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Abstract— Two familiar notions of correlation are re- Channel Simulatorg(y|z)
discovered as extreme operating points for simulating a )
discrete memoryless channel, in which a channel output X" F, nh bits G yr
is generated based only on a description of the channel

input. Wyner's “common information” coincides with the
minimum description rate needed. However, when common
randomness independent of the input is available, the Fig. 1. A discrete-memoryless channel is simulated by twmasate
necessary description rate reduces to Shannon’s mutual processors,F and G. The first processorF, observesX and the
information. This work characterizes the optimal tradeoff second processof;, generates” after receiving a message at réte
between the amount of common randomness used and thefrom F. The minimum rate needed is the common entropyXoand
required rate of description. Y.

I. INTRODUCTION

What is the intrinsic connection between correlate3Purce andy™ are generated to be correlated with
random variables? How much interaction is necessary 4o~ The channel simulation is successful if the total
create correlation? variation between the resulting distribution ©f ™, Y")

Many fruitful efforts have been made to quamifyand the i.i.d. distribution that would result from passing
correlation between two random variables. Each quantiy” through a memoryless channel is small. This is
is justified by the operational questions that it answer8, SIrong requirement. It's stricter than the requirement
Covariance dictates the mean squared error in linear edfat (X", Y™) be jointly typical as in the coordinated
mation. Shannon’s mutual information is the descriptivaction work of Cover and Permuter [3]. This total
savings from side information in lossless source codingfiation requirement means that any hypothesis test that
and the additional growth rate of wealth due to sid@ Statistician comes up with to determine whethet
information in investing. Gacs and Korner's commoM/@s passed through a real memoryless channel or the
information [1] is the number of common random bit§hannel simulator will be virtually useless.
that can be extracted from correlated random variables Wyner's result implies that in order to generake'

It is less than mutual information. Wyner's commor@nd Y™ separately as an i.i.d. source pair they must
information [2] is the number of common random bit$hare bits at a rate of at least the common informa-
needed to generate correlated random variables andig® C(X;Y) of the joint distribution. In the channel

greater than mutual information. simulation problem these shared bits come in the form

This work provides a fresh look at two of these quar@f the description ofx ™[ However, the “reverse Shan-
tities — mutual information and Wyner's common in-Non theorem” of Bennett and Shor [4] suggests that a
formation (herein simply “common information”). Bothdescription rate of the mutual informatiai{.X;Y") of
are extreme points of the channel simulation problerﬂ]e joint distribution is all that is needed to successfully
introduced as follows: An observeerfcode) of an i.i.d. Simulate a channel. How can we resolve this apparent
sourceX;, X, ... describes the sequence to a distant ragontradiction?
dom number generatodécode that produce¥, s, ... The work of Bennett and Shor assumes that common
(see Figur]l). What is the minimum rate of descriptiofndom bits, ocommon randomnessmdependent of the
needed to achieve a joint distribution that is statisticaliSource X™ are available to the encoder and decoder.
indistinguishable (as measured by total variation) frof that setting, the common randomness provides a
the distribution induced by putting the source through $£cond connection between the sourceé and output

memoryless channel? 1 . . N
ch | si lation is a form of random numbe To achieve channel simulation with a rate as low as the common
an_ne simu ' fhformation one must change Wyner's relative entropy neguent in
generation. The variableX™ come from an external [2] to a total variation requirement as used in this work.


http://arxiv.org/abs/0805.0065v1

Channel Simulatory(y|z) (Wyner’s) common information:
Xn P, nR, bits . yn C(X;Y) = xl_nz}liy I(X,Y;U).
\nRZ - Conditional common information:
C(X;Y|W) = X_(g%_y I(X,Y;U|W).

Fig. 2. A discrete-memoryless channel is simulated by twmasgte Total variation distance:

processorsF’ andG. The first processoi’, observesX and common 1

randomness independent &f at rate R2. The second processds, ||p — q||1 2 - Z |p(:v) — q(x)|
generates” based on the common randomness and a message at rate 2 -

R, from F. i L
B. Problem Specific Definitions

A source X" is distributed i.i.d. according tg(z).
Y™, in addition to the description aX™. Remarkably, A description of the source at rat®, is represented
even though it is independent from the sour&¢', by I ¢ {1,...,2""1}. A random variableJ, uniformly
the common randomness assists in generating correlagistributed on {1, ...,2"%2} and independent ofX",
random numbers and allows for description rates small@presents the common random bits at r&te known
than the common informatio@'(X;Y). at both the encoder and decoder. The decoder generates

In this work, we characterize the tradeoff between th& channel outpuY™ based only ol andJ.
rate of available common randomness and the requiredThe channel being simulated has a the conditional
description rate for simulating a discrete memorylestistributiong(y|z), thus thedesired joint distributionis
channel for a fixed input distribution, as in Figure 2p(x)q(y|z).
Indeed, the tradeoff region of Sectibnl il confirms the Definition 1: A (2"f1 2n%2 ») channel simulation
two extreme cases. If the encoder and decoder amedeconsists of a randomized encoding function,
provided with enough common randomness, sending Con nRsy nR,
I(X;Y) bits per symbol suffices. On the other hand, Fo 2712, 27 = (1,2, 270},
in the absence of common randomness one must sp@d a randomized decoding function,
C(X;Y) bits per symbol. G {1,2,...,2""1} % {1,2, ..., 2"} — )",
This result has implications in cooperative game the- o

ory, reminiscent of the framework investigated in [5]1N€ description/ equals F;,(X™, J), and the channel
Suppose a team shares the same payoff in a repedREfPUtY" equalsG, (7, J). o _
game setting. An opponent tries to anticipate and explojt 5iNc€ randomized functions are specified by condi-

patterns in the team’s combined actions, but a secure lifgnal probability distributions, it is equivalent to say

Ri onR - i i
of communication is available to help them coordinatdnat (2", 2", n) channel simulation cpde consists
f a conditional probability mass functigr(i, y™|z™, j)

Of course, each player could communicate his randofl ) A A
ized actions to the other players, but this is an excessi‘()%tlg1 the propertlei;hqt(y [8,5,2") = p(y"li, 5), |T] =
use of communication. A memoryless channel is a useftl - and|J| =2 nRi onR

way to coordinate their random actions. Thus, common The induced joint distributionof a (27", 2", n)

information is found in Section Ml to be the SigniﬁcamcﬁanneldS|rr1|ulat:?n dee is the hJO'nt d:jstrlt_)u_tlonh on
quantity in this situation. the quadruplg X™, Y™ I,J). In other words, it is the

probability mass function,
Il. PRELIMINARIES AND PROBLEM DEFINITION . . . .
p(x",y"4,5) = pli,y" 2", 5)p(x",5), @)

A. Notation .
. . wherep(z™, j) = p(j) [1—, p(z) by construction.
We represent random variables as capital lettéfs,  pefinition 2: A sequence of2"f:, 27R2 p) channel
and their alphabets are written in scripf, Sequences, gimulation codes formn — 1,2,... is said toachieve
X1, ..., Xy, are indicated with a superscripf”. Distri-  ;(,17) if the induced joint distributions have marginal

bution functionspx (), are usually abbreviated aéz) jstributionsp(z™, y") that satisfy
when there is no confusion.

Accented variablesX, indicate different variables for lim
each accent, but their alphabets are all the sathe, n—o0 )
Similarly, distribution functions written with an accent Definition 3: A rate pair(R;, Rs) is said to beachiev-
or different letter, such ap(z) versusp(z), represent ableif there exists a sequence @+, 2"%2 n) channel
different distributions. simulation codes that achievesy|x).

Markov chains, satisfying(z,y, z) = p(z,y)p(z|y), Definition 4: Thesimulation rate regiorns the closure
are represented with dashe§,— Y — Z. of achievable rate pair6R;, R2).

=0.

pa,y™) = T plar)a(yela) ‘
k



I1l. M AIN RESULT X U Y

Theorem 3.1:For an i.i.d. source with distribution 0 0
p(z) and a desired memoryless channel with conditional o 22
distributiong(y|x), the simulation rate region is the set,
(&
SE£{(Ri,Ry) ER*: Ip(z,y,u) € D s.t. » »
R, > I(X;U),
Ri+Ry > I(X,Y;U)}, (2) ! !
where Fig. 3. The Markov chainsX — U — Y that give the boundary
of the simulation rate region for the binary erasure chammiéh a
D2 {p(x y u) . (X Y) N ﬁ(x)q(yl:v) Bernoulli-half input are formed by cascading two erasuranctels.
X —U —Y form a Markov chain | BEC Simulation Rate RegiorR. = 0.75
U] < 1|9 + 1. ®
IV. OBSERVATIONS AND EXAMPLES o8l
Two extreme points of the simulation rate regién 07}
fall directly from its definition. If R, = 0, the second 06f

inequality in [2) dominates. Thus, the minimum rate o5}
R, is the common informatio’(X’; Y). This coincides
with the intuition provided by Wyner’s result in [2]. At
the other extreme, using the data processing inequalit
on the first inequality of[[2) yields?, > I(X;Y)
no matter how much common randomness is available
and this is achieved whe®, > H(Y|X)H Source %
coding results and the coordinated action work of Covel
and Permuter in [3] illustrate that with a descriptior?:. . . . .
ig. 4. Boundary of the simulation rate region for a binargserre

rate of I(X;Y) we can create a codebook oOf OUtPUthannel with erasure probabilif. — 0.75 and a Bernoulli-half input,
sequences in such a way that we’'ll likely be able to finghereR; is the description rate ani; is the rate of common random-

i0i i i s. Without common randomness, a description ratgé(of;Y") is
a jOIhtly typlcal output sequence for each input Sequen.gé%qsuired to simulate the channel. With unlimited commordoamness,
from the source. Consequently, we can then randomig@escription rate of (X; Y) suffices.
the codebook using common randomness to actually

simulate the channel, as Bennett and Shor proved in [4].
Figure[4 shows the boundary of the simulation rate

A. Binary Erasure Channel region for erasure probabilit’. = 0.75. The required
For a Bernoulli-half sourceX, let us demonstrate thedescription rateR; varies fromC(X;Y) = h(0.75) =
simulation rate region for the binary erasure channgl.811 bits to7(X;Y") = 0.25 bits as the rate of common

Y is an erasure with probability>, and is equal to randomness runs betweérand H (Y |X) = h(0.75) =
X otherwise. The distributions iD that produce the 0.811 bits.
boundary of the simulation rate region are formed by
cascading two binary erasure channels as shown in

0.4r

V. SKETCH OF CONVERSE

Figure[3, where Let (R1, R2) be an achievable rate pair. Then for
eache € (0,1/4) there exists g2"%1 2"%2 pn) chan-
ps € [O,min{l,PeH ’ nel simulation code with an induced joint distribution
2 p(z™,y™,i,7) such that
1-P. n
b = - 1 : n .n ~
— D2 pa™,y") = [ ] plen)a(uelar)|| <e
The mutual information terms in](2) become k=1 1
I(X:U) = 1- Let the random variablé&’ be uniformly distributed over
’ B P the set{1,...,n}. The variableX will serve as a random
I(X,Y;U) = h(P.)+ (1 —p1)(1—h(p2)), time index.
whereh is the binary entropy function. A. Entropy Bounds

2Ry doesn't necessary have to be as large H§Y|X) for The_ joint distr_ibgtion of the seque_nceé_sX",Y") is
(I(X;Y), R2) to be in the simulation rate region. close in total variation to an i.i.d. distribution, so we can



extend Lemma 2.7 of [6] to obtain two bounds:

H(X"Y™") =Y H(X,Yi)| < ngle), (4)
k=1
I(Xg,Yr; K) < ng(e), (5)
where
g(e) £ 4e <log |X| + log | V| + 1og%) : (6)

Notice thatlim. g g(e) = 0.
B. Epsilon Rate Region

Define an epsilon rate region,

Se 2 {(Ri,Rs) € R? 3p(z,y,u) € D, s.t.

B> I0XGU) - 29(0)
Ri+Ry > I(X,Y;U)—2g(e)},
where
D £ {p(z,y,u) llp(z,y) — p(z)q(ylx)[l1 <e,

X — U —-Y form a Markov chain I

| < [X[[Y]+ 1} (7
Lemma 5.1:
(Rl,Rg) S Se.
Proof: We use familiar information theoretic in-

equalities, and the fact tha™ andJ are independent,

to boundR; and the sum raté&?; + R».

nRy H(I)

H(I|J)

I(X™ 1))
I(X™1,).
H(I,J)

(X", Y™ 1,.).

AVARAVARLV]

(8)
n(Rl + RQ)

(AVARLYS

9)

Xg — (I,J,K) — Y to complete the proof of the

lemma. (The cardinality bound df in () is shown to

be satisfiable via a generalized Caratheodory theorem.)
[ |

C. Lower semi-continuity

The epsilon rate regions decrease to the simulation
rate region as epsilon decreases to zero.

Lemma 5.2:
[l S.cs.
e€(0,1/2)
VI. SKETCH OF ACHIEVABILITY

A. Resolvability

One key tool for the achievability proof is summarized
in Lemmd6.1L. This lemma is implied by the resolvability
work of Han and Verdu in [7], but the concept was first
introduced by Wyner in Theorem 6.3 of [2].

Lemma 6.1:For any discrete distributiop(u, v) and
eachn, let C™ = {U™(m)}%_, be a “codebook”
of sequences each mdependently drawn according to

L pu(ug).
For a fixed codebook, define the distribution
2nR n
(v") =27 Z HPV|U(Uk|Uk(m))-
m=1k=1

Thenif R > I(V;U),

lim E

n—oo

7

HPV 'Uk

where the expectation is Wlth respect to the randomly
constructed codebook¥™.

B. Existence of Achievable Codes

Assume that(R,, R2) is in the interior ofS. Then
there exists a distributiopi* (z, y, w) € D such thatR; >
I(X;U)and Ry + Ry > I(X,Y; U).

We then lower bound the r.h.s. dfl(8) ard (9) using For eachn, let (I,.J) be uniformly distributed on

similar steps. Here we proceed frofm (9).
I(X™y™I,J) = H(X"Y")—-HX",Y"|I,J)

> H(X"Y") -
k=1

> (X, Vi 1,0) = ng(e)

k

=1

2 (XK,YK,IJK)—QTLQ()

Y

The second inequality comes fror] (4), and the lagihereq ("

inequality comes from[{5).

The joint distribution of the paiXx,Yx) can be
shown to satisfy the total variation constraint 0 (7)Q(x"
Finally, we acknowledge the Markovity of the triple

> H(Xy, Yi|I,J)

{1,....,2nR;} x {1,...,2"R2} We apply Lemma_6]1
twice, once withY = (X,Y) and again withV = X,

to assert that there exists a sequence of “codebooks”
C(n) = {Un(iaj)}(i,j)ezxj, n = 1,2,... W|th the
properties

Jim 1@ H vyl = 0,(10)
k=1 1
nhﬂngo U (k) = 0,(11)

,y™) andQ(z", j) are margmal distributions
derived from the joint distribution

(i, 5) T v v o (@es vel Uk (i, 4)).
k=1

’yn’i’j) =



In an indirect way, we've constructed a sequence tat |//| < 2"% and
joint distributions Q(z™,y™,4,j) from which we can

derive channel simulation codes that achiexg|z). lim E EZ@Z > 0. (13)

The Markovity of p* implies the Markov property noee |4

Q" y"i,j) = Qa"[i,j)Q(y" i, j). Let Let R(©) be the infimum of achievable rates for
plile™ ) = Q")) payoff ©. We claim that R(©) is the least average
o e common information of all combinations of strategies
Py i 3) = Q7). that achieve average paydif. Define,

Considering [(10) and[(11) with the properties of to- Ro(®) 2 minC(X;Y|W)
tal variation andp* in mind, it can be shown that .
Bli.y"lam.5) = plila", )p(y"]i,5) is a sequence of StE |minE[II(X,Y,2)[W]| > ©.

zE
channel simulation codes that achievésg|z). Theorem 7.1:

C. Comment on Achievability Scheme R(©) = Ry(©).

This channel simulation scheme requires randomiza-Converse Sketch:
tion at both the encoder and decoder. In essence ,T&€e important elements of the converse are the inequal-
codebook of independently dravifi* sequences is over- ities
populated so that the_ encode_r can choose one random) R(O)+¢) > H(U)
from many that are jointly typical wittk™. The decoder

then randomly generat&s™ conditioned on/™. = I£ Y™ U)
_ . . 1—1 i—1
VIl. GAME THEORY = Z;I(XszaWX Y
Our framework finds motivation in a game theoretic = nl(Xg, Y UXEL YK K),

setting. Consider a zero-sum repeated game between . . -

two teams. Team A consists of two players who on tHg" all ¢ > 0, where K is un'forf;p'_yl dlsit(rlt;uted on
ith iteration take actions\; € X andY; € Y. The 1L n}. Nowidentify the tuplelX™ ™%, Y%, k) as
opponents on team B take combined actign e z. (he auxiliary random variabléy’.

All action spacesY, Y, and Z are finite. The payoff for _ Achievability Comment: _ _ _
team A at each iteration is a time-invariant finite functior] "6 "andom variablél” serves as a time sharing variable

1I(X;,Y;, Z;) and is the loss for team B. Each teani©® cOmbine strategies of high and low correlation.
2y S K] .
wishes to maximize its time-averaged expected payoff. VIII. ACKNOWLEDGMENT
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