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Abstract— In this paper, we provide a complete study on the
training based channel estimation for relay networks that employ
the decode-and-forward (DF) scheme. Since multiple relay nodes
are geographically distributed over the service region, channel
estimation is different from the traditional way in that each
relay has its own individual power constraint. We consider the
maximum likelihood (ML) channel estimation and derive closed
form solutions for the optimal training as well as for the optimal
power allocation. It is seen that the optimal power allocation
follows a multi-level waterfilling structure.

I. INTRODUCTION

Employing multiple antennas can boost the system capacity

by transmitting multiple data streams [1] and enhance the

transmission reliability using space-time coding (STC) tech-

niques [2]. Unfortunately, packing more than one antennas

onto a small mobile terminal faces many difficulties such

as the size limitation and the hardware complexity. In order

to overcome this limitation, one would refer to the relay

networks, where spacial diversity is achieved when relays are

deemed as “virtual antennas” for the desired user [3]- [5].

It has been pointed out in [6] that the channel estimation and

optimal training design for amplify-and-forward (AF) relay

networks is quite different from that in the traditional point-

to-point systems, which motivates a new look into the channel

estimation for DF relay networks. For DF relay networks,

overall transmission is divided into two phases. Since the re-

lays decode during Phase I and re-encode the information bits

during Phase II, Phase I and Phase II are actually separated.

Hence, the main scheme of channel estimation is similar to

that in the traditional point-to-point systems. However, since

relays are geographically distributed and different relays may

come from different types of mobile terminals, the individual

power constraint for each relay has to be considered. These in-

dividual power constraints form the major challenge and most

times bring difficulties to find closed form solutions during

the optimization process. Although there exist many training

based channel estimation methods for traditional point-to-point

systems [7]- [9], optimal channel estimation with individual

power constraint for each antenna has not yet been considered

either in relay networks or in the traditional multi-input multi-

output (MIMO) systems, to the best of the authors’ knowledge.

In DF relay networks, nevertheless, a total power constraint

can also be included when there exists a central control unit

(CCU). Although CCU in this case cannot allot power to each

relay from a common power pool, it can still determine how

much the summation of the power is within each relay’s own

power constraints (to keep the budget of the desired user).
In this work, we provide a complete study for ML based

channel estimation. The training design includes designing the

training sequence and determining the power of each relay

within its own power constraints. We show that the optimal

power distribution has a multi-level waterfilling type structure

while the corresponding training sequence can be obtained

from efficient algorithms.

II. SYSTEM MODEL OF DF RELAY NETWORKS

Consider a wireless network with M randomly placed relay

nodes Ri, i = 1, . . . , M , one source node S, one destination

node D, and MI interfering nodes Ij , j = 1, ..., MI operating

in the same frequency band. Every node has only a single

antenna that cannot transmit and receive simultaneously. The

channel between any two nodes is assumed quasi-stationary

Rayleigh flat fading in that it is constant within one frame

but may vary from frame to frame. Denote the channel from

S to Ri as gi, from Ri to D as hi, from Ij to Ri as fji,

from Ij to D as qj respectively; namely gi ∈ CN (0, σgi
),

hi ∈ CN (0, σhi), fji ∈ CN (0, σfji) and qj ∈ CN (0, σqj ).
Note that, the interference, if any, affects both the relays

and the destination, which brings an undesired scenario. We

assume perfect synchronization among S, Ri and D. However,

no synchronization assumption is made for interfering nodes.
The training is accomplished by the following two phases,

each containing N consecutive time slots. For Phase I, the

transmitter broadcasts the signal s to relays and the destination.

The received signals at Ri is expressed as

ri = gis +
MI∑
j=1

fjisj1 + nri (1)

where sj1 is the equivalent based-band signal from the jth

interference during Phase I, and nri is the white complex

Gaussian noise at the ith relay. During Phase II, the ith relay

sends out1 si of length N and the destination receives

y = [s1 s2 . . . sM ]︸ ︷︷ ︸
C

⎡
⎢⎣

h1

...

hM

⎤
⎥⎦

︸ ︷︷ ︸
h

+
MI∑
j=1

qjsj2 + nd2

︸ ︷︷ ︸
nd

= Ch + nd (2)

1In DF relay networks, relays during the second phase will send out new
training symbols to estimate hi’s at the destination only.
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where sj2 is the signal from the jth interference during Phase

II, and nd2 ∈ CN (0, N0I) represents the complex white

Gaussian noise vector at D. The equivalent colored noise nd

has the covariance

Rn =E{ndnH
d }=N0I+E

{(MI∑
j=1

qjsj2

)(MI∑
j=1

qjsj2

)H}
(3)

which is assumed known to the destination.
The task of the channel estimation includes estimating both

gi and hi. The estimation of gi can be done exactly as in the

traditional single-input single-output (SISO) system and the

corresponding discussion will be omitted. In the remaining of

the paper, we will only focus on estimating hi. Meanwhile,

N ≥ M is required since there are M unknown channels to be

estimated. Assume, during the training process, each relay can

maximally provide a power of pi. Then the individual power

constraint of the ith relay could be expressed as

[CHC]ii ≤ pi. (4)

To offer a more general discussion at this point, we assume that

there exists a CCU, and the overall training power consumed

from relays is limited by P ; namely

tr(CHC) ≤ P. (5)

Note that CCU in distributed relay network cannot allocate

power to each relay from a common power pool but rather

control the power level of each relay within its own power

constraint. Clearly, P should be less than
∑M

i=1 pi, otherwise

the total power constraint is redundant. Meanwhile, P should

also be greater than mini pi, otherwise all the individual

constraints are redundant. In the following, we assume that

mini pi < P <
∑M

i=1 pi.

III. MAXIMUM LIKELIHOOD CHANNEL ESTIMATION

A. Problem Formulation
The ML estimation of h is obtained as

ĥML = (R− 1
2

n C)†R− 1
2

n y = (CHR−1
n C)−1CHR−1

n y (6)

where (·)† denotes the pseudo inverse and the error covariance

matrix is

E{(ĥML − h)H(ĥML − h)} = (CHR−1
n C)−1. (7)

The optimal C can be found by solving the following con-

strained optimization problem:

(P1) min
C

tr((CHR−1
n C)−1) (8)

s.t. [CHC]ii ≤ pi, i = 1, . . . , M

tr(CHC) ≤ P.

Without loss of generality, we assume pi are arranged in non-

decreasing order and define p = [p1, p2, . . . , pM ]T . We first

note that P1 is equivalent to the following problem:

(P2) min
D

tr((DHR−1
n D)−1) (9)

s.t. DHD is diagonal

d(DHD) �w p, tr(DHD) ≤ P

where �w is notation for the weak majorization defined in

[10]. The equivalency can be shown by referring to a similar

procedure in [10] with some slight modification, which is

omitted for brevity.

Let d(A) and λ(A) denote the vectors formed by the

diagonal elements and the eigen-values of A, both arranged

in non-decreasing order. Then, the optimal C can be found

from D based on the following steps:

Algorithm 1: Finding C of P1 from D of P2
1) Find diagonal elements of CHC such that d(CHC) ≤

p and d(CHC) ≺ λ(DHD), where ≺ denotes the

majorization operation [10].

2) Find UC such that UCDHDUH
C has the diagonal

elements d(CHC).
3) Construct C = DUH

C .

The algorithm for the second step was shown in [11, Sect.

IV-A] and the one for the first step will be provided later.

Now it is still unclear how to handle the optimization in P2.

Without loss of generality, we can represent D as QΣ
1
2
D where

Q is an N ×M orthonormal matrix and Σ
1
2
D is a real diagonal

matrix with diagonal element σ
1
2
D,i ≥ 0. Since the column

order of Q can be changed arbitrarily with the corresponding

interchanging of σ
1
2
D,i, we can assume that σ

1
2
D,i are arranged in

non-decreasing order. The optimization problem then becomes

min
Q, σD,i

tr((Σ
1
2
DQHR−1

n QΣ
1
2
D)−1) (10)

s.t. QHQ = I
k∑

i=1

σD,i ≤
k∑

i=1

pi, k = 1, . . . , M

σD,i ≤ σD,i+1, σD,i ≥ 0,
M∑
i=1

σD,i ≤ P.

Suppose the eigen-value decomposition (EVD) of Rn is

Rn = UnΣnUH
n , where Un is an N ×N unitary matrix and

Σn = diag{σn,1, . . . , σn,N} is a diagonal matrix. Since the

column order of Un can be changed arbitrarily if the diagonal

elements in Σn are interchanged accordingly, we can always

assume that σn,i are arranged in non-decreasing order. We get

to the following lemma:

Lemma 1: The optimal Q to (10) is Un[IM ,0T
M,N−M ]T

and the optimal σD,i can be found from

min
σD,i

M∑
i=1

σn,i

σD,i
(11)

s.t.
k∑

i=1

σD,i ≤
k∑

i=1

pi, k = 1, . . . , M

σD,i ≤ σD,i+1, σD,i ≥ 0,
M∑
i=1

σD,i ≤ P.

Proof: We first prove that the optimal Σ
1
2
DQHR−1

n QΣ
1
2
D

must be a diagonal matrix. Note that the optimization can be
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separately conducted for Q and σD,i. The objective function

can be equivalent written as

tr((Σ
1
2
DQHR−1

n QΣ
1
2
D)−1) = tr((QHR−1

n Q)−1Σ−1
D ). (12)

Suppose the eigenvalues of QHR−1
n Q are λi, i = 1, . . . , M

which are arranged in non-decreasing order. From [12] we

know

tr((QHR−1
n Q)−1Σ−1

D ) ≥
M∑
i=1

1
λM−i+1σD,i

(13)

where the equality hold when the eigen-matrix of QHR−1
n Q

is an appropriate permutation matrix. From [13, Theorem

10, pp. 209], we know λi ≤ 1
σn,M−i+1

. Therefore, (13) is

lower bounded by
∑M

i=1
σn,i

σD,i
. Note that this lower bound can

be achieved when setting Q = Un[IM ,0T
M,N−M ]T in (10),

which is in turn, the optimal value of (10). This shows that, the

optimal training should apply all energy on the eigen-modes

that correspond to the smallest interference levels, i.e., the

smallest σn,i, which agrees with our intuition very well. �

B. Waterfilling Solution to (11)

We can remove the constraints σD,i ≥ 0 and σD,i ≤ σD,i+1

since an optimal solution always satisfies them. This point will

also be clear later.

Since p1 < P <
∑M

i=1 pi, there must exist an integer k∗ ∈
{1, 2, . . . , M −1}, such that

∑k∗

i=1 pi < P while
∑k∗+1

i=1 pi ≥
P . Therefore, the constraints

∑k
i=1 σD,i ≤

∑k
i=1 pi, for k =

k∗ + 1, . . . , M are redundant.

The Lagrangian of the optimization problem is written as

L=
M∑
i=1

σn,i

σD,i
+

k∗∑
k=1

μk

( k∑
i=1

σD,i−
k∑

i=1

pi

)
+ν

( M∑
i=1

σD,i−P

)

(14)

where μk and ν are Lagrange multipliers. The solution can be

found from Karush-Kuhn-Tucker (KKT) optimization condi-

tions:

− σn,k

σ2
D,k

+
k∗∑

i=k

μi + ν = 0, 1 ≤ k ≤ k∗

− σn,k

σ2
D,k

+ ν = 0, k∗ + 1 ≤ k ≤ M

μk(
k∑

i=1

σD,i −
k∑

i=1

pi) = 0, 1 ≤ k ≤ k∗

ν(
M∑
i=1

σD,i − P ) = 0, μk ≥ 0, ν ≥ 0.

First of all,
∑M

i=1 σD,i = P must hold at the optimal point.

Otherwise, ν = 0 and − σn,k

σ2
D,k

+ ν = 0 cannot hold. Without

loss of generality, we suppose at the optimal point, only m
out of k∗ μk’s are non-zero (the equality of the corresponding

constraint holds) and denote these m μk’s as μki
, i = 1, . . . , m

with k1 < k2 < . . . < km. The assumption indicates μk = 0
for 1 ≤ k < k1. Then,

− σn,k

σ2
D,k

+
m∑

i=1

μki
+ ν = 0, 1 ≤ k ≤ k1 (15)

k1∑
i=1

σD,i =
k1∑

i=1

pi. (16)

Define ν1 =
∑m

i=1 μki
+ ν. We have σD,k =

√
σn,k

ν1
for

1 ≤ k ≤ k1. This is exactly the weighted waterfilling by

considering
√

1/ν1 as the water level and
√

σn,k as weight

for patches 1 ≤ k ≤ k1 with zero bottom levels. Due to these

zero bottom levels, the water level
√

1/ν1 can be explicitly

calculated as
Pk1

i=1 pi
Pk1

i=1
√

σn,i

. Since σn,i’s are arranged in non-

decreasing order, we can directly see that σD,k1 ≥ . . . ≥ σD,1.

We then go on considering μk2 , μk3 , . . . , μkm
sequentially.

The general equations are written here:

− σn,k

σ2
D,k

+
m∑

i=j

μki
+ν =0, kj−1 < k ≤ kj , 2 ≤ j ≤ m (17)

kj∑
i=1

σD,i =
kj∑

i=1

pi. (18)

Equation (18) is in fact equivalent to

kj∑
i=kj−1+1

σD,i =
kj∑

i=kj−1+1

pi. (19)

Define νj =
∑m

i=j μki
+ν. There is σD,k =

√
σn,k

νj
for kj−1 <

k ≤ kj and the corresponding water level is
√

1/νj . For the

same reason, σD,k is in non-decreasing order for kj−1 < k ≤
kj . Moreover, since νj = νj−1−μkj−1 ≤ νj−1, the water level√

1/νj is also arranged in non-decreasing order. Combing the

fact that
√

σn,i is arranged in non-decreasing order, we know

that σD,kj−1+1 ≥ σD,kj−1 and therefore, σD,i, i = 1, . . . , km

should be in non-decreasing order. Meanwhile, the water level√
1/νj can be explicitly calculated as

Pkj
i=kj−1+1 pi

Pkj
i=kj−1+1

√
σn,i

.

Lastly, we have

− σn,k

σ2
D,k

+ ν = 0, km < k ≤ M, (20)

M∑
i=km+1

σD,i = P −
km∑
i=1

pi. (21)

The corresponding water level is
√

1/ν = P−Pkm
i=1 piPM

i=km+1
√

σn,i
, and

σD,k =
√

σn,k

ν for km < k ≤ M . Similarly, σD,k should be

in non-decreasing order for km < k ≤ M and σD,km+1 ≥
σD,km

.

The above discussion not only provides the insight on

how to design the optimizing algorithm but also confirms

the validity of omitting the constraints σD,i ≤ σD,i+1 and

σD,i ≥ 0 in the first place. The solution structure follows a
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Fig. 1. Illustration on weighted multi-level waterfilling.

weighted multi-level waterfilling with multiple water levels at{√
1/νj ,

√
1/ν

}
and the weight for the ith patch is

√
σn,i,

as shown in Fig. 1. The cutting point kj , j = 1, . . . , m can be

obtained from the testing, which follows a similar approach

as that in the traditional waterfilling problem.

Algorithm 2: Multi-Level Waterfilling
1) Set j = 0, k0 = 0.

2) For each kj + 1 ≤ t ≤ k∗, calculate the water

level

Pt
i=kj+1 pi

Pt
i=kj+1

√
σn,i

(assuming patches kj + 1 to t are

saturated) and the water level
P−Pkj

i=1 piPM
i=kj+1

√
σn,i

(assuming

patch kj + 1 to M are saturated). If the water level
P−Pkj

i=1 piPM
i=kj+1

√
σn,i

is the lowest, go to 3). Otherwise, if index

t0 gives the lowest water level, set kj+1 = t0 and

calculate σD,k =
√

σn,k

Pkj+1
i=kj+1 pi

Pkj+1
i=kj+1

√
σn,i

for kj + 1 ≤ k ≤
kj+1. If kj+1 = k∗, then j := j + 1 and go to 3);

otherwise, j := j + 1 and go back to 2).

3) Calculate σD,k =
√

σn,k(P−Pkj
i=1 pi)

PM
i=kj+1

√
σn,i

, for kj + 1 ≤ k ≤
M .

Under the worst case, the water level need to be calculated
k∗(k∗+3)

2 times.

C. Optimal Solution to The Original Problem (8)

After getting the optimal σD,i, we need to construct the

original C for problem P1, following Algorithm 1. We here

provide a simple way to realize the first step in Algorithm 1.

Denote d(CHC) = [c1, c2, . . . , cM ].

Algorithm 3: Finding d(CHC)
1) Set ci = σD,i for all i.
2) From i = M : −1 : 2, if ci > pi, then set ci := pi and

set ci−1 := ci−1 + (ci − pi).
The validity of Algorithm 3 is proved as follows:

Proof:
1) d(CHC) ≺ d(ΣD): From the initialization, we know∑k
i=1 ci ≥ ∑k

i=1 σD,i and
∑M

i=1 ci =
∑M

i=1 σD,i. From

the algorithm, the excessive part (ck − pk) will be included

into ck−1. This does not change the equality
∑M

i=1 ci =∑N
i=1 σD,i. Meanwhile, since more value are included into

ck−1, the inequality
∑k

i=1 ci ≥ ∑k
i=1 σD,i for k =

1, . . . , M − 1 will be kept.

2) c1 ≤ c2 ≤ . . . ≤ cM and d(CHC) ≤ p: From

the algorithm, we know ck ≤ pk and ck is already in non-

decreasing order after the initialization. If at the current step,

ck is smaller than pk, ck−1 will be kept unchanged and

ck−1 ≤ ck still holds (remember ck won’t be decreased in all

previous steps). If on the other side ck is greater than or equal

to pk, then ck := pk and ck−1 := ck−1 + (ck − pk). However,

at next step, this ck−1 will be upperbounded by pk−1 and the

excessive part ck−1 − pk−1 will be added to ck−2. Bearing in

mind that pk’s are arranged in non-decreasing order, we know

that ck−1 ≤ ck still holds. This process continues until k = 2.

The speciality happens for c1 since there is no behavior

regarding to whether c1 is greater or less than p1. Therefore,

we only need to prove that c1 ≤ p1 and c1 ≤ c2. These two

things can be proved together. If c2 ≤ p2 still holds after

getting the increment, then, there will be no increment for c1.

In this case, the final c1 is σD,1 and the proof is completed.

Otherwise, c2 > p2 and the excessive part will be added to

c1. We can find a maximal integer r0 ∈ {2, 3, . . . , M}, such

that ck is equal to pk for 2 ≤ k ≤ r0 when the algorithm

finishes. Then, the final c1 is σD,1 +
∑r0

i=2(σD,i − pi). From

the optimization process, we know

r0∑
i=1

pi ≥
r0∑

i=1

σD,i. (22)

Then

p1 ≥ λD,1 +
r0∑

i=2

(σD,i − pi) = c1 (23)

can be derived. Since the final value of c2 is p2 in this case,

we arrive at c1 ≤ c2. �
After obtaining d(CHC), we can construct C from the

remaining two steps in Algorithm 1.

IV. SIMULATION RESULTS

In this section, we numerically examine the performance

of our proposed channel estimation algorithms as well as the

optimal training designs, under various scenarios. The signal-

to-noise-ratio is defined as SNR= P/MN/N0 = P/MN
(average power over time and spacial index).

The channels hi’s are assumed as circularly symmetric

complex Gaussian random variables with variances σh,i, uni-

fied according to
∑M

i=1 σh,i = M . The channel covariance

matrices Rh have the following structures:

[Rh]i,j =
√

σh,iσh,jε
|i−j|
1 ,

where ε1 < 1 is a real scalar that affects the correlation factors

among channels. Interference covariance matrices Rn in our

example has the similar structure as Rh, where a real scalar

ε2 < 1 is used to control the correlation factors among noise.

The average interference power is assumed to be 10 times of

the noise so that tr(Rn)/M = 11N0.

The training sequence ŝi that is the scalar multiple of the

optimal si will be named as the optimal training sequence

(optimal T). Correspondingly, the L2 norm of the optimal si

will be referred to as the optimal power allocation (optimal P).
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Fig. 2. Comparison between different training and power allocation for ML
based channel estimation, with ε1 = 0.9, ε2 = 0.9, M = N = 4.

The proportional power allocation (proportional P) is defined

as p̂i = piPM
i=1 pi

P .

The comparison is mainly conducted between the optimal

training sequence with both the orthogonal training (orthog-

onal T) and the random training (random T). Therefore, the

following 6 different types of the training scenarios will be

examined: “Optimal T, Optimal P”, “Optimal T, Proportional

P”, “Orthogonal T, Optimal P”, “Orthogonal T, Proportional

P”, “Random T, Optimal P”, “Random T, Proportional P”. For

all numerical examples, we take 10000 Monte-Carlo runs for

average.

To exhibit the effect of the correlated channel and the

colored interference, we here adopt a relatively large ε1 and

ε2 as ε1 = ε2 = 0.9. In Fig. 2, we display the MSEs

of ML channel estimation versus SNR of for 6 different

training scenarios under the system parameters M = N = 4.

We see that, the optimal training with the optimal power is

slightly better than the optimal training with the proportional

power. The orthogonal training under both power allocations

have more than 6 dB SNR loss than the optimal one. The

performance of the random training has around 20 dB SNR

loss compared to the optimal one and is not stable since we

assume the smallest valid N . This phenomenon has also been

observed in the channel estimation for AF relay networks

[6]. We then increase the N to 8 while keeping all other

parameters unchanged and show different MSEs in Fig. 3.

Most observations are the same as those in Fig. 2 except that

the performance of the random training become more stable

and is better than that of the orthogonal training. Another

observation is that, the optimal power allocation derived may

not necessarily be the best type of the power allocation, if

combined with orthogonal training and the random training.

V. CONCLUSIONS

In this paper, we study the training based channel estimation

for DF based relay networks. The major challenge here is the
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Fig. 3. Comparison between different training and power allocation for ML
based channel estimation, with ε1 = 0.9, ε2 = 0.9, M = N/2 = 4.

individual constraint of each relay node. To provide a thorough

study, we also include a CCU which brings the total power

constraint. The popular ML approach is considered and we

find a multi-level waterfilling solution. Numerical examples

have been provided from which we find that the optimal

training and the optimal power allocation are both important

to achieve the best channel estimation.
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