,2 = (1-27"27'((+(1-¢?)*—(1—-¢)?)

wi=1w2=1 1
n = 562—634-264, (46)
= Z Covr,, ., [Aw, Aw) €V (1 — ¢)?"—2v

e which is identical to expressiofi (45). 0



TABLE Il

3) Concentration to averagerlhe variance derived in The-
) g ROOTS OF1 — R + logy(€*2 + (1 — €*)2) = 0

orem[2 can be used to show the following concentration result

R *
Corollary 1: The ratio of Py and E%,, ., [Py] converges to T0.1 0.366047 60_366047
1 in probability, namely, 0.2 0.307193
P 0.3 0.259613
=" 1 in probability (47) o8 01760
R U] 0.6 0.140933
asn goes to infinity ife(0 < ¢ < 1/2) satisfies 8'; 3-32;‘2231
1— R+ logy(e2 + (1 —€)?) < 0. (48) 09 0034687

(Proof) Letu 2 Ex,..[Pv] ando 2 OR,...- From Cheby-

shev's inequality, we have for 1 < wy,ws < n. The functiony(wy, w,) is defined by

PU 0'2
P’f‘ 76(1—0{,1"‘0{) §W7 (49) ¢(w17w2)
: s . A (T+zor\™ (14w \™
where« is a positive real number. If the equation = 5 5
fim ”—2 =0 (50) X i TN ) (€ 1) (86)
n—o0 [ = wy j wo — j w1 ,ws2,J )

holds, then the right-hand side of inequalityl(49) converige
0 in the limit asn goes to infinity regardless of the choice off 1 < wy < wy < n. If 1 < we < w1 < n, YP(wy,ws) is

a. This implies Py /1. converges to 1 in probability. defined by
We now discuss the asymptotic behavior of the rafig;.>. A 57
This ratio can be rewritten into the following form: Plun,we) = lws, wr). ®7)
o2 (1—27m)2m (24 (1—e2)n = (1—e)2) The symbol¢,,, ,,; represents
w2 2—2m(1 — (1 — ¢)n)2 witws _ w1 twz—2)
: m 2 ( (Qn )) 2n gwlngél_x - (58)
_ @M=D (@ A=) = (1= e 1+ zwr)(1 + zv2)
o _ —_ \n)2
oy ) for 1< wy <ws <n, 0<j<w.
2 €+0-¢7) ' (51) (Proof) See Appendix. O
B (1+0(1))? Remark 3:When & = n/2, a sparse matrix ensemble
From the above inequality, we get coincides with a random ensemble because 1/2 implies
9 P(H) = 1/2™ for any H. We discuss this case here.
lim 2 < lim 2070(E 4 (1-¢)?)"  (52)  Tosimplify the discussion, we assume that w; < w; <
neo e , , n. Letp = 1/2 (i.e., k = n/2). In such a case, we have
= lim 2n(-fHoe(H1=90)  (53) 5 — 1 _2p=0and&,, ., takes the following values:
n—oo .
Thus it is clear that?/u? converges to zero if the exponent 1wy <ws
1 — R+log,(e2 + (1 — ¢)?) takes a negative value. Cwrwaj = 1 w1 =wa,j <w (59)
Let ¢* be the root of the equation 2w =wo,j = wi.
1 — R+logy(e? + (1 —€¢)?) =0. (54) Substitutingz = 0 into equation[(56), we get
TableTl presents some valuesdffor values ofR from 0.1 to Cov(Au,, Au,) = 0, 1<w <w2 <n
0.9. Whene > ¢*, we havel — R+log,(e*? + (1 —¢€*)?) < 0. Vi Lwa) = gm2m(myom 1) 1 <y = wy < .
In such a regionPy concentrates around its average value in (60)
the limit asn tends to infinity. These equations coincide with the covariance of a random

ensemble as given in Lemrha 3. 0
B. Variance of undetected error probability: sparse matrix 2) Variance of undetected error _probabil_ityThe variance
ensemble of the undetected error probability is a straightforwardse
qguence of LemmBal4.

Theorem 3:The variance of the undetected error probabil-
ity of a sparse matrix ensemble%m,n,k is given by

1) Covariance formula:The covariance of the weight dis-
tribution for a sparse matrix ensemble is given in the foltayv

lemma.
Lemma 4:The covariance of the weight distribution for a n. n
sparse matrix ensembig, ,, ;. is given by O = DY Plwr, wa)e™ T (1 — )T,
’LU1:1 wg:l

COVTm,n,k (Awl ) sz) = lea w2)a (55) (61)



(Proof) From Lemmal4, the claim of the lemma follows as 10 g
9 Sparse -
O 102
= DD Covg i (Aus A ) (1 = e
wi=1wo=1 c
n.oon 8 10°
= D> W(wy,w)e T (1 — )T, (62) =
w1=1wz=1 108
O
Example 5:Let us consider the sparse matrix ensemble 1010
withm = 1,n = 2 andk = 1/2(p = 1/4). From the definition
of a sparse matrix ensemble, the following probability is 1072 — ~ " - - — .
assigned to each matrixP((0,0)) = 9/16, P((0,1)) = - 10 100 100 100 100 10

Crossover probability €

3/16, P((1,0)) = 3/16,P((1,1)) = 1/16. Combining the
undetected error probabilities presented in Tdble | and the
above probability assignment, we immediately have the first. 5. Average undetected error probabilities.
and second moments:

Random ensemblern = 20, n = 40, Sparse matrix ensemblen = 20, n = 40, k = 5.

E7—1,2,1/2 [PU] = ge - ge (63) 10° Random ———
21 3 Sparse ---------
Er,..P5 = Z€—Z&+¢€ (64)
8 8 105 .
From these moments, the variance can be derived,
0%72,1/2 = E7—1,2,1/2[P[2]] - ET1,2,1/2 [PU]2 .§ 10710 /_\
3, 35 15, g
= —€—= —€". 65
8 T8 Thaf (65)
We can also, however, consider another route to derive the 10%°
variance. From the definition af in equation[(5b), we have
¥(1,1) = 3/8 (66) 1020
107 10®  10° 10* 10 102 10t 10°
Zﬁ(l, 2) = 7!’(2’ 1) = 3/16 (67) Crossover probability &
1/1(21 2) = 15/64 (68) Random ensemblern = 20, n = 40, Sparse matrix ensemblen = 20, n = 40, k = 5.
From TheorenI3, we obtain the variance Fig. 6. Variance of undetected error probability.
2 2
Chans = D D Ylwnwg)e (1 —gimmme
““:1”2:21 s 3) Asymptotic behaviorWe here discuss the asymptotic
= (1, D)1 —e)* +9(1,2)*(1 — ¢)' behavior of the covariance of the weight distribution and
+ P(2,1)E(1 — )t +1(2,2)e*(1 —€)° variance ofP; a for sparse matrix ensemble. The following
= (3/8)2(1— )2+ (3/16)3(1 — ¢) corollary explains the asymptotic behavior of the covar@an
L B/16)E( — € + (15/64)e of the weight distribution, which is a consequence of Lemma
— € €
4.
3 3 15 .
= 562 - §e3 + a€4’ Corollary 2: For0 < ¢; < /5 < 1, the equality
which is identical to expressiofl (65). 0 1
The next example facilitates an understanding of how the  lim —log, Y(lin,len) = sup L(ly, 4o, k), (69)

average and variance @, behave. O<rsb

Example 6:We consider a random ensemble with = . ]
20,n = 40, and a sparse matrix ensemble with — holds whereL((,, {5, x) is defined by
20,n = 40,k = 5. Figure[® depicts the average undetected
error probabilities of the two ensembles. It can be observéd(y, {2, )
that the average undetected error probability of the random ls
ensemble monotonically decreases aecreases. In contrast, — —2(1 = R)+h(t) +h (gl) +h <1 — gl)
the curve for the sparse matrix ensemble has a peak around B _ _ oy
e ~ 0.025. Figure[6 shows the variance &, for the above + (1= R)logy (1 e )) :
two ensembles. The two curves have a similar shape, but the
variance of the sparse ensemble is always larger than tha{@foof) Let us assume thdt < w; < ws. In this case,
the random ensemble. O ¥(wi,ws) defined in equation[($6) can be rewritten in the




form

¢(w17 w2)

_ §U1+2a:“f1>m<1+2xwz>m
< 2 () () () s

Jj=1

2 (1) ()0

x (14 a4 W2  g@rtw2=20)ym(1 —§),  (70)
whered is defined by
1+ W1 4 gw2 4 pwitws m
0= (1 + o 4 gwz :vw1+w2—2-7'> ' (1)

In the above derivation, the following identity was used:

€w1,w27j
pwitw2 _ pwitwz—2j
[T a1+ 7)
(1 + xwl)(l + xwz) — gwitwz | gwitwz—2j
(T =)L+ 22)
14 W1 4 gW2 4 pWitw2—2j

_ ity (72)

= 1—

Note that
14 W1 4+ g2 4 pwitws
14 zwi 4+ gw2 4 gwitwz—2j
holds whenj > 0. This is because =1 — 2k/n < 1.
Letting w; = {in,ws = flon,m = (1 — R)n and
using equation[(40), we can derive an upper bound
(1/n)logy ¥ (£1n, £an):

1
- log, ¥ (€1n, €an)

<1

(73)

log2 (Eln)

((2)(7))

10g2(1_i_xéln_i_xégn_’_xfln-i—fgn 27)

< 21-R)+

lin 1
+ max—10g2

+ (

£ Tlog,(1- ). (74)

It is stralghtforward to see that the following limits are

obtained:
im 28207 _ (75)
n—o00 n
oo 2 lin j lon — j
— h(£)+h( )+h(£2_“> (76)
61 1- 61 ’

wherex is a real number satisfying < « < ¢; andj = sn.

we have
lim (1 — R)logy(1 + 20 4 plen 4 x&"Hz"—zj)

n—o0
(1-R)
X logy(1+ e 2k0 1 g= 2k 4 o=2k(fLi+l=2x)) (78)

Finally, from inequality [[7B), we get

1
- log,(1 —6) =0. (79)
Applying these equations to inequalify {74), we get
lim — 1og2 PY(lin, ban) < sup Ly, L, k). (80)

n—oon 0<r<ly

On the other hand, in a similar way, we can also prove that

1
lim — log, (410, lan) >

n—,oo N

sup L({1, 0o, k).
0<K<ly

(81)

Combining these two inequalities, we obtain the claim of the
corollary. 0

We now extend the definition oL(¢1, %2, k) in order to
make it consistent with the definition @f(w,, ws):

L(t1, b, k) 2 L, 01, k)

if /1 > {5. The following corollary gives the asymptotic
growth rate of thes. I

Corollary 3: The asymptotlc growth rate of the variance of
the undetected error is given by

(82)

sup sup sup U(fy,fa, k),

1
. 2 _
lim —log, Tt rymme =
0<21<10<l2<1 0<k<t,
(83)

n—oo N

fWhereU(él,EQ, k) Is given by

U(ly,02,K) (01 + £2)logy e+ (2 — €1 — £3)logy(1 —€)
+ L(El,ég,li). (84)

(Proof) Applying CorollaryR to Theorefd 3, we obtain

1
lim — log, 07—m .

n—oo M
1
= sup sup [lim —logy®(lin,lan)
0<£1<10<lp<L 7O N
+ lim l 1Og2 Ezanrfzn(l _ E)anllnflzn

n—o00 M

sup sSup [ sSup L(Zh 827 KJ)
0<£1<10<42<1 0k<ty

+ (14 £2)logy e+ (2 — 41 — £a)log,(1 — €)]. (85)

O

IV. APPENDIX
A. The proof of Lemmia 3(Covariance for random ensemble)
1) Preparation of the proof:The second moment of the

If k& is a constant an@ < ¢ < 1, then, making use of Litsyn weight distribution for a given ensembgis given by

and Shevelev’s [3] result that

k in
lim (1—2 (—)) = lim 2z
n—00 n n—oo
= (77)

Eg [Awl sz]

= Fg I[Hz' = 0]I[Hy" = 0]

>

recz(mw) yeznws)
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for 0 < wy,ws < n. Since Since the index sets are mutually exclusive, the equation
i1 +1i2 + i3 + i4 = n holds andi, can take the integer values

I[Ha' = 0]I[Hy' = 0] = I[Hz' = 0, Hy' = 0], in the following range:
we have max{w; + wg — n,0} < iy < min{wy,wa}.  (93)
Eg [Aw, Aw,) The size of each index set can be expressed asw; — is,

13 = Wo — 19, i4:n—(w1 -+ wo —ig).
The next lemma forms the basis of the proof of Lenita 3.

_ t__ t __
=Fg Z : (Z )I[Hw =0,Hy =0] Lemma 5:For anyz € Z(™%1) andy € Z(mw2)(0 <
Z xez Zl yezimz w1, wy < n), the following equalities hold:

= Eg [I[H:I:t =0,Hy' = O]] o

xrez(n,wi) yeZ("ﬂ%) #{h S F2n : h:vt = 0, hyt = 0} = { §n71 2 i Z

=> > > PH)I[Hz' =0,Hy" = 0](86) (94)

xezmw) yeznws) HEG (Proof) In the following, we are going to prove the claim of

_ the lemma for the condition8 < w; < we < n. The proof

For the case wheré = R, », we obtain for the final casé) < w, < wy < n then follows immediately

upon exchanging the variables, andw; in the proof.
Firstly, we will show that

#{H:Hax!=0,Hy' =0
= > > { S ! (87) #{h € FP : ha! = 0, hy' = 0} = 272 (95)
xeZ(nwi) yeznws)

Er Awlsz]

m,n[

if 0 <w; <ws <nandx # y. Let the support sets af and

We here encounter a problem of counting the matricgsbe S(x) = {i €e[l,n]:z; =1} and S(y) = {ie[l,n]:
which satisfy bothHz' = 0 and Hy" = 0. In preparation to y, — 1}, respectively. We need to consider the following three
solve this counting problem, we will introduce some notatio cases:

o Case (i):0 < iz < wy (i.e., S(x) and S(y) overlap but

Definition 4: For a given pair(z, y) € Zmw1) x Z(mw2), S(y) does not includes(z))
the index setd, I», I3, I, are defined as follows: « Case (ii):iz = 0 (i.e., S(z) and S(y) do not overlap)
o Case (iii):io = wy(i.e., S(y) includesS(x))
A
I Z {k€ln]:ox =14, =0} (88)  These 3-cases are depicted in [Fig.8.
I, = {kel,n]:zy=1y,=1} (89)
A .
Is = {ke[lin]:zp =0,y =1} (90) Case (i)
Iy 2 {ke[l,n]:zr=0,yr =0}, (91) 0 <iz2 <wy - s
wherex = (21, x9,...,2,) andy = (y1,42,...,Yn). These X | |
regions are illustrated in F[g.7. The size of each indexsdet
noted byiy, — %1, (k = 1,2,3,4). Leth = (h1, ha, ..., hn) Y | I

be a binaryn-tuple. The partial weight ok corresponding to
an index setl(k = 1,2,3,4) is denoted byw(h), namely

Case (ii)
wi(h) = #{j € I : h = 1}. (92) =0 X | | |
= Y | | |
Pl n »
) i Case (iii)
1y Iy I3 14 P .
X w1 ones
! y |
Yy wWo Ones
[ represents ones. Fig. 8. The 3 cases.

Consider first Case (i). From the assumptioft io < wy, it

Fig. 7. The 4 regiondy, I, I3, I4. . . . ) . .
is evident thatl; # 0 (sinceis < wy), Iz # 0 (sinceis > 0),
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() (sincews > wy > i2). For anyh € F3', the equations The number of:-tuples satisfying the above condition is given

hzt = 0 and hy' = 0 hold if and only if by
(wy(h) is even, (wz(h) is even and (ws(h) is even Np, = 2771 x2H
or — 21’271 x 277.71'2
_ ol (100)

(wi(h) is odd , (w2(h) is odd and (w3 (k) is odd). The proof is completed

o
Thus, the number of vectors satisfying the above condion i 2) Proof of Lemma&]3:The proof of Lemmal3 consists of
given by two parts: The first part corresponds to the case where the
covariance becomes zero. The second part corresponds to the

Np = 2x2071x2= 7t x2s~l xon :
IR case where the covariance becomes non-zero.
= 2x2MTETxon We commence with the first part of the proof: Assume that
X Quz—i2—l y gn—wi—watis 0 < wy,wy < n,x #y. From Lemmdb we obtain
= 27 (96)  4{H :Haz' =0, Hy' = 0}
where Ny, is defined by _ H 4lh e B hat = 0, hy' = 0}
Np, £ #{h € Fy : ha' = 0, hy' = 0}. bl
_ n—2
In the above derivation, we used the equalities = i1 + - H 2
ig,w2:i2+i3,i4:n—(w1 +w2—i2). :n(n—Q)
Note that equation {96)(and equatiofs] (87)(@8)(100) to be = 2 : (101)
presented below) holds regardless of the sizd 6f; = 0 or Substituting into[(87) we obtain
tq > O)
We now consider Case (ii). For this cask, # 0 (since  ERum,n [Auwi Aw,]
wy > 0), I, = ((sincei, = 0) and I5 # § (sincews > 0). B #{H: Hx' =0,Hy" = 0}
The equalitieshz’ = 0 andhy® = 0 hold if and only if - Z Z gmn
xreZn wi) yGZ("!“Q)
(w1(h) is even and (ws(h) is ever). Z Z om(n—2)
The number of vectors satisfying the condition is given by a EeZtrwn) yeztrwa) 2mn
Np, = 27t x2e7lxon — 972m Z Z 1
= 2w1_1 X 2w2_1 X QT w1 w2 xrezmw) yezmw)
= on2 (97) _ g—2m( N n
he final . hi . w1 w2
The final case is Case (iii). For this caske, = (0 (since — Er. [AwlBxr.. . [Auw] (102)

is = wy), Io # O(sincei, = wy; > 0) and I3 # ( (since o _
x # y andw; < wy). These conditions lead to the followingThe last equality is equivalent ©Qovg,, ,, (Aw,, Aw,) = 0.

condition We now consider the second part of the proof: Assume that
) ) x = y. From Lemmdb we have
(we(h) is evern) and (ws(h) is even
#{H : Hx' = 0, Hy' = 0} = 2™~ 1), (103)
for hx! = 0, hy' = 0. Again,2"~2 n-tuples satisfy the above
condition, namely and so
Ny, = 221 x 2l x ok Er,, . [A] t t
- i _ H:Hz' =0,Hy' = 0}
— 9i2 1 wx Qu2—i2 1 % QN w2 _ Z Z #{ ) Yy
= 2n2 (98) xez(nw) Yyeznw 2
m(n—1)
Combining the above results for Cases (i)(ii)(iii), we abta = Z Z Il = yj2" 7"
expression[(95). Tezmw) yezmw
We then show that m(n 2)
LYy R
_ on—1 mn
Np, =2 (99) T g 2
holds if 0 < wy = we < n andx = y. For this case, we = 9—m Z Z Iz =
havel; = 0,1, # 0,13 = ((sincex = y). The equations Tz yez0mw)

hz! = 0, hy' = 0 hold if and only if

SER D SRD S SR

wy(h) is even xeznw) Yyezmw
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() (G)0)-G) e
w w/A\w w We next consider Case (ii). For this casg,js assumed to

9—2m (n) (n) Log-m (n) _9-2m (”) be zero. The probability thdt satisfieshz! = 0 andhy® = 0
w w w

w under the conditiori; = 0 is given by
= Br, [Au2+2 (") -2 (). (104 . .
Rm,n[ I°+ (w) (w ( ) Qs = 14+ 2n 14 2
The last equality is equivalent to 2 2 2
14 2™ 1+ 22
R e S () e
’ w

The proof is now completed.
The number of pairgx, y) satisfyingio = 0 is given by
B. Proof of Lemmal4 (Covariance of sparse matrix ensemble)

Consider two binary:-tuplesz € Z/(nw1) andy € Z(nw2) As(wr,ws) A W{(z,y) € 2w x Zww2) gy — 0}
As in the proof of LemmaAl3, we need to consider 3-cases: Case n\ /n— w
() 0 < 42 < wq, Case (ii)iz = 0, and Case (iiiis = wy. = < ) ( ) (110)

We first study Case (i). Suppose that a binarguple h is w1 w2
generated from a Bernoulli source wiftr(h;, = 1] = p(i €
[1,n]). Recall thatp is defined byp = k/n. We denote the fOr w1 < w2.
probability thath satisfiesha! = 0 anchy’ = 0 under the  Finally we consider Case (iii). We first consider the case
condition0 < iy < wy by Ql; that is 9 = Wi, T 75 Y The probability thath satisfiesha! =
0, hy' = 0 under the conditioriy = w1, T # y is

Q1 £ Prlha! = 0, hy' = 0]. (106)
As in the proof of LemmaAl3, we need to consider the condition: 0 <1 + zt2 > <1 +z's )
3 =
(wi(h) is even , (wy(h) is even and (ws(h) is even 2 2

14 2™ 14 w21
y - () ()
(w1 (h) is odd), (w2(h) is odd and (ws(h) is odd. 14 g1 4 pwa—wi | gw
It is well known that a binary vectdt,, to, . .., t,) generated - 4
from a Bernoulli source has even weight with probability+ (14" 14 2™2 gwitwz xwrwl’lll
(1—2q)*“)/2, wheregq is the probability that;(i € [1, n]) takes - 2 2 B 4 (111)

1 [1]. The probability that(ty, t2, .. .,t,) has an odd weight

is given by (1 — (1 — 2¢)")/2. For example, the probability we next consider the case= y. For this case, we have
thatw; (k) becomes even il + z*)/2. wherez =1 — 2p.

Based on the above argument, we can write the probability ;14w
Q1 as a function ofr, QB=—7— (112)
_ (A4 +a")(1+a")
Q1= 8 In both cases, the number of paits, y) satisfyingis = w;
(1 —2h)(1 —a%)(1 — 2) is given by
* 8
_ 1+ ghtie Zi2+i3 4 piitis Ag(lU1,1U2) é #{(m,y) c Z(n,wl) X Z("-ﬂm) g = wl}
1 4 W1 + w2 + xw1+w272’i2 = ( " ) ( n—u > (113)
= 1 w1 W2 — w1
1 w1 w2 witwe _ witwz w1 +wsz —2i2 ) ) )
S e e 1 L Rk We are now ready to derive the covariance of the weight
Lz /1 4 g2 LwHws _ g fws—2ip distribution. Assume thai; < w». The second moment can
= ( 5 >< 5 ) - 1 (107) be expressed as

From a combinatorial argument, we can see that the numbe}% (Ao, Au,]
of pairs (x, y) satisfying0 < iy < w;, which is denoted by 7k LFwrwa

A (wy,ws), is given by = g g Pr[Hz' =0, Hy" = 0]
Aq(wi,w2) Tegmu yesmna
7 = Ajp(wr,w2)QT + Aa(wr,w2)QY
A 1 1, W2 1 B 2
= Ly) € Zmw) o z(mw2) g <, <
Hlwy) 2 < ) - Agwn, ) QY (114)
- X () (109
= \wi/\J S \w2—j Substituting theQ; and A;(wi,ws)(i = 1,2,3) obtained



above into equation 114, we immediately have

ETm,n,k[AwlAw2]

S

X

M) ) ()

T+avr\ (142w pWitwz _ gwz—wi\ "
() () )
n\ (wi [n—w
> () (7))

| ™1 14 zv2 pUitwz_pwitwz=2j\
() () )

It is possible to retrievéer,, ., [Aw,]ET,, . . [Aw,] from the
right-hand side of the above equation:

Etn [AwlAw2

- 2 () ()

y 1+xw1 1+ w2 en

_ < ) <1+a:w1) 14+ zw2\™
(v I () (25)

. <)(”1><”;f”;>

" <1+:vw1 <1+:vw2) (€$17w27j_1)

= ETmnk wl]ETmnk[A ]

n (1+:vw1 (1+xwz)
<2 () ()0

j=1

X

_|_
/—\/—\g—\/—\b

I
= IMs
S)
+
S
=

). (115)

In the last equality, the range of the summation jorvas

changed from0, w1] to [1,w:]. This is becaus€y: ,, ;—1=
0 whenj = 0, that is
. pwitws _ gwitws \
571}1,11}2,0 -1 1- w w -
(14 2w1)(1 4 aw2)
= 0. (116)

In the derivation of equatiof (11L5), the following identitias
also used,

> () (0 =)L) e

=0 w1 i w2 — w1 w2

From equation[(115), we obtain the covariance
Covr,, o (Awy s Aw,) = (w1, w2) (118)

1+ gwr 14 gw2 pwitwz _ pwitwz—25\ "™
() () )
n
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forl <w; <ws <n.lf1<wy <w; <nthen

Covr, (A, Aw,) = Covr,, o (Awy, Awy ) = Y(we, wr).
(119)
Thus, it is reasonable to defing(w;,ws) = ¥(wa,wy) if
1 <wy <wp <n.
We now discuss the case = w; = ws. For this case, the
second moment has the form

ETm,n,k [A?u]

= > Y PrHa'=0Hy =0

meZ(n w) yeZ(n ,w)
= A1 (w,w)QY" + Az (w, w)Q3" + As(w,w)Q3",

which can be written as

- ()2
(

m 1 w
= (W) (")( B >
w w 2
= E[AJ*+ 1/J(w w). (120)
From the last equation, we obtain the variance
Covr, . (Aw, Ay) = Y(w, w). (121)
This completes the proof of Lemma 4. 0
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