ISIT 2008, Toronto, Canada, July 6 - 11, 2008

Stochastic Switching Circuit Synthesis

Daniel Wilhelm
Dept. of Computation and Neural Systems
California Institute of Technology
Pasadena, CA 91125
wilhelm@caltech.edu

Abstract—Shannon in his 1938 Master’s Thesis demonstrated
that any Boolean function can be realized by a switching relay
circuit, leading to the development of deterministic digital logic.
Here, we replace each classical switch with a probabilistic switch
(pswitch). We present algorithms for synthesizing circuits closed
with a desired probability, including an algorithm that generates
optimal size circuits for any binary fraction. We also introduce
a new duality property for series-parallel stochastic switching
circuits. Finally, we construct a universal probability generator
which maps deterministic inputs to arbitrary probabilistic out-
puts. Potential applications exist in the analysis and design of
stochastic networks in biology and engineering.

[. INTRODUCTION.

In his 1938 Master’s Thesis, Claude Shannon discovered
a systematic synthesis procedure to generate a switching
circuit realizing any given Boolean function [1]. This classical
contribution led to the development of modern digital logic
design and is at the foundation of our ability to design and
manufacture digital circuits with millions of transistors.

Most importantly, Shannon showed how logic (Boolean
algebra) can be mapped to physics (relay-based switching
circuits). Shannon focused on deterministic variables and func-
tions; by closing a subset of switches, a switching circuit and
its associated Boolean function yield a deterministic output.

The natural question is: can we create a similar theory for
stochastic variables and functions? Namely, given a desired
probability distribution and a set of probabilistic switches (that
we call pswitches) as building blocks, can we systematically
design a switching circuit that realizes a desired probability
distribution? Our main contribution is a positive answer to
this question for the case where the probability distributions
involved are Bernoulli.

Shannon’s work focused on the so-called series-parallel
circuits. A t-terminal circuit is an undirected graph where ¢
nodes are labeled as terminals and where each node is visited
by at least one path between each pair of terminals. A circuit
is closed if its terminals are connected; otherwise, it is open.
A circuit is series-parallel iff each pair of its terminals is: (1)
a single edge or (2) a series or parallel combination of two
series-parallel circuits.

Shannon’s work also focused on deterministic switching cir-
cuits, circuits where each switch is associated with a Boolean
variable defining whether the switch is closed. We focus
on stochastic switching circuits, circuits where each pswitch
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Fig. 1. Series and Parallel Constructions. The relationship between a graph
and switching circuit is shown. There are only two ways to combine two
single-pswitch circuits, both shown here. (@) Any circuit can be represented
as a single pswitch. (b) Series. Only when both switches are closed is a series
circuit closed. (¢) Parallel. Only when both switches are open is a parallel
circuit open.

is associated with a Bernoulli random variable defining the
(independent) probability that the pswitch is closed.

Let Pr(C) represent the probability that a switching ciruit
C is closed. Some probability z is realized by C iff x =
Pr(C). Connecting the terminals of two switching circuits
A and B places them in parallel, such that the new circuit
is closed only when at least one of A and B are closed.
Connecting one terminal of A with one terminal of B places
them in series such that the new circuit is closed only when
both A and B are closed.

Now, we will add a single pswitch closed with probability
x to an established circuit C. Let F' = Pr(C). First, note that
only one switching circuit exists with a single pswitch (see
Figure la). If the pswitch is added in series, then the pswitch
and C' must both be closed; hence, the new circuit is closed
with probability F/ = Fx (see Figure 1b). If the pswitch is
added in parallel, then the circuit is only open if both the
pswitch and C' are open; hence, the new circuit is closed with
probability F/ =1 - (1 —2)(1 — F) = (1 — z)F + x (see
Figure 1c).

In this paper, we shall construct two-terminal stochastic
switching circuits where each pswitch is closed with some
rational probability. The set of possible pswitch closure prob-
abilities from which a circuit is constructed will be referred
to as the pswitch set S. We will call a circuit which realizes a
Bernoulli distribution using the fewest possible pswitches an
optimal size circuit. For example, given a pswitch set S = {1},
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we can use four pswitches to construct a stochastic switching
circuit with probability P = % (see Figure 2). No other circuit
can be constructed which realizes it with fewer pswitches
(proven in Section II), and so it is also an optimal size circuit.

We are now ready to state the main results in the paper:

1) Synthesizing optimal size switching circuits which real-
ize Bernoulli distributions. (Sections II, III)

2) A duality property allowing for optimality and existence
proofs. (Section III)

3) A universal probability generator (UPG) which maps n
deterministic input bits to all n-bit binary fractions (in
increasing order) using only 4n — 2 switches. The UPG
can be used to synthesize a circuit realizing any arbitrary
deterministic to probabilistic mapping. (Section IV)

Before we continue with the details of our results, we
describe some of the related literature. Series-parallel circuits,
a subset of switching circuits, have been rigorously analyzed,
including their enumeration [2], duality properties [3], and
other interesting topological properties [4]. For instance, Duf-
fin found that the absence of a Wheatstone bridge is necessary
and sufficient to make a circuit series-parallel [4].

Many duality properties for series-parallel circuits have been
studied which are often dependent on the network under study.
In resistor networks, the dual yields the inverse equivalent
resistance [3]. In logic gate networks, the dual yields a new
circuit with an equivalent Boolean formula (De Morgan). In
electrical networks, duals are circuits having the same current
and voltage formulas [5].

Circuit elements have been traditionally modeled stochas-
tically to assess reliability of components [6]. To produce
a system failure, a series connection of components only
requires a single failure, whereas a parallel connection of
components requires all components to fail. Several physical
circuits have also been proposed for designing stochastic
systems. For example, Gill suggested how to generate a
probability transformation element using sequential memory
logic [7].

II. REALIZING BINARY FRACTIONS.

We first present a simple algorithm that constructs an
optimal size circuit for any probability F' expressable as an
n-bit binary fraction. Specifically, assume without loss of
generality that the least significant bit of F' is *1’. Then, our
algorithm produces an n-pswitch switching circuit that realizes
F. We will prove that the resulting circuit is optimal in size.

The B-algorithm: an algorithm for generating circuits that
realize binary fractions with pswitch set S = {1}.

Let F; be the ith least significant bit of F'.

1) Let circuit Cy be the single-pswitch circuit.

2) For bit F;, i = 2 to n, let circuit C; be:

a) If F; =0, C1 in series with C;_1, or
b) If F; =1, C1 in parallel with C;_1.

See Figure 2 for an example which realizes 11/16; namely,
we use the B-algorithm with F' = 1011s.

Theorem 1: The B-algorithm synthesizes a
switching circuit that is closed with probability F'.

stochastic

0.1, 0.11;

Y

0.011; 0.10112

Fig. 2. Realizing F' = % = 0.10115. Progressing from the least-significant
to the most-significant bit in the binary representation of F, a pswitch is added
in series if "0’ and in parallel if *1’. The probability that each circuit is closed
as a binary fraction is printed beneath the circuit. The final circuit is optimal
in the number of pswitches.

Proof: The proof is by induction on the number of bits
in F. The base case is when F; = 1. We begin with C; as
the single-pswitch circuit closed with probability 1/2; hence,
P’I“(Cl> = 0].2

Now, suppose that some circuit C; is closed with probability
Pr(C;) = 0.7, where T is a bit vector. Then, we will show that
a pswitch added in series or parallel yields Pr(C;+1) = 0.0Z
or Pr(C;+1) = 0.17, respectively. Adding a pswitch in series
yields Pr(C;+1) = Pr(C;)/2, namely, a right shift with
an addition of 0’ in the most significant bit of F'. Adding
a pswitch in parallel yields Pr(Ci+1) = 1/2 + Pr(C;)/2,
namely, a right shift with an addition of ’1’ in the most
significant bit of F'.

Hence, by using this construction for each of the n bits in
F, an n-pswitch circuit that realizes F' is synthesized. ]

Note that the B-algorithm only produces a subset of all
switching circuits — those synthesizable by adding single
pswitches in series or in parallel. We will now prove that even
when all switching circuits are considered, the B-algorithm is
optimal. In the following theorem, we shall prove a general
lower bound for pswitch sets. Here, the optimality of the B-
algorithm corresponds to the case g = 2.

Theorem 2: Let ¢ € N be an arbitrary integer. Given S =
{1/¢,2/q,...,(¢q—1)/q}, an optimal size circuit C' that realizes
F =a/q", 0 < a < ¢", using the pswitch set S requires at
least n pswitches.

Proof: We will assume that every optimal size circuit C
as defined in the claim of the theorem has size at most n — 1.
Then, we will reach a contradiction. The idea is to show that
if C' (which realizes F' € {0, q¢—1}", the base-¢ representation
of the desired probability) of size n — 1 exists, then eventually
we must realize a non-integral probability with zero pswitches,
a contradiction.

Here is the idea in the proof. Suppose we have a circuit
C; such that F* associated with Pr(C;) has i digits in the
alphabet {0, ...,q—1}. We can assume that F* has a nonzero
value in the least significant digit. Then, we will choose
some pswitch = in Cj, create two new circuits by opening
or closing z, and prove that one of the circuits has probability
represented by F*~!, with i — 1 digits and a nonzero value in
its least significant digit. Namely, we can reduce the number
of pswitches by one and get a probability value that uses one
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Fig. 3. Duality. Duality has played an important role in the analysis
of circuits. (a) The dual of logic gates, by De Morgan’s Law; (b) The
dual of series-parallel resistor circuits of equal resistance, by Macmahon.
Series connections are now parallel, and vice versa; the equivalent resistance
coefficients are reciprocals. (¢) The dual of stochastic series-parallel switching
circuits. Each pswitch closed with probability p is closed with 1 — p in the
dual. Note the similarity to the dual of a resistor circuit.

less digit. This process will lead to a contradiction.
By the laws of probability,

Pr(C;) = Pr(C;|x open)Pr(x open) + (1
Pr(C;|z closed) Pr(z closed)
=a/q'.

We know that Pr(zx closed) € S and Pr(x open) € S, since
Pr(xz open) = 1 — Pr(z closed). Both denominators are ¢, so
for some b,c € N where 0 < b,c < q—1,

a

e bPr(C;|x open) + c¢Pr(C;|z closed). )

Let F? be the string associated with circuit C;, where
Pr(C;) = a/q". F" has length i and a non-zero least
significant digit. Then, by opening or closing some pswitch
z in C;, one of the new circuits is at least ¢ — 1 digits
long. Why? Suppose that both of the new circuit probabilities
are 7,5 < 4 — 1 bits long. Then, there exists v',c’ € N
such that a/q"~! = V'/q" + ¢ /q°, where each fraction has
a nonzero digit in its least significant digit. Then, a =
Vg g5 = ¢ (b +c'q" ). However, qa, so a
has a 0 in its least significant digit, producing a contradiction.

If we assume that there exists C' as defined in the claim of
the theorem with at least n — 1 pswitches realizing an F' with
n digits, then we can apply the above process n — 1 times and
eliminate all the pswitches. However, the resulting probability
will still be a fraction, and we reach a contradiction.

III. DUALITY.

Duality is an important property integral to the study of
circuits. De Morgan showed that the dual of a logic gate AAB

is =(=A V = B) (see Figure 3a). Macmahon showed that the
dual of a series-parallel resitor network composed of r-ohm
resistors with equivalent resistance (p/q)r has the equivalent
resistance (¢/p)r [3] (see Figure 3b). We have found that
duality exists in series-parallel stochastic switching circuits as
well (see Figure 3c). In this context, we will use duality to
find algorithms for realizing general probability classes (e.g.
all binary fractions).

The construction of a series-parallel circuit C' is an ordered
sequence of actions — we either synthesize a single-pswitch
circuit or combine two series-parallel circuits in series or
parallel. To construct the dual of C, we follow the same
sequence of actions. However, when a pswitch p is added to
C, we add a pswitch 1 — p to the dual; when a pswitch is
added in series, we add it in parallel to the dual (and vice
versa).

Hence, the dual of C only exists if C' is series-parallel, and
if for every pswitch p used in C, the pswitch 1 — p exists in
S. We will now show an important property of the dual of C;
it is closed with probability 1 — Pr(C).

Theorem 3: Given some stochastic series-parallel circuit C'
and its dual C, then Pr(C) + Pr(C) = 1.

Proof: This is shown using induction on the definition
of series-parallel. For the base case, the dual of a single-
pswitch circuit with pswitch p is the single-pswitch circuit with
pswitch 1—p. Now, suppose that the dual of a stochastic circuit
C is closed with probability 1 — Pr(C). Adding a second
series-parallel circuit C’ in series with C' to form C; yields
Pr(Cs) = Pr(C)Pr(C"). Adding C’ in parallel to the dual
of C to form C), yields Pr(C,) = 1—(1—(1—Pr(C")))(1—
(1-Pr(C)))=1-Pr(C)Pr(C") =1— Pr(Cs). The other
direction is similar. ]

This duality property is a powerful tool for analyzing
stochastic switching circuits. Suppose that for every pswitch p
in a circuit C, a pswitch 1 —p is in S. As follows, the duality
property can be used to prove which classes of probabilities
can be realized by all series-parallel circuits given S.

Theorem 4: S = {3} All Pr(C™") = &, 0 <a < 2", (ie.
all n-bit binary fractions) can be realized with n pswitches.

Proof: Suppose that all a/2™ can be realized. Now, add a
pswitch in series with each circuit, realizing all (1/2)(a/2™) =
a/2”+1, 0 < a < 2" Then, by the duality theorem, the
other half of the numerators, 2" < a < 2"+! also can be
realized (by adding 1/2 in parallel). Hence, all (n + 1)-bit
binary fractions can be realized with n pswitches (see Figure
4a). |

Theorem 5: S = {4,2}. All Pr(C") = &%, 0 < a <
3", (i.e. all n-trit ternary fractions) can be realized with n
pswitches.

Proof: Suppose that all a/3", 0 < a < 3", can be
realized. Now, add a 1/3 pswitch in series with each circuit,
realing all a/3"!, 0 < a < 3™ By the duality theorem,
2% 3" < a < 3" can also be realized (by adding 2/3 in
parallel). The evens of 3" < a < 2% 3™ can be realized by
adding 2/3 in series, and the duality theorem ensures that the
odds can be synthesized by adding 1/3 in parallel. Hence, all
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Fig. 4. Expressive Power. Here, we are given an initial pswitch set S and
that we can realize all a/q™, 0 < a < ¢", for some g € N. Using duality, we
show how to realize all b/¢g"*1, 0 < b < ¢"*! by adding a single pswitch.
The numerator b is shown on each number line along with which pswitch to
add to realize it. (a) All a/2™ can be synthesized using n pswitches. (b) All
a/3™ can be synthesized using n pswitches. (¢) All a/4™ can be synthesized
using n + 1 pswitches. Note that using n pswitches we can only generate
the evens in the middle half. To generate some odd numerator o, place a 1/2
pswitch in series with 20, using n + 1 pswitches (if o > 2 % 4™, then use
duality).

n-trit ternary fractions can be realized with n pswitches (see
Figure 4b). [ ]

Note that an optimal algorithm for realizing any fraction can
be obtained from the proof above. From theorem 2 (¢ = 3), a
minimum of n pswitches is required to realize all n-trit ternary
fractions; hence, the strategy in the proof is optimal. Given a
desired probability F' and S = {1/3,2/3}, then the algorithm
is:

1) Begin with an open circuit.

2) If F' =1, then halt. Otherwise, let a be the numerator of F'.

3) Add a pswitch:

a) If a < 3", add a 1/3 pswitch in series. (Let p = 1/3.)
b) If 3" < a < 2% 3", then:

i) If a is odd, add a 1/3 pswitch in parallel. (Let p =
1/3.
ii) If/a)is even, add a 2/3 pswitch in series. (Let p =
2/3.)
¢) If2x3" < a < 3", add a 2/3 pswitch in parallel. (Let
p=2/3)

4) Find the new desired probability:

a) If a pswitch was added in series, let F' = F/p.
b) If a pswitch was added in parallel, let F/ = %.

5) Let F = F’. Goto 2.

Now we take a brief diversion and show that this trend
of n-pswitch circuits realizing all a/q™ cannot continue. For
q > 3, prime numerators exist between the fractions obtainable
by adding two (¢ — 1)/q in series and two 1/q in parallel.
Since these primes cannot be realized, then all a/q"™ cannot
be generated for arbitrary n.

Theorem 6: No pswitch set containing all a/q, 0 < a < ¢,
for any ¢ > 3, can realize all Pr(C") = q%, 0<b<q™

Proof: We shall show that a prime numerator exists for
each denominator ¢ which cannot be realized, for all ¢ > 3.
If a pswitch is added in series to the single-pswitch circuit,

then the resulting numerator is composite (for a > ¢ — 1).
If a pswitch is added in parallel, then the smallest numerator
possible is realized by placing % in parallel with %, yielding
a numerator of 2q — 1. Hence, the range of numerators for
which only composite numbers can be generated is ¢ < a <
2q — 1. By Bertrand’s Postulate, there exists at least one prime
between ¢ and 2q — 2, for ¢ > 3; hence, a prime numerator
always exists within this range that cannot be generated.

The set of all switching circuits is equivalent to the series-
parallel set for fewer than four pswitches. Hence, this proof
holds for all switching circuits. |

From the theorem, circuits with S = {1/4,2/4,3/4} and
F = a/4™ cannot generate all a with fewer than n + 1
pswitches. In the following theorem, we will show that at most,
2n — 1 pswitches are required.

Theorem 7: S ={%,2,3}. All Pr(C™) = &,0<a <4"
can be realized with x pswitches, where n < z < 2n.

Proof: Suppose that all a/4", 0 < a < 4™, can be
realized. Now, by adding a 1/4 pswitch in series, the lower
quadrants of /4" can be synthesized. By duality, the upper
quadrant is also synthesized. By adding 2/4 in series or
parallel, all even numerators can be synthesized. Now, any
remaining odd numerator o can be generated by constructing
the circuit for 20/4™ and adding a 1/2 pswitch in series. Each
stage requires at most two switches with the exception of the
first, and so all a/4™, 0 < a < 4™ can be realized by at most
2n — 1 pswitches (see Figure 4c). |

The previous proof suggests that many stages may require
two switches. However, in practice often no more than n + 1
pswitches are required, provided that certain prime numerators
are not synthesized. As an example, 5/16 cannot be realized
with two pswitches (theorem 6); it can be realized with three.

If two switches are used to synthesize each of the odd
numerators suggested above, then it can be shown by induction
that 2n — 1 pswitches are required to realize the fraction
(0=, 4%) /4™ for any n > 0.

IV. A UNIVERSAL PROBABILITY GENERATOR

We have shown how to minimally realize any binary frac-
tion. Now, we will synthesize a circuit which can realize a
“probabilistic truth table” — a map assigning deterministic
inputs to probability values.

We define a universal probability generator (UPG) to be a
circuit which maps n deterministic input bits to all 2" n-bit
binary fractions in increasing order (e.g. for n = 3, figure 5a).
This can be easily accomplished using an exponential number
of switches; we simply construct each of the 2" probabilistic
circuits separately then uniquely select them with deterministic
switches.

Here, we propose two constructions which require only 4n—
2 switches. The first construction requires only n pswitches,
the fewest possible; the second is monotonic in the value of
its deterministic variables. In this section, all pswitches will
be closed with probability 1/2.

Theorem 8: The following recursive construction will syn-
thesize an n-bit deterministic input UPG circuit C,, using
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Fig. 5. A Universal Probability Generator. Here, we show the construction
of a circuit which maps deterministic inputs to probabilities. (a) The mappings
for a UPG with three deterministic input bits. (b) C is two switches in series.
Each recursive circuit stage requires an additional four switches. Note that a
single pswitch added at each stage is minimal.

4n — 2 switches:

1) Given a deterministic input z, let C; be a switch and pswitch

in series as in figure 5b.

2) To synthesize circuit C;, substitute C;_1 into the template for

C; given in figure 5b.
3) Let all deterministic switches added for circuit C; be closed
(unless negated) iff the ith bit from the least significant input

bit is *0’.

Proof: For (1, if the deterministic switch is open, we
realize 0/2; if it is closed, we realize 1/2. Hence, we realize
all 1-bit binary fractions.

Suppose that we can generate all (i — 1)-bit binary fractions
with circuit C;_1. Then, we shall show we can generate all
i-bit binary fractions with circuit C;. If the ith least significant
input bit is ’0’, then the deterministic switches added for
C; are open (unless negated). Hence, in both constructions
in figure 5b, a 1/2 pswitch is connected in series with
C;—1. This yields the first half of the new numerators, since
a/2" x 1/2 = a/2"*. Similarly, if the ith bit is °1°, then a
1/2 pswitch is connected in parallel with C;_;, yielding the
second half of the new numerators, since 1 —1/2(1—a/2") =
a/2™+! 4+ 1/2. Hence, every i-bit binary fraction is generated
for each recursive step, mapping each deterministic input z to
x/2m.

In both constructions, four switches are required for each
C;, excluding Cy for which only two are required. Hence,
after n — 1 recursions and the base case, we can generate 2"
probabilities with 4n — 2 switches. ]

In addition to these two constructions, also note that the
dual of the series-parallel construction (the right template in
figure 5b) is a valid UPG circuit. By the duality theorem,
this construction will realize all 1 — Pr(C,,), yielding again
2™ unique n-bit binary fractions. Also, note that a parallel
circuit can also be used for C'; if used, this would map each
deterministic input = to (x + 1)/2", generating an always-
closed circuit (2"/2™) rather than an always-open circuit
0/2™).

After generating this UPG, deterministic inputs yield prob-
abilities in increasing order. To create an arbitrary mapping, a
combinational logic block can be added (see Figure 6a) which
maps the desired deterministic inputs to the UPG deterministic
inputs using classical logic synthesis.

We will now provide an example of constructing a circuit
which realizes the truth table in figure 6b. First, since 3-bit

a b c
Universal & Iy
A— Probability —B I _
Generator l2
— LA IS S |
! Combinational i 2| B
| Logic ! I3 Ts
I -~
N A
Deterministic Input s
Fig. 6. Realizing a Probabilistic Truth Table. As an example, we will

synthesize a UPG and combinational logic block which satisfies a given
mapping between deterministic inputs and probabilities. (a) Combinational
logic allows arbitrary mappings to be achieved. (b) The desired truth table,
mapping two input bits to probabilities. (¢) A UPG construction which can
realize any 3-bit binary fraction.

binary fractions must be realized by the circuit, we build a
3-bit deterministic input UPG by following the construction
rules (see Figure 6¢). The UPG maps three deterministic inputs
to probabilities as shown in figure 5a. Hence, we will add
combinational logic to map the circuit deterministic inputs [
to the UPG deterministic inputs I’. This can be accomplished
using the following Boolean formulas — I : I, I} : =1y A—Is,
and Ié : _‘Il \Y 12.

Note that the mentioned probabilistic “truth table” also can
be interpreted as a discrete probability distribution. By only
using pswitches and deterministic switches, by the procedure
above any discrete probability distribution of binary fractions
can be generated.

V. CONCLUSIONS

In this paper, we introduced probabilistic switches as an
extension to classical deterministic switches. We showed that a
random variable, particularly a Bernoulli random variable, can
be associated with each pswitch, allowing circuits to realize
probability distributions. We found an algorithm to generate
the minimal circuit for any binary or trinary fraction. We
showed how duality extends from resistor networks and logic
gates to the pswitch realm, using it to prove existence results.
Finally, we constructed a linear-size universal probability
generator, capable of mapping any set of deterministic inputs
to unique probabilistic outputs.

Extending the work to find algorithms for more general
random variables and multiple terminals would be useful for
applied work, particularly in modeling stochastic events in
biology and engineering.
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