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Abstract— A green code attempts to minimize the total en- communicate one bit reliably across the channel. For exampl

ergy per-bit required to communicate across a noisy channel for an AWGN channel of noise variance 1, this minimum
The classical information-theoretic approach neglects th energy

expended in processing the data at the encoder and the decaode energy 1s Pr
and only minimizes the energy required for transmissions. Bice im ——— =2In(2) Joules (1)
there is no cost associated with using more degrees of freedp Pr—0 C(Pr)

the traditionally optimal strategy is to communicate at rate zero. Sijnce there is no penalty associated with lower rates, ibaxlg

Owe:hggn"svl‘j’;':é dwlf ‘thZfat?\;Jer r:]eecsesr:'ye pgszci’sedu';‘icr’]de' efrcl’él;hue to use as many degrees of freedom as are available, and the
P y gep 9 99 optimal transmission rate is zero.

sphere-packing bounds on the decoding power, we find lower L . L
bounds on the total energy consumed in the transmissions and 1he problem of minimizing combined transmission and

the decoding, allowing for freedom in the choice of the rateWe processing energy is well studied in networks. The common
show that contrary to the classical intuition, the rate for geen thread in [4], [5], [6], [7], [8], [9] is that the energy consied
fr?i(;itls::utﬂcejegeasvi\;% fL‘?tmeﬁE(’)rro :)Cr’(r) ba:lg/i|%Jt;>/egn02;rotgp;c;k:'2blgé in processing the signals can be a substantial fraction ef th
optimiiing rate for our bounds converges tol. ’ total power. In [7], an information-theoretic formulatlos
considered. The authors model the processing energy by a
|. INTRODUCTION constante per ur_lit time when the transmitter is transmitting
_ Ny _ _ (and hence, is in the ‘on’ state). A total of channel uses
With the development of billion transistor chips, the ranggre allowed, and the total energy availableds where is a
of communication has come down dramatically from hundre@gnstant. LetP; be the transmit power dith time instant, and
of kilometers (e.g. deep space communication) to a few met@st C( ;) be the capacity of the corresponding channel. Then

(e.g. ad-hoc wireless networks) or a few millimeters or evefie problem is to transmit maximum number of bits with the
less (e.g. on chip communication). To communicate ovedtal power less than€. That is,

smaller distances, the transmit power required is muchlsmal .
At these distances, the energy used in transmissions can be max ZliC(Pi) 2)
comparable to that expended by the system processes. The =

small size limits the ability of these chips to dissipate thea r
Further, the chip might be battery operated, imposing grirh subject to Z 1;(Pi+¢€) <ré 3)
constraints on its energy usage. It is therefore of interest i=1

to design coding techniques that minimize total energy wherel; = 1 if a symbol is transmitted in theth channel use,
consumed, which includes the transmission energy as wellasl is 0 otherwise. This is equivalent to dividing the channe
the processing energy. We refer to the coding techniqués tiro » sub-channels, with independent coding on each sub-
minimize the total energy agreen codes. channel. Since the capacity functidiP) is concave in its
The classical information theoretic approach finds the mimrgument, for maximizing the total number of informatiotsbi
mum transmission energy required to communicate reliabl)communicated, the transmission enerBy should be equal
across the channel. The approach is motivated by lorfgr all i« where1; = 1. Without accounting for the energy
range communication, that corresponds to power constfairnsumed by the system processes, the optimal strategygwoul
channels. Shannon [1] first characterized the minimum enefge to use all the- parallel channels, and share the energy
required to communicate across a channel with fixed rate. Teégually amongst them. However, the energy consumed by the
resulting bounds are expressed using ‘waterfall’ curved thsystem processes imposes a fixed penalty on each channel use.
convey the revolutionary idea that unboundedly low probdhe authors quantify this tension by measuring ‘burstin@ss
bilities of bit-error are attainable using only finite trams of signaling defined a® = %Z;Zl 1;.
power. This characterization raises a natural questioratwh The transmissions should not be too bursty because of the
is the minimum energy required for communication that i&w of diminishing returns associated with thg(-) function.
free of a rate constraint? The classical approach [2] [3¢®ivOn the other hand, the transmission strategy should not make
the minimum transmission energy required (on average) use of all degrees of freedom either, since there is abst
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associated with the use of each degree of freedom. The autho-or maximum generality, we do not impose aaypriori
conclude that for minimum total energy,< © < 1. Contrary structure on the code itself. Instead, inspired by [11],][12

to conventional information theoretic wisdom, it is no leng [13], we focus on the parallelism of the decoder and the gnerg
optimal to use all available degrees of freedom. Consetjyentonsumed within it. We assume that the decoder is physically
the optimal rate that minimizes the total energy consumptionade of computational nodes that pass messages to each other
is bounded away from zero. That id, processing energy is in parallel along physical (and hence unchanging) wires. A
taken into account, green codes may not communicate at zero  subset of nodes are designated ‘message nodes’ in that each
rate! is responsible for decoding the value of a particular messag

The objective in [7] [5] [9] is to reduce the energy consummit. Another subset of nodes (not necessarily disjointieda
tion for wireless devices that consume energy continuoughe ‘observation nodes’ has members that are each inéaliz
when operating e.g. hand-held computers, high-end laptopsth at most one observation of the received channel output
etc. Energy consumption per unit time for such devices symbols. There may be additional computational nodes to
indeed well modeled by a constant possibly independanterely help in decoding.
of the coding strategy being used. In this paper, we areThe implementation technology is assumed to dictate that
interested in the energy expended by the decoding processh computational node is connected to at naost1 > 2
itself. The decoding circuit requires some non-zero enéogy other noddb with bidirectional wires. No other restriction is
perform each operation. As opposed to energy consumeddssumed on the topology of the decoder. In each iteratiah, ea
system processes in [7], [5], [9], the decoding energy dépemode sends (possibly different) messages to all its neigdpo
significantly on the code construction, the rate and therelési nodes.No restriction is placed on the size or content of
error probability, and therefore needs more careful modeli these messages except for the fact that they must depend

In this work, we study explicit models of energy expended anly on the information that has reached the computational
the decoder. Owing to their low implementation complexitypode in previous iterations.If a node wants to communicate
and hence low energy consumption, we concentrate on thith a more distant node, it has to have its message relayed
message passing decoder. For this decoder, we derive lotteough other nodes. The neighborhood size at the end of
bounds on the combined transmission and decoding eneiitgrations is denoted by < o!*!. Each computational node
with no constraint on the rate. We show that the optimizinig assumed to consume a fixé& 4. joules of energy at each
rate for green codes based on message passing decodinitgiation.
indeed bounded away from zero. As the error probability Let the average probability of bit error of a code be denoted
decreases to zero, the optimizing rate increases. In a thatl by (P.) when it is used over channé. The main tool is
is qualitatively different from those in [7], we show thatte a lower bound on the neighborhood sizeas a function of
is no advantage in increasing the rate beydndherefore, (P.) and R. This then translates into a lower bound on the
as the error probability converges to zero, the optimizig r number of iterations that can in turn be used to lower bound
converges to 1! the required decoding power.

The organization of the paper is as follows : In Secfidn Il, Throughout this paper, we allow the encoding and decoding
we introduce the channel model, the decoder model, atalbe randomized with all computational nodes allowed to
the energy model. In Sectidn llll, we summarize some eshare a pool of common randomness. We use the term ‘average
our results in [10]. In Sectioh 1V, we build on the resultgprobability of error’ to refer to the probability of bit enro
in [10] to find bounds on the minimum total energy required taveraged over the channel realizations, the messages, the
communicate across a channel, with no rate constrainfygakiencoding, and the decoding.
into account the decoding energy as well. We conclude in

. IIl. L OWER BOUNDS ON THE DECODING COMPLEXITY
Section V.

AND TOTAL ENERGY

[l. SYSTEM MODEL In this section we summarize our results for lower bounds

Consider a point-to-point communication link. An informaon decoding complexity for an AWGN channel from [10].
tion sequenc®? is encoded int@™% codewordX?", using a The main bounds are given by theorems that capture a local
possibly randomized encoder. The observed channel outpusihere-packing effect. These can be turned around to give
Y. The information sequences are assumed to consist of idfamily of lower bounds on the neighborhood sizeas a
fair coin tosses and hence the rate of the codB is k/m.  function of (F) and R. Using a simple lower bound on the

The channel model considered is an average power céwmber of iterations] > }25(2) — 1, we get a lower boutfid
strained AWGN channel of noise varianeg. We also obtain 0n complexity. The family of lower bounds is indexed by the
some results for the BSC arising from performing harc¢hoice of a hypothetical channél and the bounds can be
decision on BPSK symbols transmitted over an AWGN cha@ptimized numerically for any desired set of parameters.
nel. The true channel is denoted By The channel capacity is | _ o
denoted b)ng (PT), whereo? is the noise variance, anlaf h_In prictlce, this ‘I|m|t could come from _the_ number of meteyel_as on a
) ) ) chip. @ = 1 would just correspond to a big ring of nodes and is therefore
is the average power constraint. We degpfrom this notation uninteresting.

when no ambiguity is created in doing so. 2We approximate this by > {212} for the rest of the paper.




Theorem 3.1: For the AWGN channel and the decodebtsing! > }gggzg
model in Sectiofl, let: be the maximum size of the decoding

neighborhood of any individual message bit. The following  f,,,,, > mepPy 4+ S2Enode max{k, m}log(n)

lower bound holds on the average probability of bit error. log()
mPT
C1,e/ 9 x 5— + v max{k,m} log(n), (8)
hy ~(6(05)) 20 2 9p
(Py>  sup 28 e (—nD(03l0%)
03:C,3 (Pr)<R 2 where y = % is a constant that summarizes all
3 9 o2 the technologrcal and environmental terms. The expression
—v/n <§ +21In <ﬁ>> (—g — ) ), (4) in (B gives the normalized total energy, normalized by the
hy, " (6(0g)) P noise variance . Figure[1 provides exam@ebehavior ofy
) ) with distance. The neighborhood sizeitself can be lower
whered(og) = 1 — Coz (Pr)/R, the capacityCyz (Pr) = pounded by plugging the desired average probability ofrerro
1 log, (1+ f—g) and the KL divergenceD(03|[0%) = into Theoreni3ll.
1fog (%
Pl -1-m(3)]
60
Proof: See [10]. There is a better bound in [10] as well. 40r
This bound is presented here for ease of exposition. ® 20k

Observe that the required value ofincreases asP.) de-
creases. Taking log on both sides [of (4), it is evident that fo
small (P.), the termnD(0}||0%) dominates the other terms

y (dB)

in the RHS. For smal(P.), o can be taken close tg}* that a0k
satisfiesC’ag (Pr) = R. Neglecting the other two terms, we
get -60
-80
log(1/<P€>) . (5) —100}
~ Doglo}) | | | |
e Tomm m 100m 10km
IV. MINIMIZATION OF TOTAL ENERGY BY OPTIMIZING Distance

OVER THE RATE AND TRANSMIT POWER
Fig. 1. The plot shows the behavior of with distanced for path loss
Consider the total energy spent in transmission. For trang: = gz for d > 0.1lmm (and path losd for smallerd). Eoqe is 1pJ,
mitting & bits at rate R, the number of channel uses is® =24 ¢p =1 ando} =4 x 1071J. The energy per bit is normalized
m = k/R. If each transmission has powér Pr, the total Y 7P
energy used in the transmissionstisPrm.
Atthe decoder, let the number of iterationslbAssume that ~ We thus obtain the following expression for the minimum
each node consumés,.q. joules of energy in each iteration.normalized total energy,
The number of computational nodes can be lower bounded 1 p 1 1
. . T
by m, the number of received channel outputs, and also by Eper pit = min ——- + —'ymax{—, 1} log(n). 9)
k, the number of bits to be decoded. We lower bound by the Pr.k Rop R R
maximum of the tw@ Observe that in{9), the decoding energy increases as toe err
probability decreases for constant transmit power and. rate
Ejee > Fnode X max{k,m} x [. (6) This behavior is not reflected by using the model inspired
from [7] for decoding energy. The bounds in [7] are for error
There is no lower bound on the encoding complexity and gwobability converging to zero. To compare our bounds with
the encoding is considered free. For transmissions with the black-box model of [7], in Appendl¥ | we derive bounds
average powetPr, we requiremPr joules of energy. This for non-zero error probability based on the model in [7].
results in the following bound for the weighted total en@rgyWe plot the two bounds against each other in Fidure 2 for
k = 10,000 bits.
FEtotal > §rmPr + £p Epode max{k,m} x [. (7) We choosee = 4, for which the total energy per bit for
the black-box model equals the energy per bit foe= 0.2

3A lower bound ofm -+ & would not allow for node sharing between thefor our bound f0r<Pe> = 10713, The figure shows that for
set of observation nodes and the message nodes.

4The parameter§r and&p are weights assigned to the transmit and the 5The energy cost of one iteration at one ndég,q. ~ 1 pJ is arrived at
decoding energy respectivel§y depends on the path-loss across the channdly an optimistic extrapolation from the reported valuesa][ [15], thermal
¢p indicates the relative importance of decoding energy. kammle, if the noise energy per sample?, ~ 4 x 10~21J from kT with T around room
energy use at the decoder is severely constraiggdwould be large. temperature.



(P.) smaller than this threshold, the model inspired from [7]

underestimates the total energy. It is because this moskistr ‘ ‘ I
the decoder as a black-box wherdoes not change with error

probability or rate.

It is interesting to observe what values Bfoptimize [9).
Under the smalkP.) approximation in[(b), we now heuristi-

cally argue that the optimal ratéopt should converge td as
(P.) — 0.

[=)
D_m
= -35f
Observe that folR < 1, g _aob
PT Yy Limiging value of
E it= == + —log, (n -45[  optimal i
per bit = 52y * 7% () s Jrrem o
Pr gl ( 1 2)] .2 0
= —— + = log, | log —logy (D(0o°|lo)
U%R R 2 (Pe) 2( ¢ 7)) -85, - s -
As (P.) — 0, n — oo. Therefore, the decoding energy
increases to infinity. Increasing the rafeé at the cost of

for R > 1,

- Pr log, ((P%)
Fper bit= R T 7% | Dioglll) |
which indicates there is no advantage in increasing raterzky
R =1, since it no longer decreases the decoding energy.
Evidently, for finite (P.), there exists an optimal rate
Ropt > 0 that minimizes the combined energy consumed
Using numerical evaluation of the boundl (9), we plot the
behavior of the optimal rate withP,) in Figure[®. The plots
demonstrate that the optimal rate indeed convergds to
Figure[3 shows the behavior of our lower bound on sun
energy with(P,) for various values ofy. Figure[4 shows that
similar behavior also holds for a BSC arising from perforgin
hard-decision on BPSK symbols transmitted over an AWGNM
channel. The optimal rate for this channel also convergds to

Energy per bit

increasingPr offsets the increasing decoding costs. Howeverig. 3. The plot shows the behavior of lower bound on the ntizec sum

energy with(P.) for various values ofy. The sum energy goes to infinity as
(Pe) — 0.

as(P.) — 0. Due to lack of space, we omit the plots.
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take into account the decoder structure as well.

The plot shows the comparison of lower bounds on themum
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Fig. 4. The plot shows the behavior of lower bound on norredlizum
energy with(P.) for various values ofy for a BSC arising from performing
hard-decision on BPSK symbols transmitted over an AWGN ohanThe
optimizing rate converges to 1 d%.) — 0. Even so, this plot shows that
the optimal strategy is not uncoded transmission at [d%) since coded
transmission outperforms uncoded transmission at s(#al).

V. DISCUSSIONS ANDCONCLUSIONS

In this work, we derived lower bounds on the combined
transmission and decoding energy for iterative decodirty wi
unconstrained rates. It is important to note that thesecaverl
bounds, and the actual energy consumption would only be
higher. An interesting feature of the our bounds is that the
optimizing rate for green codes is bounded away from zero,
and, in fact, converges tb as the error probability converges

to zero. This is qualitatively different from a pure blacéd

normalized energy fok = 10, 000 bits. The ‘black-box bounds’ plot is based modeling of the decoding process, where energy consumption

on the model in [7], where the details of the processor areriggh Our bounds  js independent of the desired error probability and the. fate

that case, as observed in [7], the optimal rate is a condtant t
can be greater thah



Assume k bits are to be transmitted across the chan-
nel, with desired error probabilityP.). In [7], the authors
maximize the information bits communicated under a total
energy constraint. Turning around the problem in [7], we can
instead minimize the total energy consumed given the number
of bits transmitted. Now we can add an error probability
constraint to the bits transmitted. Assume that a block éede
used to communicate across the channel. The corresponding
error exponent is bounded by the sphere-packing bound [16].
Assuming optimistically that the code actually achieves th
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whereE,,(Pr, R) is the sphere-packing bound at rateand
transmit powerPr. The objective, therefore, is

opt

Fig. 5. Optimal value of rate vs error probability: A®.) converges ta, min m X (Pr + ¢)
the optimizing rate converges extremely slowlylto Pr,m
. k 1
subjectto m x Esp | Pr,— | =In{ —= |. (11
’ o () = () @
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