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Abstract— A green code attempts to minimize the total en-
ergy per-bit required to communicate across a noisy channel.
The classical information-theoretic approach neglects the energy
expended in processing the data at the encoder and the decoder
and only minimizes the energy required for transmissions. Since
there is no cost associated with using more degrees of freedom,
the traditionally optimal strategy is to communicate at rate zero.

In this work, we use our recently proposed model for the
power consumed by iterative message passing. Using generalized
sphere-packing bounds on the decoding power, we find lower
bounds on the total energy consumed in the transmissions and
the decoding, allowing for freedom in the choice of the rate.We
show that contrary to the classical intuition, the rate for green
codes is bounded away from zero for any given error probability.
In fact, as the desired bit-error probability goes to zero, the
optimizing rate for our bounds converges to1.

I. I NTRODUCTION

With the development of billion transistor chips, the range
of communication has come down dramatically from hundreds
of kilometers (e.g. deep space communication) to a few meters
(e.g. ad-hoc wireless networks) or a few millimeters or even
less (e.g. on chip communication). To communicate over
smaller distances, the transmit power required is much smaller.
At these distances, the energy used in transmissions can be
comparable to that expended by the system processes. The
small size limits the ability of these chips to dissipate heat.
Further, the chip might be battery operated, imposing stringent
constraints on its energy usage. It is therefore of interest
to design coding techniques that minimize thetotal energy
consumed, which includes the transmission energy as well as
the processing energy. We refer to the coding techniques that
minimize the total energy asgreen codes.

The classical information theoretic approach finds the mini-
mum transmission energy required to communicate reliably
across the channel. The approach is motivated by long-
range communication, that corresponds to power constrained
channels. Shannon [1] first characterized the minimum energy
required to communicate across a channel with fixed rate. The
resulting bounds are expressed using ‘waterfall’ curves that
convey the revolutionary idea that unboundedly low proba-
bilities of bit-error are attainable using only finite transmit
power. This characterization raises a natural question: what
is the minimum energy required for communication that is
free of a rate constraint? The classical approach [2] [3] gives
the minimum transmission energy required (on average) to

communicate one bit reliably across the channel. For example,
for an AWGN channel of noise variance 1, this minimum
energy is

lim
PT →0

PT

C(PT )
= 2 ln(2) Joules. (1)

Since there is no penalty associated with lower rates, it is good
to use as many degrees of freedom as are available, and the
optimal transmission rate is zero.

The problem of minimizing combined transmission and
processing energy is well studied in networks. The common
thread in [4], [5], [6], [7], [8], [9] is that the energy consumed
in processing the signals can be a substantial fraction of the
total power. In [7], an information-theoretic formulationis
considered. The authors model the processing energy by a
constantǫ per unit time when the transmitter is transmitting
(and hence, is in the ‘on’ state). A total ofr channel uses
are allowed, and the total energy available isrE , whereE is a
constant. LetPi be the transmit power ati-th time instant, and
let C(Pi) be the capacity of the corresponding channel. Then
the problem is to transmit maximum number of bits with the
total power less thanrE . That is,

max

r
∑

i=1

1iC(Pi) (2)

subject to
r
∑

i=1

1i(Pi + ǫ) ≤ rE (3)

where1i = 1 if a symbol is transmitted in thei-th channel use,
and is 0 otherwise. This is equivalent to dividing the channel
into r sub-channels, with independent coding on each sub-
channel. Since the capacity functionC(P ) is concave in its
argument, for maximizing the total number of information bits
communicated, the transmission energyPi should be equal
for all i where 1i = 1. Without accounting for the energy
consumed by the system processes, the optimal strategy would
be to use all ther parallel channels, and share the energy
equally amongst them. However, the energy consumed by the
system processes imposes a fixed penalty on each channel use.
The authors quantify this tension by measuring ‘burstiness’ Θ
of signaling defined asΘ = 1

r

∑r

i=1 1i.
The transmissions should not be too bursty because of the

law of diminishing returns associated with thelog(·) function.
On the other hand, the transmission strategy should not make
use of all degrees of freedom either, since there is anǫ cost

http://arxiv.org/abs/0805.2423v1


associated with the use of each degree of freedom. The authors
conclude that for minimum total energy,0 < Θ < 1. Contrary
to conventional information theoretic wisdom, it is no longer
optimal to use all available degrees of freedom. Consequently,
the optimal rate that minimizes the total energy consumption
is bounded away from zero. That is,if processing energy is
taken into account, green codes may not communicate at zero
rate!

The objective in [7] [5] [9] is to reduce the energy consump-
tion for wireless devices that consume energy continuously
when operating e.g. hand-held computers, high-end laptops,
etc. Energy consumption per unit time for such devices is
indeed well modeled by a constant possibly independent
of the coding strategy being used. In this paper, we are
interested in the energy expended by the decoding process
itself. The decoding circuit requires some non-zero energyto
perform each operation. As opposed to energy consumed by
system processes in [7], [5], [9], the decoding energy depends
significantly on the code construction, the rate and the desired
error probability, and therefore needs more careful modeling.

In this work, we study explicit models of energy expended at
the decoder. Owing to their low implementation complexity,
and hence low energy consumption, we concentrate on the
message passing decoder. For this decoder, we derive lower
bounds on the combined transmission and decoding energy,
with no constraint on the rate. We show that the optimizing
rate for green codes based on message passing decoding is
indeed bounded away from zero. As the error probability
decreases to zero, the optimizing rate increases. In a result that
is qualitatively different from those in [7], we show that there
is no advantage in increasing the rate beyond1. Therefore,
as the error probability converges to zero, the optimizing rate
converges to 1!

The organization of the paper is as follows : In Section II,
we introduce the channel model, the decoder model, and
the energy model. In Section III, we summarize some of
our results in [10]. In Section IV, we build on the results
in [10] to find bounds on the minimum total energy required to
communicate across a channel, with no rate constraint, taking
into account the decoding energy as well. We conclude in
Section V.

II. SYSTEM MODEL

Consider a point-to-point communication link. An informa-
tion sequenceBk

1 is encoded into2mR codewordXm
1 , using a

possibly randomized encoder. The observed channel output is
Y

m
1 . The information sequences are assumed to consist of iid

fair coin tosses and hence the rate of the code isR = k/m.
The channel model considered is an average power con-

strained AWGN channel of noise varianceσ2
P . We also obtain

some results for the BSC arising from performing hard-
decision on BPSK symbols transmitted over an AWGN chan-
nel. The true channel is denoted byP . The channel capacity is
denoted byCσ2 (PT ), whereσ2 is the noise variance, andPT

is the average power constraint. We dropσ2 from this notation
when no ambiguity is created in doing so.

For maximum generality, we do not impose anya priori
structure on the code itself. Instead, inspired by [11], [12],
[13], we focus on the parallelism of the decoder and the energy
consumed within it. We assume that the decoder is physically
made of computational nodes that pass messages to each other
in parallel along physical (and hence unchanging) wires. A
subset of nodes are designated ‘message nodes’ in that each
is responsible for decoding the value of a particular message
bit. Another subset of nodes (not necessarily disjoint), called
the ‘observation nodes’ has members that are each initialized
with at most one observation of the received channel output
symbols. There may be additional computational nodes to
merely help in decoding.

The implementation technology is assumed to dictate that
each computational node is connected to at mostα + 1 > 2
other nodes1 with bidirectional wires. No other restriction is
assumed on the topology of the decoder. In each iteration, each
node sends (possibly different) messages to all its neighboring
nodes.No restriction is placed on the size or content of
these messages except for the fact that they must depend
only on the information that has reached the computational
node in previous iterations.If a node wants to communicate
with a more distant node, it has to have its message relayed
through other nodes. The neighborhood size at the end ofl
iterations is denoted byn ≤ αl+1. Each computational node
is assumed to consume a fixedEnode joules of energy at each
iteration.

Let the average probability of bit error of a code be denoted
by 〈Pe〉 when it is used over channelP . The main tool is
a lower bound on the neighborhood sizen as a function of
〈Pe〉 andR. This then translates into a lower bound on the
number of iterations that can in turn be used to lower bound
the required decoding power.

Throughout this paper, we allow the encoding and decoding
to be randomized with all computational nodes allowed to
share a pool of common randomness. We use the term ‘average
probability of error’ to refer to the probability of bit error
averaged over the channel realizations, the messages, the
encoding, and the decoding.

III. L OWER BOUNDS ON THE DECODING COMPLEXITY

AND TOTAL ENERGY

In this section we summarize our results for lower bounds
on decoding complexity for an AWGN channel from [10].
The main bounds are given by theorems that capture a local
sphere-packing effect. These can be turned around to give
a family of lower bounds on the neighborhood sizen as a
function of 〈Pe〉 andR. Using a simple lower bound on the
number of iterations,l ≥ log(n)

log(α) − 1, we get a lower bound2

on complexity. The family of lower bounds is indexed by the
choice of a hypothetical channelG and the bounds can be
optimized numerically for any desired set of parameters.

1In practice, this limit could come from the number of metal layers on a
chip. α = 1 would just correspond to a big ring of nodes and is therefore
uninteresting.

2We approximate this byl ≥ log(n)
log(α)

for the rest of the paper.



Theorem 3.1: For the AWGN channel and the decoder
model in Section II, letn be the maximum size of the decoding
neighborhood of any individual message bit. The following
lower bound holds on the average probability of bit error.

〈Pe〉 ≥ sup
σ2

G
:C

σ2

G

(PT )<R

h−1
b (δ(σ2

G))

2
exp

(

− nD(σ2
G ||σ2

P )

−
√
n

(

3

2
+ 2 ln

(

2

h−1
b (δ(σ2

G))

))

(

σ2
G

σ2
P

− 1

))

, (4)

where δ(σ2
G) = 1 − Cσ2

G
(PT )/R, the capacityCσ2

G
(PT ) =

1
2 log2

(

1 + PT

σ2

G

)

, and the KL divergenceD(σ2
G ||σ2

P) =

1
2

[

σ2

G

σ2

P

− 1− ln
(

σ2

G

σ2

P

)]

.

Proof: See [10]. There is a better bound in [10] as well.
This bound is presented here for ease of exposition.
Observe that the required value ofn increases as〈Pe〉 de-
creases. Taking log on both sides of (4), it is evident that for
small 〈Pe〉, the termnD(σ2

G ||σ2
P ) dominates the other terms

in the RHS. For small〈Pe〉, σ2
G can be taken close toσ∗2

G that
satisfiesCσ∗2

G
(PT ) = R. Neglecting the other two terms, we

get

n &
log(1/〈Pe〉)
D(σ∗2

G ||σ2
P )

. (5)

IV. M INIMIZATION OF TOTAL ENERGY BY OPTIMIZING

OVER THE RATE AND TRANSMIT POWER.

Consider the total energy spent in transmission. For trans-
mitting k bits at rateR, the number of channel uses is
m = k/R. If each transmission has powerξTPT , the total
energy used in the transmissions isξTPTm.

At the decoder, let the number of iterations bel. Assume that
each node consumesEnode joules of energy in each iteration.
The number of computational nodes can be lower bounded
by m, the number of received channel outputs, and also by
k, the number of bits to be decoded. We lower bound by the
maximum of the two3

Edec ≥ Enode ×max{k,m} × l. (6)

There is no lower bound on the encoding complexity and so
the encoding is considered free. Form transmissions with
average powerPT , we requiremPT joules of energy. This
results in the following bound for the weighted total energy4

Etotal ≥ ξTmPT + ξDEnodemax{k,m} × l. (7)

3A lower bound ofm+ k would not allow for node sharing between the
set of observation nodes and the message nodes.

4The parametersξT and ξD are weights assigned to the transmit and the
decoding energy respectively.ξT depends on the path-loss across the channel.
ξD indicates the relative importance of decoding energy. For example, if the
energy use at the decoder is severely constrained,ξD would be large.

Using l ≥ log(n)
log(α) ,

Etotal ≥ mξTPT +
ξDEnodemax{k,m} log(n)

log(α)

∝ mPT

σ2
P

+ γmax{k,m} log(n), (8)

where γ = ξDEnode

σ2

P
ξT log(α)

is a constant that summarizes all
the technological and environmental terms. The expression
in (8) gives the normalized total energy, normalized by the
noise varianceσ2

P . Figure 1 provides example5 behavior ofγ
with distance. The neighborhood sizen itself can be lower
bounded by plugging the desired average probability of error
into Theorem 3.1.
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Fig. 1. The plot shows the behavior ofγ with distanced for path loss
1
ξT

=
1
d2

for d > 0.1mm (and path loss1 for smallerd). Enode is 1pJ,
α = 4, ξD = 1, andσ2

P
= 4 × 10−21J. The energy per bit is normalized

by σ2
P

.

We thus obtain the following expression for the minimum
normalized total energy,

Eper bit = min
PT ,R

1

R

PT

σ2
P

+
1

R
γmax

{

1

R
, 1

}

log(n). (9)

Observe that in (9), the decoding energy increases as the error
probability decreases for constant transmit power and rate.
This behavior is not reflected by using the model inspired
from [7] for decoding energy. The bounds in [7] are for error
probability converging to zero. To compare our bounds with
the black-box model of [7], in Appendix I we derive bounds
for non-zero error probability based on the model in [7].
We plot the two bounds against each other in Figure 2 for
k = 10, 000 bits.

We chooseǫ = 4, for which the total energy per bit for
the black-box model equals the energy per bit forγ = 0.2
for our bound for〈Pe〉 = 10−13. The figure shows that for

5The energy cost of one iteration at one nodeEnode ≈ 1 pJ is arrived at
by an optimistic extrapolation from the reported values in [14], [15], thermal
noise energy per sampleσ2

P
≈ 4 × 10−21J from kT with T around room

temperature.



〈Pe〉 smaller than this threshold, the model inspired from [7]
underestimates the total energy. It is because this model treats
the decoder as a black-box whereǫ does not change with error
probability or rate.

It is interesting to observe what values ofR optimize (9).
Under the small〈Pe〉 approximation in (5), we now heuristi-
cally argue that the optimal rateRopt should converge to1 as
〈Pe〉 → 0.

Observe that forR < 1,

Eper bit=
PT

σ2
PR

+
γ

R
log2 (n)

=
PT

σ2
PR

+
γ

R
log2

(

log2

(

1

〈Pe〉

))

− log2
(

D(σ∗2
G ||σ2

P )
)

As 〈Pe〉 → 0, n → ∞. Therefore, the decoding energy
increases to infinity. Increasing the rateR at the cost of
increasingPT offsets the increasing decoding costs. However,
for R ≥ 1,

Eper bit&
PT

σ2
PR

+ γ log2





log2

(

1
〈Pe〉

)

D(σ∗2
G ||σ2

P)



 , (10)

which indicates there is no advantage in increasing rate beyond
R = 1, since it no longer decreases the decoding energy.

Evidently, for finite 〈Pe〉, there exists an optimal rate
Ropt > 0 that minimizes the combined energy consumed.
Using numerical evaluation of the bound (9), we plot the
behavior of the optimal rate with〈Pe〉 in Figure 5. The plots
demonstrate that the optimal rate indeed converges to1.

Figure 3 shows the behavior of our lower bound on sum
energy with〈Pe〉 for various values ofγ. Figure 4 shows that
similar behavior also holds for a BSC arising from performing
hard-decision on BPSK symbols transmitted over an AWGN
channel. The optimal rate for this channel also converges to1
as 〈Pe〉 → 0. Due to lack of space, we omit the plots.
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Fig. 2. The plot shows the comparison of lower bounds on the minimum
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on the model in [7], where the details of the processor are ignored. Our bounds
take into account the decoder structure as well.
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Fig. 3. The plot shows the behavior of lower bound on the normalized sum
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〈Pe〉 → 0.
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V. D ISCUSSIONS ANDCONCLUSIONS

In this work, we derived lower bounds on the combined
transmission and decoding energy for iterative decoding with
unconstrained rates. It is important to note that these are lower
bounds, and the actual energy consumption would only be
higher. An interesting feature of the our bounds is that the
optimizing rate for green codes is bounded away from zero,
and, in fact, converges to1 as the error probability converges
to zero. This is qualitatively different from a pure black-box
modeling of the decoding process, where energy consumption
is independent of the desired error probability and the rate. In
that case, as observed in [7], the optimal rate is a constant that
can be greater than1.



0 0.2 0.4 0.6 0.8 1
−500

−450

−400

−350

−300

−250

−200

−150

−100

−50

0

R
opt

lo
g 10

(〈
 P

e 〉)

γ = 0.4
γ = 0.3
γ = 0.2
γ = 0.1

Fig. 5. Optimal value of rate vs error probability: As〈Pe〉 converges to0,
the optimizing rate converges extremely slowly to1.

For an AWGN channel, the value1 for optimal rate is a
result of a bit-wise representation of the information at the
decoder. If, however, the message nodes represent the infor-
mation in baseM then the optimizing rate would converge to
log2 (M).

For the BSC arising from performing hard-decision on
BPSK symbols transmitted over an AWGN channel, the opti-
mal rate still converges to1. The rate is upper bounded by1
because the channel has binary input alphabet, and thus this
case might seem somewhat uninteresting. However, uncoded
transmission over BSC also corresponds to rate1, which might
falsely suggest that uncoded transmission is asymptotically
optimal for minimizing the total energy. We observe that
despite the optimal rate approaching1, coded transmission
attains the same error probability with much smaller total
energy than uncoded transmission.

We note that the total energy per-bit required to commu-
nicate at arbitrarily low error probability increases to infinity
for the message passing decoder. This is in contrast to the
classical information-theoretic result for transmit power, which
shows that the transmit power is bounded even as〈Pe〉 → 0.
Based on results in [10], the total energy per bit increases
to infinity for most known codes and decoding algorithms.
It would be interesting to extend this result to all possible
codes and decoding algorithms. An approach based on laws
of physics is suggested in [10] for the fixed rate problem. The
approach might yield results here as well.

APPENDIX I
BOUNDS IN [7] FOR NON-ZERO ERROR PROBABILITY

Observe that the results in [7] are for〈Pe〉 → 0 and
infinitely many information bits. Parallel to our analysis for
message passing decoding, in this appendix, we build on
the analysis in [7] to derive bounds on the minimum energy
required for communicating with a non-zero error probability
〈Pe〉 and finite information bits.

Assume k bits are to be transmitted across the chan-
nel, with desired error probability〈Pe〉. In [7], the authors
maximize the information bits communicated under a total
energy constraint. Turning around the problem in [7], we can
instead minimize the total energy consumed given the number
of bits transmitted. Now we can add an error probability
constraint to the bits transmitted. Assume that a block codeis
used to communicate across the channel. The corresponding
error exponent is bounded by the sphere-packing bound [16].
Assuming optimistically that the code actually achieves the
sphere-packing bound in the exponent,

〈Pe〉 ≤ Pe,block ≈ e−mEsp(PT ,R)

whereEsp(PT , R) is the sphere-packing bound at rateR and
transmit powerPT . The objective, therefore, is

min
PT ,m

m× (PT + ǫ)

subject to m× Esp

(

PT ,
k

m

)

= ln

(

1

〈Pe〉

)

. (11)
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