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Approximating the Gaussian Multiple Description
Rate Region Under Symmetric Distortion

Constraints

Chao Tian, Soheil Mohajer, and Suhas N. Diggavi

Abstract

We consider multiple description coding for the Gaussian source withK descriptions under the sym-
metric mean squared error distortion constraints, and provide an approximate characterization of the rate
region. We show that the rate region can be sandwiched between two polytopes, between which the gap
can be upper bounded by constants dependent on the number of descriptions, but independent of the exact
distortion constraints. Underlying this result is an exactcharacterization of the lossless multi-level diversity
source coding problem: a lossless counterpart of the MD problem. This connection provides a polytopic
template for the inner and outer bounds to the rate region. Inorder to establish the outer bound, we gener-
alize Ozarow’s technique to introduce a strategic expansion of the original probability space by more than
one random variables. For the symmetric rate case with any number of descriptions, we show that the gap
between the upper bound and the lower bound for the individual description rate is no larger than 0.92 bit.
The results developed in this work also suggest the “separation” approach of combining successive refine-
ment quantization and lossless multi-level diversity coding is a competitive one, since it is only a constant
away from the optimum. The results are further extended to general sources under the mean squared error
distortion measure, where a similar but looser bound on the gap holds.

1 Introduction

In the multiple description (MD) problem, a source is encoded into several descriptions such that any one
of them can be used to reconstruct the source with certain quality, and more descriptions can improve the
reconstruction. The problem is well motivated by source transmission over unreliable network and distributed
storage systems, since there exists uncertainty as to whichtransmissions are received successfully (or which
servers are accessible) by the end user.

In the early works on this problem, for example [1, 2], only two descriptions are considered. Even in
this setting, the quadratic Gaussian problem is the only completely solved case [2], for which the achievable
region in [1] is tight. Through a counter-example, Zhang andBerger showed that this achievable region is
however not tight in general [3], and a complete characterization of the rate-distortion (R-D) region has not
been found to this date. See [4] (and the references therein)for a review of works related to this problem in
the information theory literature.

Recent research attention has shifted to the generalK-description problem, partly motivated by the avail-
ability of multiple transmission paths in modern communication networks. In [5][6], an achievable individual
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description rate was provided for symmetric multiple descriptions, where each description has the same rate,
and the distortion constraint depends only on the number of descriptions available. This achievable region is
based on joint binning of the codebooks for each description, which has a similar flavor as the method often
used in distributed source coding problems. Another achievable region was given in [7] using more conven-
tional conditional codebooks. Wang and Viswanath [8, 9] generalized the Gaussian MD problem to vector
Gaussian source with many descriptions, and tight sum rate lower bound was established for certain cases
with only two levelsof distortion constraints (see also the outer bound result in [7]).

In this work, we consider general multiple description coding withK descriptions under symmetric dis-
tortion constraints. The distortion constraints are symmetric in the sense that with anyk ≤ K descriptions,
the reconstruction has to satisfy the distortionDk, regardless of which specific combination ofk descriptions
is used. Though the distortion constraints are symmetric, the rates of the descriptions are not necessarily the
same in this setting, thus generalizing the case treated in [5][6]. Nevertheless the completely symmetric case
as considered in [5][6], i.e., with both symmetric rate and distortion constraints, is indeed an interesting spe-
cial case, and will be treated with particular care. Our mainfocus is on the Gaussian source under the mean
squared error (MSE) distortion constraint, however we alsoshow that the results can be extended to more
general sources under the same distortion measure.

Though completely characterizing the rate-distortion region of the Gaussian multiple description problem
is difficult if not impossible, we provide an approximate characterization. Underlying this approximation is
the lossless symmetric multi-level diversity (MLD) codingproblem previously studied in [15, 16]; see Fig.
1. The MLD coding problem can be interpretted as a lossless version of the MD problem, and thus one of
our main insights is to use the MLD rate region as a polytopic template for inner and outer bounding the MD
rate-distortion region. We show that the MD rate-distortion region can be sandwiched between two polytopes,
between which the gap can be upper bounded by constants dependent on the number of descriptions, but
independent of the exact distortion constraints. The MD coding system is illustrated in Fig. 1 forK = 3
together with the MLD coding system.

One of the main contributions of this work is a novel lower bound to the sum rate for the Gaussian source,
underK levels of symmetric distortion constraints. This generalizes previous results in [2, 8, 9], where only
two levels of distortion constraints are enforced in the system. Though the lower bound given here may not
be tight, it is the first provably good bound with more than twolevels of distortion constraints enforced, to
the best of our knowledge. We derive this lower bound by generalizing Ozarow’s technique in treating the
Gaussian two-description problem. More specifically, we expand the probability space of the original problem
by more than one auxiliary random variables, and impose certain Markov structure on these random variables.
Ozarow’s technique has been applied to various problems besides the MD problem [2, 7–9], for example, the
results on multi-terminal source coding by Wagner and Anantharam [10], and the joint source channel coding
problem with bandwidth expansion by Reznicet al. [11]. However, in all these previous works the probability
space is expanded by only one additional auxiliary random variable (in [8, 9] it is one additional auxiliary
random vector since vector source was being considered). Recently a similar technique has also been applied
to the Gaussian interference channel problem [12], and interestingly the results there indeed require expanding
the probability space by more than one random variables. TheMD sum rate lower bound given in our work
can be optimized overK − 1 variables to provide the tightest bound. However an explicit solution for this
optimization problem appears difficult, thus instead we choose a specific set of values to provide a suboptimal
lower bound, which nevertheless still offers insight on theproblem and allows us to give an approximate
characterization of the MD rate region.

For the inner bounds, we analyze two achievability schemes:the first is a very simple scheme based
on successive refinement coding [13, 14] coupled with multi-level diversity coding (SR-MLD) [15–18]; the
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Figure 1: MD and MLD coding system diagrams forK = 3. More details on MLD coding are given in the
next section.

second is a generalization of the multilayer coding scheme proposed by Puri, Pradhan and Ramchandran
[5][6], which we will refer to as the PPR multilayer scheme. In the special case of symmetric rate, the
first scheme reduces to the well-known unequal loss protection method [20], and we thus also refer to it as
the SR-ULP scheme. The SR-MLD (or SR-ULP) scheme is in fact a separation-based scheme where the
quantization step and lossless source coding step are performed separately. As illustrated in Fig. 3, the output
of a successive refinement code is cascaded with the losslessmulti-level diversity coding scheme.

The generalization of the second scheme of [5][6] has two aspects: we first show that the definition of
the symmetric distribution, over which the scheme is optimized, can be relaxed straightforwardly; secondly
by introducing additional coding component and invoking results onα-resolution, we establish an achievable
region that matches the polytopic template of MLD coding rate region. Interesting, the achievable rate region
under a fixed set of auxiliary random variables is not a contra-polymatroid, unlike those often seen in other
multiterminal source coding problems.

With the inner and outer bounds, we quantify the difference between them. For the symmetric rate prob-
lem, the individual-description rate-distortion (R-D) function can be bounded within a constant depending
only on the number of descriptions, but not the distortion constraints. Moreover, regardless of the number of
descriptions, the gap between the lower bound and the upper bound using the SR-ULP coding scheme is less
than1.48 bits, and for the PPR multilayer scheme, the gap is less than0.92 bit. In order to establish these
results, method similar to the enhancement technique in [19] is used. We also generalize the results to other
sources under the mean squared error constraints, and show the sum rate gap between lower and upper bounds
can be bounded within a constant, depending also only on the number of descriptions.

In addition to providing an approximate characterization of the symmetric individual-description R-D
function, we also consider therate regionunder symmetric distortion constraints. We first illustrate the
basic ideas explicitly by considering the three-description case, and then extend the result to the general
K-description problem. For the three-description case, we show that the outer and inner bounds can be repre-
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Figure 3: The separation approach based on successive refinement and lossless multi-level diversity coding.

sented by ten planes with matching normal direction, and theEuclidean distances between the corresponding
planes are shown to be less than certain small constants; these results are illustrated in Fig. 2. Then using the
α-resolution approach introduced in [16], we show that for the generalK-description Gaussian problem under
symmetric distortion constraints, the bounding planes of the rate region can be bounded both from above and
below, between which the gap is bounded, and subsequently provide an approximate characterization of the
R-D region.

It is surprising that the simple separation-based scheme ofcombining successive refinement and lossless
multi-level diversity coding is able to achieve performance only a constant away from the optimal scheme; see
Fig. 3 for the illustration of this system. This result implies that in certain practical high rate applications, this
simple scheme may be sufficient, since additional gain will require much more complicated system design,
and the resulting system will be significantly less flexible.Moreover, when distortion constraints are placed
only on the lastk levels for the decoders withK−k+1, K−k+2, ..., K descriptions, we show that even the
gap between the lower and upper bound on the sum rate is asymptotically diminishing when the total number
of descriptionsK becomes large withk fixed. Thus virtually no gain is possible even in terms of sum rate for
this case.

We emphasize that the general approach used in approximating the MD rate-distortion region is likely
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to provide insightful result for other network source (and channel) coding problems. More precisely, even
though the exact rate-distortion region (or capacity region) of a multiuser information theory problem may
have a general convex shape with a curvy boundary, simple polytopic inner and outer bounds are likely to exist
which can provide a good approximate characterization. Comparing to general bounds, polytopic bounds are
much easier to analyze. To apply this approach, it is desirable that the inner and outer bounds both follow a
“common template” such that they can be conveniently compared. The result in our work suggests that a good
choice of the template for a rate-distortion problem is the underlying lossless compression problem.

The rest of the paper is organized as follows. In Section 2 we provide a formal definition of the problem,
and then briefly review the multi-level diversity problem and theα-resolution method. In Section 3, we present
a set of simplified results for the case with three descriptions as an illustrative example. Section 4 summarizes
the main results of the paper. In Section 5, we focus on deriving the upper and lower bounds for the sum rate,
and in Section 6, the inner and outer bounds for the rate region are presented. Finally Section 7 concludes the
paper. Detailed and technical proofs are given in the appendices.

2 Notation, problem formulation and review

In this section we first provide the necessary notations and the problem definition, then briefly review the
multi-level diversity coding problem and some essentialα-resolution results [15,16] which play an important
role in the development of our results. Wherever the notations or definitions become less transparent, we will
specialize them to the three description case, i.e., the caseK = 3. This special case will continue to serve as
our working example, particularly in Section 3.

2.1 Notation and problem definition

Let {X(i)}i=1,2,... be a memoryless stationary source. At each time indexi, the random variableX(i) in an
alphabetX is governed by the same distribution lawµX . In most of this work, we assumeX = R, i.e., the
real alphabet; moreover the reconstruction alphabet is also usually assumed to beR. We useR+ to denote
the set of non-negative reals. The vectorX(1), X(2), ..., X(n) will be denoted asXn. Capital letters are used
for random variables, and the corresponding lower-case letters are used for the realization of these random
variables. Letd : X × X → [0,∞] be a single-letter distortion measure, and the multi-letter extension is
defined as

d(xn, yn) =
1

n

n
∑

i=1

d(x(i), y(i)). (1)

In this work, we are particularly interested in the squared error distortion measured(x, y) = (x−y)2. As such,
it will be assumed without loss of generality that the sourcehas a normalized unit variance. In this context,
the most important case is the zero-mean unit-variance Gaussian sourceX ∼ N (0, 1). In fact for the majority
of this work we shall only consider the Gaussian source, except stated otherwise explicitly.

We shall adopt most of the notations in [16] introduced for the multi-level diversity coding (MLD) prob-
lem, which can be understood as a special case of the multipledescription problem as we shall explain shortly.
Throughout the paper, boldface letters are used to denoteK-vectors. For the generalK-description problem
being considered, a length-n block of the source samples is encoded intoK descriptions. Letv be a vector in
{0, 1}K, and denote thei-th component ofv by vi. Define

Ωα
K = {v ∈ {0, 1}K : |v| = α}, α = 1, 2, ..., K (2)
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where|v| is the Hamming weight ofv, and defineΩK =
⋃K

α=1Ω
α
K . Essentially, the setΩK provides a compact

way to enumerate the possible combinations of the descriptions, or equivalently a compact way to enumerate
the possible decoders. Particularly for the case ofK = 3, we have

Ω3 = Ω1
3 ∪ Ω2

3 ∪ Ω3
3 = {100, 010, 001} ∪ {110, 101, 011} ∪ {111}. (3)

Decoderv, v ∈ ΩK has access to the|v| descriptions in the setGv = {i : vi = 1}. For the caseK = 3, we
have

G100 = {1}, G010 = {2}, G001 = {3}, G110 = {1, 2}, G101 = {1, 3}, G011 = {2, 3}, G111 = {1, 2, 3}. (4)

Thesymmetricdistortion constraints are given such that any decoderv can reconstruct the source to satisfy a
certain distortionD|v|, i.e., the distortion constraint depends only on the numberof descriptions the decoder
has access to, but not the particular combination of descriptions.

Formally, the problem is defined as follows. An(n, (Mi, i ∈ IK), (∆v, v ∈ ΩK)) code, whereIK =
{1, 2, ..., K}, is defined as

Si : X n → IMi
, i ∈ IK (5)

Tv :
∏

i∈Gv
IMi

→ X n, v ∈ ΩK , (6)

and

∆v = Ed(Xn, X̂n
v), v ∈ ΩK , (7)

where

X̂n
v = Tv(Si(X

n), i ∈ Gv), (8)

andE is the expectation operator. For the caseK = 3, we have three encodersS1(·), S2(·) andS3(·), and
seven decodersT100, T010, T001, T110, T101, T011 andT111, each decoder being associated with a reconstructed
source sequencêXn

v and inducing an expected distortion∆v.
A K-tuple(R1, R2, ..., RK) is (D1, D2, ..., DK)-admissible if for everyǫ > 0, there exists for sufficiently

largen an(n, (Mi, i ∈ IK), (∆v, v ∈ ΩK)) code such that

1

n
logMi ≤ Ri + ǫ, i ∈ IK , (9)

and

∆v ≤ D|v| + ǫ, v ∈ ΩK . (10)

Throughout the paper, we use logarithm of base 2, such that the rate is measured by bits. LetR(D) be the
collection of allD-admissible rate vector, and this is the region of interest in this work. In the following
sections, we shall assume1 ≥ D1 ≥ D2 ≥ ... ≥ DK > 0 without loss of generality. One important special
case is when the rates of the all the descriptions are the same, i.e.,Mi = M for anyi ∈ IK . For this symmetric
rate case, thesymmetric individual-descriptionrate distortion (R-D) functionR(D) is defined simply as

R(D) = inf
{R:R≥Ri,(R1,R2,...,RK)∈R(D)}

R. (11)
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Figure 4: The similarity between MD coding and MLD coding forK = 3. They are essentially the same
source coding problem with different distortion criteria.

SinceR(D) is a closed set, the infimum can in fact be replaced by a minimum. Though in (11) we do
not explicitly enforce the constraint thatR1 = R2 = ... = RK , it is straightforward to see this constraint
can be added without causing any essential difference. For the caseK = 3, we often expand the distortion
vector and write the rate region and symmetric individual-description rate distortion function (SID-RD) as
R(D1, D2, D3) andR(D1, D2, D3), respectively.

Throughout the paper, when a rateR is of interest, we usêR or R̃ to denote its inner (upper) bounds, and
useR to denote its outer (lower) bound; when rate regionR is of interest, similar convention is taken.

2.2 A brief review of the symmetric multi-level diversity coding problem

The symmetric MLD coding problem considered in [15, 16] can be described as follows. A total ofK in-
dependent sourcesV1, V2, ..., VK are observed at the encoder, and encoded intoK descriptions. A decoder
Tv, which is called a level-|v| decoders, should reconstructV1, V2, ..., V|v| losslessly in the Shannon sense1.
Particularly in the case ofK = 3, three independent sourcesV1, V2 andV3 are observed at the encoder, and
encoded into three descriptions. The first level decodersT100, T010 andT001 should reconstructV1 losslessly,
the second level decodersT110, T101 andT011 should reconstruct(V1, V2), and the third level decoderT111

should reconstruct(V1, V2, V3). The connection
In the framework of MD coding afore-introduced, we can simply treat the multi-sourceV1, V2, ..., VK as

the single super sourceX, and the distortion measured|v|(·, ·) is level-dependent, and thus also decoder-
dependent, which is simply a Hamming distortion measure operating only onV1, V2, ..., V|v|. Therefore the
lossless symmetric MLD coding problem essentially provides the solution to this symmetric MD problem
at an extreme point of zero distortions for discrete memoryless sources; Fig. 1 and Fig. 4 illustrate the
connection between the two problems in terms of the encoding/decoding functions and the distortion measure,
respectively.

The main result for the symmetric MLD coding problem in [15, 16] is that source separation coding2 is
in fact optimal for this problem. The source separation coding scheme and the corresponding region can
be described as follows. Each source vectorV n

α is encoded independently of the other sources, and thei-
th description is allocated raterαi for theα-th source sourceV n

α . Each description is then the collection of
encoded information (codes) produced for all the sources. The rate region is thus the set of non-negative rate

1It can be shown that lossless in the Shannon sense and lossless with diminishing Hamming distortion does not cause essential
difference.

2This coding scheme was originally called superposition coding, but here we adopt the namesource separation codingas
suggested by Raymond Yeung, in order to avoid confusion withthe superposition coding in broadcast channel.
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vectorsR that satisfy the following condition [16]

Ri =

K
∑

α=1

rαi , i = 1, 2, ..., K, (12)

for somerαi ≥ 0, α = 1, 2, ..., K such that

∑

i∈Gv

r
|v|
i ≥ H(V|v|), v ∈ ΩK . (13)

The collection of information in all the descriptions may beredundant for any given sourceVα, α < K,
though any given specific description is maximumly compressed by itself. Clearly, the equality in (12) can
be replaced by≥ without loss of generality. As pointed out in [17], the condition (13) has an interpretation
closely related to Slepian-Wolf coding, that the source words are randomly binned (for thei-th description)
with raterαi , such that the source vectorV n

α can be recovered as long as the sum rate from anyα descriptions
for this source is larger thanH(Vα). In [17], a connection to the maximum distance separable (MDS) codes
was used to prove this result. Indeed, the Slepian-Wolf interpretation and the MDS codes interpretation are in
fact closely related in this setting.

2.3 Review of theα-resolution results

The rate region characterization (12) and (13) for MLD coding problem is given in a parametrized form, i.e.,
involving variables more than the rate tuple of interset(R1, R2, .., .RK). Though for smaller value ofK, e.g.,
K = 3, it is possible to explicitly investigate the faces and vertex points of the rate region, for larger value of
K this becomes intractable. To overcome this difficulty, theα-resolution method was invented in [16] to reveal
the inherent structure of the MLD coding rate region. Next wedirectly quote a few definitions and results from
[16]; some further results will be given after related notations are properly introduced. The readers in their
initial reading may skip the lemmas and theorem in this subsection, and they will not be needed until Section
6.

Let u andv be two vectors inRK . Defineu ≥ v if and only if ui ≥ vi, ∀i ∈ IK . Similar notation holds
for u, v ∈ {0, 1}K. For anyA = (A1, A2, ..., AK) ≥ 0, a mappingcα : Ωα

K → R+, whereR+ is the set of
non-negative real numbers, satisfying the following properties

cα(v) ≥ 0, for all v ∈ Ωα
K , (14)

and
∑

v∈Ωα
K

cα(v)v ≤ A (15)

is called anα-resolution forA; it will be denoted as{cα(v)} or simply ascα. Define a functionfα : RK
+ → R+

for α ∈ IK by

fα(A) = max
∑

v∈Ωα
K

cα(v), (16)

8



where the maximum is taken over all theα-resolution ofA. If {cα(v)} achievesfα(A), then it is called an
optimalα-resolution forA, or simplyα-optimal. Without loss of generality up to a permutation of the rate
vector components, we may assume

A1 ≥ A2 ≥ ... ≥ AK . (17)

Defintion 2.1 Let{cα(v)} be anα-resolution ofA, then
∑

v∈Ωα
K
cα(v)v is called the profile of{cα(v)}.

Lemma 2.1 ([16], Lemma 1) Let{cα(v)} beα-optimal forA, and let(Ă1, Ă2, ..., ĂK) be its profile. If there
exist1 ≤ i ≤ K such thatAi − Ăi > 0, thencα(v) > 0 impliesvi = 1.

Lemma 2.2 ([16], Lemma 2) Let {cα(v)} beα-optimal forA, and let(Ă1, Ă2, ..., ĂK) be its profile, then
there exists0 ≤ lα ≤ α− 1 such thatAi − Ăi > 0 if and only if1 ≤ i ≤ lα.

Defintion 2.2 For 2 ≤ α ≤ K, let cα andcα−1 beα-optimal and(α − 1)-optimal forA, respectively. Then
cα−1 coverscα, denoted bycα−1 ≻ cα, if

∑

u∈Ωα−1

K

cα−1(u)H(Si, i ∈ Gu) ≥
∑

v∈Ωα
K

cα(v)H(Si, i ∈ Gv), (18)

for anyK jointly distributed random variableS1, S2, ..., SK .

The following lemma is straightforward with the above definitions.

Lemma 2.3 Let cα−1 and cα be (α − 1)-optimal andα-optimal, respectively. Ifcα−1 ≻ cα, then (α −
1)fα−1(A) ≥ αfα(A).

Proof 1 (Proof of Lemma 2.3) Let S1, S2, ..., SK be independently and identically distributed random vari-
ables with entropyH(Si) = H(S) > 0 for anyi ∈ IK , then it follows

(α− 1)fα−1(A)H(S) =
∑

u∈Ωα−1

K

cα−1(u)(α− 1)H(S) =
∑

u∈Ωα−1

K

cα−1(u)H(Si, i ∈ Gu)

≥
∑

v∈Ωα
K

cα(v)H(Si, i ∈ Gv) =
∑

v∈Ωα
K

cα(v)αH(S) = αfα(A)H(S). (19)

Dividing both ends byH(S) completes the proof.

By using Lemma 2.3 and the definition offα(A), the following lemma is rather immediate.

Lemma 2.4 The follows are true.

• The optimal1-resolution is unique,c1(v) = Ai for Gv = {i}. Moreoverf1(A) =
∑K

k=1Ai , Asum.

• The optimalK-resolution is uniquecK(v) = fK(A) = mini∈IK Ai , Amin, whereGv = IK .

• For anyα such thatK ≥ α ≥ 2, fα(A) ≤ Asum
α

.

The following theorem is instrumental for the result presented in [16], and it is also important for us to
establish the result on the MD R-D region forK > 3.

Theorem 2.1 ([16], Theorem 3)For anyA ≥ 0, there existcα, 1 ≤ α ≤ K, wherecα is α-optimal forA,
such that

c1 ≻ c2 ≻ ... ≻ cK . (20)
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3 A simple approximation for K = 3

In this section we give a set of approximate characterization of the SID-RD function and the rate-distortion
region for the three description case. For the sake of simplicity, only the simple SR-MLD scheme is consid-
ered, and subsequently the set of results in this section is not as strong as those given in the following sections,
however we choose to present them first for better exposition. The approximate rate-distortion region charac-
terization for this case has a more explicit algebraic form,and can also be illustrated pictorially, which suites
particularly well for the purpose of facilitating understanding. Moreover, as we shall show, even this set of
simple results in fact provides a quite good approximation for the three description case.

3.1 Approximating the symmetric individual description rate distortion function

3.1.1 A simple upper bound

For the symmetric rate case, the source separation coding scheme reduces to the following simple unequal loss
protection scheme; see, for example, [20]. SourcesV1, V2, V3 are losslessly compressed independent of each
other. The encodedV1 is repeated in all three description; a(3, 2) maximum distance separable (MDS) code
is applied to the encodedV2 bitstream, and the resulting codeword is evenly split into each description; the
encodedV3 is then evenly split into each description without additional coding. This simple scheme clearly
has the symmetric individual description rate ofH(V1) +

1
2
H(V2) +

1
3
H(V3).

For the MD problem, consider now constructing the bitstreamBi using thei-th layer of a successive
refinement code for the Gaussian source, to satisfy the distortion constraintDi, for i = 1, 2, 3. This coding
structure is illustrated in Fig. 3, where thei-th layer output is taken to be the random sourceVi. Since the
quadratic Gaussian source is successively refinable [13], the following rate ofBi is achievable

Ĥi =
1

2
log

Di−1

Di

, i = 1, 2, 3. (21)

whereD0 , 1.
With Bi playing the role of the source vectorV n

i , it is clear that the following individual description rate
is achievable, which provides a simple upper bound on the SID-RD function (defined in (11))

R̂(D1, D2, D3) =
1

2

[

log
1

D1

+
1

2
log

D1

D2

+
1

3
log

D2

D3

]

=
1

12
log

1

D3
1D2D2

3

. (22)

3.1.2 A simple lower bound

Next we consider lower bounding the sum rate. To do this we write the following chain of inequalities.

n(R1 +R2 +R3)

(a)

≥ H(S1) +H(S2) +H(S3)−H(S1S2S3|X
n)

(b)
= H(S1) +H(S2) +H(S3)−H(S1S2S3|X

n)−
1

2
[H(S1S2) +H(S2S3) +H(S1S3)]

+
1

2
[H(S1S2) +H(S2S3) +H(S1S3)]−H(S1S2S3) +H(S1S2S3) , Ȟ3, (23)

10



where (a) is becauseSi, i = 1, 2, 3, are deterministic functions ofXn; (b) is by adding and subtracting the
same term. This step may appear rather arbitrary, however a closer look reveals that the terms bear similarity
to Han’s inequality on subsets of random variables [22].

Next defineY2 = X +N2 andY1 = X +N1 +N2, whereN1 andN2 are mutually independent Gaussian
random variables, also independent of the Gaussian sourceX, with varianceσ2

1 andσ2
2, respectively. Define

d1 , σ2
1+σ2

2 andd2 , σ2
2, whose values are to be chosen later. The following step is essential for establishing

the lower bound, which differs significantly from the technique of [2] and [8] in that we now utilize the two
auxiliary random variablesY1 andY2. Consider the following quantity

H́3 =

{

H(S1|Y
n
1 ) +H(S2|Y

n
1 ) +H(S3|Y

n
1 )−

1

2
[H(S1S2|Y

n
1 ) +H(S2S3|Y

n
1 ) +H(S1S3|Y

n
1 )]

}

+

{

1

2
[H(S1S2|Y

n
2 ) +H(S2S3|Y

n
2 ) +H(S1S3|Y

n
2 )]−H(S1S2S3|Y

n
2 )

}

. (24)

It is seen thatH́3 ≥ 0, because each brace in (24) is nonnegative by applying the conditional version of
Han’s inequality [22]3. Intuitively, we expect certain conditional independenceto hold approximately such
that each brace is approximately zero. In this sense, the first brace roughly suggests thatY1 is approximately
a reconstruction with only (and any) one description, such that the individual descriptions are independent
givenY1; the second brace roughly suggests thatY2 is approximately a reconstruction using only (and any)
two descriptions, such that pairs of descriptions are independent givenY2. Then it follows

n(R1 +R2 +R3) ≥ Ȟ3 − H́3

= I(S1; Y
n
1 ) + I(S2; Y

n
1 ) + I(S3; Y

n
1 ) +

1

2
[I(S1S2; Y

n
2 )− I(S1S2; Y

n
1 )]

+
1

2
[I(S2S3; Y

n
2 )− I(S2S3; Y

n
1 )] +

1

2
[I(S1S3; Y

n
2 )− I(S1S3; Y

n
1 )]

+ [I(S1S2S3;X
n)− I(S1S2S3; Y

n
2 )]. (25)

If H́3 is close to zero, then the bounding above should yield meaningful result, which is indeed the case.
We need the following lemma to proceed, the proof of which is in Appendix 8. Note that this lemma is not
limited to the case ofK = 3.

Lemma 3.1 Let Si, i ∈ IK be a set of encoding functions such that there exist decodingfunctions to satisfy
the distortion constraintsD = (D1, D2, ..., DK). LetYb = X+Nb andYa = X+Na+Nb, whereNa andNb

are mutually independent Gaussian random variables independent of the Gaussian sourceX, with variance
σ2
a andσ2

b , respectively. Then by definingσ2
b = db andσ2

a + σ2
b = da, we have

1. Mutual information bound between encoding functions and a noisy source

I(Si, i ∈ Gv; Y
n
a ) ≥

n

2
log

1 + da
D|v| + da

, (26)

2. Bound on mutual information different between encoding functions and different noisy sources

I(Si, i ∈ Gv; Y
n
b )− I(Si, i ∈ Gv; Y

n
a ) ≥

n

2
log

(1 + db)(D|v| + da)

(1 + da)(D|v| + db)
. (27)

3One can also optimize the distribution of auxiliary random variablesY1 andY2, however in this work we only consider the
specific Gaussian distribution given above, which yields relatively simple and easily computable bounds.
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Clearly we can now apply the first statement in Lemma 3.1 to thefirst three terms in (25), and the second
statement in Lemma 3.1 to the first three brackets in (25), by choosing appropriateda anddb. For the last
bracket, letσ2

b = 0 andσ2
a = σ2

2 in Lemma 3.1, then again the second statement can be applied.
Any valid choice ofd1 andd2, i.e.,d1 ≥ d2 > 0, yields a valid lower bound. One could optimize within

this set of lower bounds to find the tightest one, however without a matching inner bound, solving this rather
involved optimization problem offers little insight. Instead, we shall choose some specific values, which
indeed provides insightful results. Without loss of generality we may assumeD1 ≥ D2 ≥ D3. Thusd1 = D1

andd2 = D2 are a valid choice, and subsequently we have

R(D1, D2, D3) ≥
1

3
(R1 +R2 +R3)

≥
1

12
log

(1 +D1)
3(1 +D2)(D1 +D2)

3(D2 +D3)
2

29D6
1D

3
2D

2
3

(a)

≥
1

12
log

1

D3
1D2D2

3

−
3

4
, (28)

where (a) is by using the facts1 +Di ≥ 1 andDi +Di+1 ≥ Di for i = 1, 2.

3.1.3 Comparing the upper and lower bounds

Combining (22) and (28), we have

1

12
log

1

D3
1D2D2

3

≥ R(D1, D2, D3) ≥
1

12
log

1

D3
1D2D2

3

−
3

4
. (29)

The beginning and the end of inequalities differ only by a constant3
4

bit, which provides an approximation for
the SID-RD function. This result reveals that the simple SR-ULP scheme is surprisingly competitive, since it
is within 3

4
bit of the optimum performance.

3.2 Approximating the rate-distortion region

3.2.1 A simple inner bound

For K = 3, the symmetric MLD coding rate region given in (12) and (13) can be written explicitly in the
following form by applying the Fourier-Motzkin elimination [21] (see also [15])

Ri ≥ H1, i = 1, 2, 3, (30)

Ri + Rj ≥ 2H1 +H2, i 6= j, i, j ∈ {1, 2, 3}, (31)

2Ri +Rj +Rk ≥ 4H1 + 2H2 +H3, (i, j, k) is a permutation of(1, 2, 3), (32)

R1 +R2 +R3 ≥ 3H1 +
3

2
H2 +H3. (33)

whereHi , H(Vi) for i = 1, 2, 3.

12



�������

�������

���� ¡¢

1R

2R

3R

31 RR+

3212 RRR ++

321 RRR ++

Figure 5: Simple inner and outer bounds forR(D1, D2, D3). The gaps between the corresponding planes are
measured by the Euclidean distance.

Clearly the achievability of the MLD coding rate region given by (30)-(33) implies that the following rate
region is achievable for the MD problem by using the separation scheme illustrated in Fig. 3.

Ri ≥
1

2
log

1

D1

, i = 1, 2, 3, (34)

Ri +Rj ≥
1

2
log

1

D1D2

, i 6= j, i, j ∈ {1, 2, 3}, (35)

2Ri +Rj +Rk ≥
1

2
log

1

D2
1D2D3

, (i, j, k) is a permutation of(1, 2, 3), (36)

R1 +R2 +R3 ≥
1

4
log

1

D3
1D2D2

3

. (37)

3.2.2 A simple outer bound

To derive an outer bound to match the template induced by the SR-MLD coding rate region, we need to
consider bounding the rate combinations ofRi, Ri + Rj and2Ri + Rj + Rk, in addition to the sum rate
R1 + R2 + R3. Clearly, the first two kinds of combination can be treated similarly as the sum rate, and we
next show the last kind of rate combination can be appropriately bounded. We start with the following chain
of inequalities,

n(2Ri +Rj +Rk) ≥ 2H(Si) +H(Sj) +H(Sk)

≥ 2H(Si) +H(Sj) +H(Sk)−H(SiSj)−H(SiSk)

+H(SiSj) +H(SiSk)−H(SiSjSk) +H(SiSjSk)

− [H(Si|Y
n
1 ) +H(Sj|Y

n
1 )−H(SiSj |Y

n
1 )]− [H(Si|Y

n
1 ) +H(Sk|Y

n
1 )−H(SiSk|Y

n
1 )]

− [H(SiSj|Y
n
2 ) +H(SiSk|Y

n
2 )−H(SiSjSk|Y

n
2 )]−H(S1S2S3|X

n), (38)
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where the brackets are nonnegative becauseI(Si;Sj|Y
n
1 ), I(Si;Sk|Y

n
1 ) andI(SiSj ;SiSk|Y

n
2 ) are nonnegative.

Through some algebra, we arrive at

n(2Ri +Rj +Rk) ≥ 2I(Si; Y
n
1 ) + I(Sj; Y

n
1 ) + I(Sk; Y

n
1 ) + [I(SiSj; Y

n
2 )− I(SiSj; Y

n
1 )]

+ [I(SiSk; Y
n
2 )− I(SiSk; Y

n
1 )] + [I(SiSjSk;X

n)− I(SiSjSk; Y
n
2 )], (39)

and now Lemma 3.1 can be applied. By takingd1 = D1 andd2 = D2 and further removing non-essential
terms as in the sum rate case, an outer bound can be derived; the details are omitted here for brevity.

3.2.3 Comparing the inner and outer bounds

With the simple inner and outer bounds, we conclude that the rate-distortion region is sandwiched between
them as illustrated in Fig. 5, where the gaps between the corresponding planes are measured by the Euclidean
distance. Note that the bounds given here are looser than those given in Fig. 2, and in later sections we
will discuss how the tighter bounds are derived. In additionto providing an approximate characterization of
the R-D region, the result further implies that the simple SR-MLD scheme is in fact not very far away from
optimality, since it is within a small constant of the outer bound.

We use this section to illustrate the underlying ideas in theremainder of this paper. The result for the
generalK-description case given in the later sections are more involved, and we develop the general case
result not only for the SR-MLD scheme, but also for the PPR multilayer scheme which is not separation-
based. There are several difficulties in doing so: (1) There is no explicit representation of the inner and
outer bounds as in the case forK = 3. (2) The PPR multilayer scheme is originally designed only for the
symmetric-rate case, and we need to “inflate” the single ratepoint to a rate region. (3) To find tighter bounds,
the simple choice for the values ofdi used in this section is not sufficient. We first summarize the main results
for the generalK-description problem in Section 4, then in Section 5 and 6, weshall discuss in more details
how these difficulties are addressed.

4 Main results

In this section, we present several theorems which summarize the main results for the Gaussian MD problem.
The result on approximating the SID-RD function is first given, followed by the rate-distortion region approx-
imation. More details are given in the Section 5, 6 and the appendices. Since the treatment for general sources
under the MSE distortion measure is notationally more involved, they are thus delayed to those sections.

4.1 Approximating the symmetric individual description rate distortion function

Define the following functions

R̂(D) ,
1

2

K
∑

α=1

1

α
log

Dα−1

Dα

(40)

R̃(D) ,
1

2

K
∑

α=1

1

α
log

Dα−1

Dα

−
1

2

K
∑

α=2

1

α

[

log
α−Dα−1

α− 1

]

(41)

R(D,d) ,
1

2

K
∑

α=1

1

α
log

(1 + dα)(Dα + dα−1)

(1 + dα−1)(Dα + dα)
, (42)
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whered1 ≥ d2 ≥ ... ≥ dK−1 > 0, d0 , ∞ anddK , 0; D0 , 1 and we take the conventionlog ∞
∞ = 0. For

convenience we define

R(D) , sup
d1≥d2≥...≥dK−1>0

R(D,d), (43)

Define the following functions

Φα(D) =
αD

1−D
, α = 1, 2, ..., K. (44)

For a given distortion vectorD = (D1, D2, ..., DK), we shall associate it with anenhanced distortion vector
D∗ = (D∗

1, D
∗
2, ..., D

∗
K) using a recursive procedure.

D∗
1 = D1,

D∗
k =

{

(α−1)D∗

α−1

α−D∗

α−1

Φα(Dα) > Φα−1(D
∗
α−1)

Dk otherwise
, k = 2, 3, ..., K. (45)

This enhanced distortion vector is introduced in order to remove certain cases where the given distortion
vectors can not be satisfied with equality using the coding schemes we consider; moreover, it has the property
that it does not significantly effect the lower bound. More details on the enhanced distortion vector are given
in Section 5.B. We shall also assumeD1 < 1 for simplicity at this point, but will discuss the cases when
D1 = 1 shortly.

We are now ready to present the main theorem of this subsection.

Theorem 4.1 Let D∗ be the enhanced distortion vector ofD, then the Gaussian SID-RD function under
symmetric distortion constraints satisfies

R̂(D∗) ≥ R̃(D∗) ≥ R(D) ≥ R(D) ≥ R(D,d), (46)

for anyd1 ≥ d2 ≥ ... ≥ dK−1 > dK = 0 andd0 , ∞. Moreover,

R̂(D∗)− R(D) ≤
1

2

K
∑

α=2

1

α− 1
logα−

1

2

K
∑

α=2

1

α
log(α− 1) , L̂(K) ≤ 1.48, (47)

R̃(D∗)− R(D) ≤
1

2

K
∑

α=2

[

1

α− 1
−

1

α

]

logα , L̃(K) ≤ 0.92. (48)

Remark:In Theorem 4.1, we bound the gaps between the inner and outer bounds by universal constants.
This is not necessary, and we will show in Section 5 that the bounds can in fact be distortion dependent,
however we relax these bounds to make it universal here. The numerical values are derived using integral
approximation for series which does not yield the tightest bounds possible. In Table 1 we have included a few
values of these bounds.

An important and interesting special case is when only the last several levels have distortion constraints,
since usually the packet loss probability is not exceedingly high, and for the majority of the time only a
small number of packets can be lost. Though the universal bound in Theorem 4.1 also holds for degenerate
cases where only certain levels of distortion constraints exist, applying the theorem using the general bound
R(D,d) can improve the universal constants significantly. In orderto do so, the values(d1, d2, ..., dK−1) need
to be chosen carefully.

15



Table 1: ValueŝL(K) andL̃(K) for K = 1, 2, 3, ..., 8.
K 2 3 4 5 6 7 8

L̂(K) 0.5000 0.7296 0.8648 0.9550 1.0200 1.0693 1.1082
L̃(K) 0.2500 0.3821 0.4654 0.5235 0.5665 0.6000 0.6268

Corollary 4.1 For the Gaussian source, when only distortion constraintsDK−k+1, DK−k+2, ..., DK exist for
k ∈ IK , (or equivalentlyD1 = D2 = ... = DK−k = 1,) we have

R̂(D∗)−R(D) ≤
1

2

K
∑

α=K−k+2

1

α− 1
logα−

1

2

K
∑

α=K−k+2

1

α
log(α− 1)

R̃(D∗)−R(D) ≤
1

2

K
∑

α=K−k+2

[

1

α− 1
−

1

α

]

logα. (49)

Remark:These bounds are usually significantly tighter than the constants given in Theorem 4.1. It is easily
seen that whenk is kept fixed andK → ∞, the gap approaches zero; in fact, in this case even the sum rate
bounds become asymptotically tight. Corollary 4.1 thus implies that the SR-ULP scheme is even more closer
to optimum, and the benefit of using more complicated schemesis diminishing as the number of description
increases, when we are guaranteed to receive all but a constant number of descriptions.

4.2 Approximating the rate-distortion region

We first define two regions, which are in fact two inner bounds to the Gaussian MD rate region. The first
region is based on the SR-MLD scheme illustrated in Fig. 3, and now we define this (achievable) region for
generalK > 3. Let R̂(D) be the set of non-negative rate vectors(R1, R2, ..., RK), such that

Ri ≥
K
∑

α=1

rαi , 1 ≤ i ≤ K, (50)

for somerαi ≥ 0, 1 ≤ α ≤ K, satisfying

∑

i∈Gv

r
|v|
i ≥ Ĥ|v|(D), ∀v ∈ ΩK , (51)

where

Ĥα(D) =
1

2
log

Dα−1

Dα

, α = 1, 2, ..., K, (52)

andD0 , 1. It is clearly that since the Gaussian source is successively refinable, the right hand side of (52)
simply gives the rate for each layer in the optimal successive refinement code; (50) and (51) are simply the
counterpart of (12) and (13).
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The second region is based on a generalization of the PPR multilayer scheme, the details of which are
given in Section 6. First letD∗ be the enhanced distortion vector ofD and define the following quantities

H̃1(D
∗) =

1

2
log

1

D∗
1

,

H̃α(D
∗) =

1

2
log

(α− 1)D∗
α−1

(α−D∗
α−1)D

∗
α

, α = 2, 3, ..., K. (53)

Let R̃(D∗) be the set of non-negative rate vectors(R1, R2, ..., RK), such that

Ri ≥
K
∑

α=1

rαi , 1 ≤ i ≤ K, (54)

for somerαi ≥ 0, 1 ≤ α ≤ K, satisfying
∑

i∈Gv

r
|v|
i ≥ H̃|v|(D

∗), v ∈ ΩK . (55)

The following theorem establishes that bothR̂(D) andR̃(D) are inner bounds to the Gaussian MD rate-
distortion region.

Theorem 4.2 LetD∗ be the enhanced distortion vector ofD,

R̂(D∗) ⊆ R̃(D∗) ⊆ R(D∗) ⊆ R(D). (56)

ForK > 3, it is difficult to enumerate the faces of the inner and outer bounds, thus we alternatively seek
to approximately characterize the bounding planes of the rate-distortion region, defined for anyA ∈ R

K
+ and

A 6= 0, as the following function

RA(D) , min
R∈R(D)

A ·R (57)

Define the following function

RA(D,d) ,
1

2

K
∑

α=1

fα(A) log
(1 + dα)(Dα + dα−1)

(1 + dα−1)(Dα + dα)
. (58)

where the functionfα(A) is defined in (16) andd1 ≥ d2 ≥ ... ≥ dK−1 > 0, d0 , ∞ anddK , 0. Define
further the following function

RA(D) , sup
d1≥d2≥...≥dK−1>0

RA(D,d). (59)

The next theorem establishes the upper and lower bounds for the bounding planes of the rate-distortion
region. Since the rate-distortion region is convex, if the upper and lower bounds for the bounding planes
coincide, a complete characterization is then available. The upper and lower bounds given in the following
theorem do not coincide in general, however the gap between them is bounded, yielding an approximate
characterization of the rate region.
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Table 2: The values offα(A) and bounds forK = 3.
A (1, 0, 0) (1, 1, 0) (2, 1, 1) (1, 1, 1)

f1(A) 1 2 4 3
f2(A) 0 1 2 1.5
f3(A) 0 0 1 1

‖ · ‖ by (61) 0 1√
2

3+2 log 3

2
√
6

4+3 log 3

4
√
3

‖ · ‖ by (62) 0 1
2
√
2

2+log 3

2
√
6

3+log 3

4
√
3

Theorem 4.3 For the Gaussian source and anyA ≥ 0,

∑K

α=1 fα(A)Ĥα(D
∗) ≥

∑K

α=1 fα(A)H̃α(D
∗) ≥ RA(D) ≥ RA(D) ≥ RA(D,d) (60)

for anyd1 ≥ d2 ≥ ... ≥ dK−1 > 0, d0 , ∞ anddK , 0. Moreover, for anyA ∈ R
K
+ andA 6= 0,

K
∑

α=1

fα(A)Ĥα(D
∗)− RA(D) ≤

1

2

K
∑

α=2

fα−1(A) logα−
1

2

K
∑

α=2

fα(A) log(α− 1)

≤
Asum

2

K
∑

α=2

1

α− 1
logα−

Asum

2

K−1
∑

α=2

1

α
log(α− 1)−

Amin

2
log(K − 1), (61)

and

K
∑

α=1

fα(A)H̃α(D
∗)−RA(D) ≤

1

2

K
∑

α=2

[fα−1(A)− fα(A)] logα

≤
Asum

2

K−1
∑

α=2

[
1

α− 1
−

1

α
] logα +

1

2
(
Asum

K − 1
− Amin) log(K). (62)

Remark: It is not immediately clear that the outer bound, which is specified in terms of an uncountable
number of bounding planes indexed byA, is still a polytope as for the caseK = 3. Nevertheless it can indeed
be shown that when we specialize these bounds for appropriate choice ofd, it is an equivalent characterization
of a polytope. Moreover, the bounds given in (61) and (62) areestablished using the bound induced by this
specific choice ofd. We shall return to this point with more details in Section 6.

Remark:Theorem 4.3, which provides approximate characterizations of the rate-distortion region, is given
in a similar manner as Theorem 4.1, which provides approximation characterizations of the SID-RD function.
The second bound in (61) and the second bound in (62) are more explicit, whereas the first bounds involve the
functionfα(A) which requires solving an optimization problem. These bounds imply that the gaps between
the bounding planes of inner and outer bounds is upper-bounded by constants independent of the distortion
constraints.

Remark: Whether the polytopic inner bound is a good approximate characterization of the rate region
does not depend on whether the outer bound is a polytope, but only on how large the gap is between the inner
and outer bounds. Though for the Gaussian source, the outer bound can be specialized to be a polytope, for
general sources this does not necessarily hold. Nevertheless, even for general sources, the inner bound, which
is an approximate characterization of the rate region, is still a polytope.
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Example for K = 3: Now we apply the result in Theorem 4.3 to the case ofK = 3. As illustrated in
Section 3, it suffices to consider the choices of vectorA in the following set

{(1, 0, 0), (1, 1, 0), (2, 1, 1), (1, 1, 1)}. (63)

In Table 2, we list the value offα(A), which can be easily verified since theα-resolution formulation is a
linear optimization problem. Using (61) and (62), it is straightforward to compute the bounds between the
inner and upper bounds, as shown in the last two rows of Table 2. Note that here the distance is normalized in
terms of Euclidean distance. This improves the result givenin Section 3, which was illustrated in Fig. 2.

5 Sum rate bound and SID-RD function approximation

In this section, we provide more details on the derivation ofresults regarding SID-RD function. Some inter-
mediate results will be given, which may in fact be of interest by themselves when tighter distortion dependent
bounds are needed. We first introduce more formally two achievable individual description rates, which are
given in a general form that can also be applied to other sources, then the derivation of the outer bounds is
discussed. With both the inner and outer bounds, we analyze and bound the gap between them. Finally, we
extend the results to general sources under the MSE distortion measure.

5.1 Achievable rate using the SR-ULP scheme

The SR-MLD coding scheme reduces to the SR-ULP scheme when the rate is also symmetric, i.e.,R1 =
R2 = ... = RK . For a general source, we have the following theorem.

Theorem 5.1 For any given set of random variables(Y1, Y2, ..., YK) jointly distributed with the sourceX,
such that there exist deterministic functionsgα : Yα → X to satisfy

Ed(X, gα(Y1, Y2, ..., Yα)) ≤ Dα, α = 1, 2, ..., K, (64)

we have

R(D1, D2, ..., DK) ≤
K
∑

α=1

1

α
I(X ; Yα|Y1, Y2, . . . , Yα−1), (65)

whereY0 , 0.

This theorem is a natural consequence of combining the result on successive refinement [13, 14] and the
property of the MDS codes, and thus the proof is omitted. Thistheorem is given formally in order to facilitate
the analysis for general sources. In this work, we consider the following natural distribution often seen in the
successive refinement problem

Yα = X +
K
∑

i=α

Ni, α = 1, 2, ..., K (66)

whereNi ∼ N (0, σ2
i ) are mutually independent and also independent ofX. For convenience, we denote

∑K

i=αNi asZα. The values of varianceσ2
i , i = 1, 2, ..., K are chosen such that the distortion constraint
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at each level is satisfied with equality when the reconstruction is the linear minimum mean squared error
estimator (LMMSE), i.e., they are determined by the set of equations

Dα =

∑K

i=α σ
2
i

1 +
∑K

i=α σ
2
i

, α = 1, 2, ..., K. (67)

It is clear that there always exists a unique and valid solution for these variances when the distortion constraints
are given in the natural monotonic order. Through basic algebraic calculation, we arrive at the following
corollary forR̂(D) defined in (40),

Corollary 5.1 For the Gaussian source,

R(D) ≤ R̂(D). (68)

5.2 Achievable rate using the PPR multilayer scheme

In the two-part paper [5] and [6], an achievable symmetric individual rate is given for the symmetric MD
problem, and the main theorem is quoted below together with anecessary definition.

Theorem 5.2 ([6] Theorem 2)For any probability distribution

p(x, {yα,j, α ∈ IK−1, j ∈ IK}, yK) = p(x)p({yα,j, α ∈ IK−1, j ∈ IK}, yK |x), (69)

wherep({yα,j, α ∈ IK−1, j ∈ IK}, yK|x) is symmetric overX × YK(K−1)+1 and a set of decoding functions

gv : Y |v||v| → X , v ∈ ΩK , |v| < K,

gv : YK(K−1)+1 → X , |v| = K, (70)

such that

E(d(X, gv(Yα,j, α ∈ I|v|, j ∈ Gv))) ≤ D|v|, v ∈ ΩK , |v| < K,

E(d(X, gv({Yα,j, α ∈ I|v|, j ∈ Gv}, YK))) ≤ DK , |v| = K, (71)

the following symmetric individual description rate is achievable

R =

K−1
∑

α=1

1

α
H(Yα,j, j ∈ Iα|Yi,j, i ∈ Iα−1, j ∈ Iα)

+
1

K
H(YK|Yi,j, i ∈ IK−1, j ∈ IK)−

1

K
H({Yi,j, i ∈ IK−1, j ∈ IK}, YK|X). (72)

A symmetric distribution is defined in [6] as follows.

Defintion 5.1 A joint distributionp({yα,j, α ∈ IK−1, j ∈ IK}, yK|x) is called symmetric if for all1 ≤ ni ≤ K
wherei ∈ IK−1, the following is true: the joint distribution ofYK and all (n1 + n2 + ... + nK−1) random
variables where anynα are chosen from the set{Yα,1, Yα,2, ..., Yα,K}, conditioned onX, is the same.
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Intuitively, the PPR multilayer scheme provides layered information in the descriptions, and theα-th layer
information can only be decoded when at leastα descriptions are available. The encoding auxiliary random
variableYα,j is essentially the information provided in thej-th description for theα-th layer. In [5] and [6], a
clever scheme of organizing the information is given, resulting in the achievable rate given in Theorem 5.2.

We notice that the definition in Definition 5.1 is however unnecessarily restrictive and can be straight-
forwardly relaxed. The following alternative definition ofa symmetric distribution can replace the more
restrictive one. This relaxed version of symmetric distribution will be useful since our choice of distribution,
which provides simplification in computing the inner bound,is in this relaxed set, but not in the original more
restrictive set.

Defintion 5.2 A joint distributionp({yα,j, α ∈ IK−1, j ∈ IK}, yK|x) is calledgeneralized symmetricif for
any permutationπ(·) : IK → IK , the joint distributionp({yα,π(j), α ∈ IK−1, j ∈ IK}, yK |x) is the same as
p({yα,j, α ∈ IK−1, j ∈ IK}, yK |x).

It is straightforward to check that Theorem 5.3 holds true, when we replace the requirement of symmetric
distribution with the generalized version. The original version of symmetric distribution essentially requires
the distribution to be invariant underK−1 different permutationsπα(·), one for each layerα = 1, 2, ..., K−1;
i.e., if we permute{Y1,1, Y1,2, ..., Y1,K}, and then permute{Y2,1, Y2,2, ..., Y3,K} differently, and so on for each
α = 1, 2, ..., K − 1, the resulting distribution should remain the same as the one before such permutations.
This requirement was however never completely utilized in the coding scheme. Instead the coding scheme in
fact only requires invariance under a single permutationπ(·) which is applied to all the levels simultaneously,
i.e.,πα(·) = π(·), for α = 1, 2, ..., K − 1. More formally, we state this generalized result as a theorem.

Theorem 5.3 The statement of Theorem 5.2 holds when the symmetric distribution requirement is replaced
with the generalized symmetric distributions.

From Theorem 5.3, an achievable individual description rate can be derived by choosing a specific set
of encoding auxiliary random variables, and more specifically, we shall choose the following set of random
variables. Let

Yα,k = X +

K−1
∑

i=α

Ni,k, α = 1, 2, ..., K − 1, k = 1, 2, . . . , K (73)

whereNi,k are mutually independent zero-mean Gaussian random variables, which are also independent of
X. Their variances are denoted asσ2

i,k, and they satisfyσ2
i,k = σ2

i,k′ for anyk, k′ ∈ IK ; we thus denoteσ2
i,k as

σ2
i . For convenience, we shall denote

∑K−1
i=α Ni,k asZα,k. For the last layer, i.e.,α = K, we use

YK = X − E(X|Yα,k, α ∈ IK−1, k ∈ IK) +NK , (74)

whereNK is a zero-mean Gaussian random variable independent of everything else, with varianceσ2
K . Clearly,

X−E(X|Yα,k, α ∈ IK−1, k ∈ IK) is the innovation ofX given all the lower-level random variables. It remains
to specify the variances of{{Nα,k, α ∈ IK−1, k ∈ Iα}, NK}, which is in fact not trivial as we shall discuss
next. Notice that for all the layers except thatα = K-th layer,Yα−1,j ↔ Yα,j ↔ X is a Markov string, thus the
lower layers are useless when higher layers are decoded. To see that this choice of encoding auxiliary random
variables does not satisfy the original symmetric distribution requirement, consider the joint distribution of
(Y1,1, Y2,1) and that of(Y1,1, Y2,2). GivenX, the first pair of random variables are dependent, while the second
pair of random variables are independent; this clearly violates the original symmetric distribution requirement.
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The key difficulty we face is now the following: when descriptions in the setGv, where|v| = α − 1 ≤
K − 1, are received, the decoding function can reconstruct the source using the random variable{Yα−1,i, i ∈
Gv}; note that from (73), it is clear that sinceYα−2,k = Yα−1,k + Nα−2,k, using only{Yα−1,i, i ∈ Gv} to
reconstruct the source does not lose optimality, i.e., the lower layer random variables are useless given the
higher layers. If one more description, say thej-th description, is further received, the decoding function
now can utilize the random variable associated with this description Yα−1,j. Thus even if theα-th layer
random variables{Yα,i, i ∈ Gv ∪ {j}} do not provide additional information beyond the lower layer random
variables{Yα−1,i, i ∈ Gv ∪ {j}}, the decoder is still able to improve the reconstruction over the original
decoding function with descriptions inGv . This is in fact a key observation in [5] that improves the system
performance over the simple SR-ULP scheme. This observation implies that for certain distortion vectorD,
it is not possible to satisfy all the constraints with equalities with the PPR multilayer scheme because some
constraints are too loose, and thus the distortion region has some degenerate regimes. The enhanced distortion
vector given in Section 4 is thus introduced to eliminate this effect. This enhanced distortion vectorD∗

serves a similar role as the enhanced channel in [19], where the MIMO Gaussian broadcast channel capacity
is established.

The enhanced distortion vectorD∗ has the following three important properties:

• Enhancement:D∗ enhanced the distortion vectorD, i.e.,D∗
i ≤ Di, i = 1, 2, ...K.

• Monotonicity:D∗ = (D∗
1, D

∗
2, ..., D

∗
K) is a monotonically decreasing sequence, thus a valid distortion

vector.

• Φ-monotonicity: it satisfies the condition

Φα(D
∗
α) ≤ Φα−1(D

∗
α−1), α = 2, 3, ..., K. (75)

These properties are straightforward to check by the construction ofD∗
k.

The Φ-monotonicity property is exactly the condition being checked in the definition of the enhanced
distortion vector, withD∗

α replacingDα. Thus the definition of the enhanced distortion vector effectively
constructs a new distortion vector in a sequential manner, if the original distortion vector does not satisfy
theΦ-monotonicity property. The desiredΦ-monotonicity property removes the degenerate regimes andthe
corresponding difficulty previously discussed. To see this, consider the following two cases: (1) when de-
scriptions inGu are received, where|u| = α; (2) when descriptions inGv are received, wherev = α − 1
andGv ⊆ Gu. For the latter, using the given Gaussian auxiliary random variables{Yα−1,i, i ∈ Gv}, linear
estimation induces a distortion

D′
α−1 =

∑K−1
i=α−1 σ

2
i

∑K−1
i=α−1 σ

2
i + α− 1

. (76)

Similarly, using the random variables{Yα,i, i ∈ Gu}, linear estimation induces

D′
α =

∑K−1
i=α σ2

i
∑K−1

i=α σ2
i + α

. (77)

In the case that each individual encoding auxiliary random variableYα,j does refine overYα−1,j , i.e., there is
no explicit information embedded in theα-th layer, we haveσ2

α−1 = 0, i.e.,D′
α−1 is given by

D′
α−1 =

∑K−1
i=α σ2

i
∑K−1

i=α σ2
i + α− 1

. (78)
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Now suppose the distortion constraint at the(α − 1)-th level is given byDα−1 = D′
α−1 as in (78), then the

degenerate case previously discussed indeed occurs if the distortion constraint at theα-th level is given such
thatDα > D′

α. Through elementary algebra, it is clear that this is equivalent to the condition

αDα

1−Dα

>
(α− 1)Dα−1

1−Dα−1
, (79)

which is exactly the negation of (75), with(Dα−1, Dα) replacing(D∗
α−1, D

∗
α).

Thus if the condition (75) does not hold for the given distortion constraintsDα−1 andDα, our choice of
Gaussian encoding auxiliary random variables will not be able to achieve the given(Dα−1, Dα) simultaneously
with equality, but can naturally achieve strictly better distortions with equality. For the enhanced distortion
vector(D∗

1, D
∗
2, ..., D

∗
K), which indeed satisfies the condition (75), the distortion constraints can always be sat-

isfied with equality in this achievability scheme, by choosing the appropiate variances(σ2
1, σ

2
2, ..., σ

2
K). Con-

versely, given an enhanced distortion vectorD∗, the variances of the auxiliary random variables{{Nα,k, α ∈
IK−1, k ∈ IK}, NK} are uniquely determined. More precisely, the variances forσ2

α, α = 1, 2, ..., K − 1 are
determined by

K−1
∑

i=α

σ2
i = Φα(D

∗
α), (80)

which always give a set of valid choices of the variances. Thus from here on, in the PPR multilayer coding
scheme, the Gaussian auxiliary random variables will be assumed to have the variances thus determined.

With the enhanced distortion vectorD∗ properly defined, we have the following corollary, the proofof
which is given in Appendix 9.

Corollary 5.2 For the Gaussian source,

R(D) ≤ R(D∗) ≤ R̃(D∗). (81)

The first inequality is clearly true becauseD∗ enhancesD.

5.3 Lower bounding the sum rate

Next we generalize the lower bounding derivation given in Section 3 forK = 3 to the case of generalK. The
generalization is notationally involved, and the result issummarized in the following theorem.

Theorem 5.4 For the Gaussian source, the sum rate under theK-description symmetric distortion satisfies

K
∑

i=1

Ri ≥
K

2

K
∑

α=1

1

α
log

(1 + dα)(Dα + dα−1)

(1 + dα−1)(Dα + dα)
, (82)

whered1 ≥ d2 ≥ ... ≥ dK−1 > 0 are arbitrary non-negative values,d0 , ∞ anddK , 0.

Proof 2 The bounding technique extends the method used in [2, 8, 9], however with the new ingredient that
we expand the probability space with more than one additional random variables, and then utilize the special
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structure in the expanded probability space to bound the sumrate. We have the following chain of inequalities

n

K
∑

i=1

(Ri + ǫ) ≥
K
∑

i=1

H(Si)−H(Si, i ∈ IK |X
n)

(a)
=

K−1
∑

α=1





K

α
(

K

α

)

∑

Gv :|v|=α

H(Si, i ∈ Gv)−
K

(α + 1)
(

K

α+1

)

∑

Gv :|v|=α+1

H(Si, i ∈ Gv)





+H(Si, i ∈ IK)−H(Si, i ∈ IK |X
n)

(b)

≥ I(Si, i ∈ IK ;X
n)

+
K−1
∑

α=1





K

α
(

K

α

)

∑

Gv :|v|=α

H(Si, i ∈ Gv)−
K

(α + 1)
(

K

α+1

)

∑

Gv :|v|=α+1

H(Si, i ∈ Gv)





−
K−1
∑

α=1





K

α
(

K

α

)

∑

Gv :|v|=α

H(Si, i ∈ Gv|Y
n
α )−

K

(α+ 1)
(

K

α+1

)

∑

Gv :|v|=α+1

H(Si, i ∈ Gv|Y
n
α )





= I(Si, i ∈ IK ;X
n)

+

K−1
∑

α=1





K

α
(

K

α

)

∑

Gv :|v|=α

I(Si, i ∈ Gv; Y
n
α )−

K

(α + 1)
(

K

α+1

)

∑

Gv :|v|=α+1

I(Si, i ∈ Gv; Y
n
α )





=
K
∑

i=1

I(Si; Y
n
1 ) +

K−1
∑

α=2

K

α
(

K

α

)

∑

Gv :|v|=α

[

I(Si, i ∈ Gv; Y
n
α )− I(Si, i ∈ Gv; Y

n
α−1)

]

+
[

I(Si, i ∈ IK ;X
n)− I(Si, i ∈ IK ; Y

n
K−1)

]

. (83)

where (a) is by adding and subtracting the same terms where the positive term in the bracket chases the
negative one; (b) is true because the subtracted bracket is nonnegative due to conditional version of Han’s
inequality [22]; {Yα, α ∈ IK} are defined in (66), though here we are not using them to construct codes. For
convenience we denotedα =

∑K

j=α σ
2
j . Now we can apply Lemma 3.1 on (83) to get the desired result by

noticing

log
D1 + d0
1 + d0

= log
D1 +∞

1 +∞
= 0, (84)

with the conventionlog ∞
∞ = 0.

Note that the lower bound in Theorem 5.4 is in fact a set of lower bounds, parametrized byd1 ≥ d2 ≥
... ≥ dK−1 > 0. We may optimize it to find the tightest lower bound, however,an explicit optimization is not
only difficult, but also fails to offer much insight due to thelack of matching achievability result. Instead we
shall choose a specific set of values to get a (sub-optimal) bound, resulting in the following corollary.
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Corollary 5.3 For the Gaussian source, the SID-RD function under symmetric distortion constraintsD sat-
isfies

R(D) ≥
1

2

K
∑

α=1

1

α
log

D∗
α−1

D∗
α

−
1

2

K
∑

α=2

1

α− 1
log(α−D∗

α−1) +
1

2

K
∑

α=2

1

α
log(α− 1)

≥
1

2

K
∑

α=1

1

α
log

D∗
α−1

D∗
α

−
1

2

K
∑

α=2

1

α− 1
logα +

1

2

K
∑

α=2

1

α
log(α− 1), (85)

whereD∗ is the enhanced distortion vector ofD.

This corollary is proved in Appendix 10. It is worth noting that the left hand side of (85) is regarding
the SID-RD function of distortion vectorD, and the right hand sides of (85) are only related to the enhanced
distortion vector. Indeed the enhanced distortion vector is given in such a way that it does not change the
lower bound under the chosen value of(d1, d2, ..., dK−1).

5.4 Bounding the gap between lower and upper bounds

Now it is rather straightforward to prove Theorem 4.1. SinceD∗ enhancesD, we have by Corollary 5.1 and
Corollary 5.2 that

R(D) ≤ R(D∗) ≤ R̃(D∗) ≤ R̂(D∗). (86)

Now combining (86) with Theorem 5.4 and Corollary 5.3 gives Theorem 4.1.
Theorem 4.1 provides one possible approximation for the SID-RD function with universal constant bit

bound. Various improvements can be made, for example, better choice of(d1, d2, ..., dK−1) and better choice
of random variables in the PPR multilayer coding scheme. Moreover, when proving Corollary 5.3, we have
omitted many terms, which may make the bound looser. In fact,for the case with only two level distortion
constraints, the outer bound in Theorem 5.4 reduces correctly to the one given in [8] and [9]. It was shown in
[2], [8] and [9] that for certain cases this bound is indeed tight, which however requires optimization to find
the optimal bound. We will not pursue such refinements here, but leave them to interested readers.

In order to prove Corollary 4.1, notice that this case implies we can chooseD1 = D2 = ... = DK−k = 1,
and furthermore we can setdK−k = ∞. Thus the lower boundR(D,d) implies that

R(D) ≥
1

2

K
∑

α=K−k+1

1

α
log

(1 + dα)(Dα + dα−1)

(1 + dα−1)(Dα + dα)
. (87)

Apply the procedure of computing the enhanced distortion vector on (DK−k+1, DK−k+2, .., DK) only, and
denote the output as(D∗

K−k+1, D
∗
K−k+2, ..., D

∗
K). We then follow the proof of Corollary 5.3 and arrive at

R(D) ≥
1

2

K
∑

α=K−k+1

1

α
log

D∗
α−1

D∗
α

−
1

2

K
∑

α=K−k+2

1

α− 1
log(α−D∗

α−1) +
1

2

K
∑

α=K−k+2

1

α
log(α− 1)

≥
1

2

K
∑

α=K−k+1

1

α
log

D∗
α−1

D∗
α

−
1

2

K
∑

α=K−k+2

1

α− 1
logα +

1

2

K
∑

α=K−k+2

1

α
log(α− 1). (88)

It is clear thatH̃α = 0 for α = 1, 2, ..., K − k. Thus we have proved the bound for the differences between
the upper and lower bounds as given in Corollary 4.1.
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5.5 Extension to general sources

In this subsection we generalize the result for the Gaussiansource to other sources under the MSE distortion
measure, and show similar but looser bounds hold for the symmetric individual description rate under the
quadratic distortion measure. We derive the result using the SR-ULP scheme, but not the PPR multilayer
scheme, which appears difficult to analyze for general sources. Interestingly, forK = 2 and the symmetric
distortion constraints, the sum rate gap between the upper bound derived using the SR-ULP scheme and
the R-D function is upper-bounded by1.5 bits, which is the same value as that derived in [23] for the two
description case; nevertheless our result is a stronger, since in [23] the achievable scheme is more involved
than the SR-ULP scheme yet the bounding constant is the same.

Some additional definitions are necessary. For a general sourceX with finite differential entropy, zero
mean and unit variance, define the following quantity,

R̂′(D) =
K
∑

α=1

1

α
I(X ; Yα|Y1, Y2, . . . , Yα−1) (89)

where random variableYα, α = 1, 2, ..., K are defined as in (66) and (67).
The following theorem is the main result of this section.

Theorem 5.5 For any general sourceX with unit variance under the MSE distortion measure, we have

R̂′(D) ≥ R(D), (90)

moreover,

R̂′(D)− R(D) ≤
K
∑

α=1

1

2α
. (91)

This theorem essentially states the the SR-ULP scheme with the additive Gaussian codebook operates
within

∑K

α=1(2α)
−1 of the optimal coding scheme, in terms of individual description rate, for any source with

unit variance. The first statement in the theorem is trivial by applying Theorem 5.1, and the second statement
is proved in Appendix 11.

Unlike Theorem 4.1, there is no explicit lower bound on the SID-RD function. Indeed, in the proof of
Theorem 5.5, the outer bound is never explicitly written to have an single letter form or an analytical form that
can be computed directly. The key proof idea is to construct the lower and upper bound in appropriate forms
such that certain terms are the same, and then cancel these terms to bound the remaining terms.

6 Rate-distortion region approximation

In this section, we develop the results further to provide anapproximate characterization for the MD rate-
distortion region. The main difficulties are as follows. Firstly, the PPR multilayer scheme was originally
designed for the symmetric rate only instead for an achievable rate region, and thus certain generalization
has to be introduced to “inflate” it to a rate region. We apply the α-resolution method to assert that the
achievability of the corner points of a region which matchesthe polytopic template of the MLD rate region,
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and therefore by a time-sharing argument provide an achievable region. The second difficulty is in generalizing
the sum-rate lower bounding technique to other rate combinations. The terms in deriving the lower bound are
well-structured for the sum rate case, however for general rate combinations the terms lack such structure.
Unlike the caseK = 3, there is no explicit method to enumerate the appropriate rate combinations, i.e., the
bounding faces of the rate regions. To overcome this difficulty, we combine theα-resolution method with the
sum rate lower bounding technique to provide the outer bound, or rather the lower bound for the bounding
planes of the rate region.

6.1 Achievable rate-distortion region by the SR-MLD scheme

Parallel to the SID-RD case, we give a general definition of the rate region not necessary using a Gaussian
codebook, which is based on the SR-MLD coding scheme illustrated in Fig. 3. LetR̂(Y ) be the set of
non-negative rate vectors(R1, R2, ..., RK), such that

Ri ≥
K
∑

α=1

rαi , 1 ≤ i ≤ K, (92)

for somerαi ≥ 0, 1 ≤ α ≤ K, satisfying
∑

i∈Gv

r
|v|
i ≥ I(X ; Y|v||Y1, Y2, . . . , Y|v|−1), ∀v ∈ ΩK . (93)

We have slightly abused the notation in the above definitionsby letting the argument of̂R(·) be a fixed set of
random variables rather than a set of distortion constraints; this however does not cause much confusion due
to their apparent difference.

Theorem 6.1 We have

conv(R̂(Y )) ⊆ R(D), (94)

whereconv(·) is the convex hull operator, and it is taken over the set of auxiliary random variablesY =
(Y1, Y2, ..., YK) in some alphabetsY1 × Y2 × ... × YK, which are jointly distributed withX, such that there
exist deterministic functionsgα : Y1 ×Y2 × ...×Yα → X to satisfy

Ed(X, gα(Y1, Y2, ..., Yα)) ≤ Dα, α = 1, 2, ..., K. (95)

By choosing the auxiliary random variablesYα, α = 1, 2, ..., K as specified by (66) and (67), it is clear that
R̂(D) is a (proper) subset ofconv(R̂(Y )), and thus an achievable region. Note that the regionconv(R̂(Y ))
may be a general convex region with curvy boundary, thus not apolytope. HoweverR̂(D) is a subset of
this set by specializing it to a particular distribution, resulting in a polytope4. Interestingly it is not a contra-
polymatroid as often encountered in multiuser informationtheory. A contra-polymatroid is usually defined as
a mapping from subsets (of the rate indices) to a non-negative real number. However, here even for the three
description case, there are four mappings associated with the set of all three rates, one boundingR1+R2+R3,
and the other three on the form of2Ri +Rj +Rk, thus does not result in a valid mapping. As such, the theory
characterizing the vertex points of a contra-polymatroid does not offer simplification in the MD problem. The
α-resolution method invented in [16] is one approach to address this difficulty.

4It is the projection of the polytope(R1, R2, ..., RK , {rα
i
, α ∈ IK , i ∈ IK}) on the firstK components.
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6.2 Achievable rate-distortion region by the PPR multilayer scheme

In this subsection, we first briefly describe the PPR multilayer coding scheme, and then discuss the diffi-
culties in generalizing this achievable symmetric rate result to an achievable rate region. To overcome these
difficulties, we combine theα-resolution method with an additional coding step to provide such an rate region.

The PPR multilayer coding scheme can be described roughly asfollows. At layerα, α ∈ IK−1 and for
any descriptionk ∈ IK , codebooks of size2nR

′

α,k are generated using the marginal distribution ofYα,k. The
rateR′

α,k should be sufficiently large such that for any source codeword, with high probability there exist
codewords in the codebook(α, k), α ∈ IK−1 andk ∈ IK that are jointly typical with it. This can be done if
we choose

R′
α,k > h(Yα,1)−

1

K
h(Yα,k, k ∈ IK |X, {Yj,k, j ∈ Iα−1, k ∈ IK}). (96)

Though there is no requirement thatR′
α,k = R′

α,k′ for anyk 6= k′, we intentionally make them equal to simplify
the resulting achievable region; i.e., we choose

R′
α,k = h(Yα,1)−

1

K
h(Yα,k, k ∈ IK |X, {Yj,k, j ∈ Iα−1, k ∈ IK}) + δ, (97)

for an arbitrarily small but positiveδ. Next codewords in a codebook are randomly and independently assigned
into a total of2nRα,k bins,α ∈ IK−1 andk ∈ IK . At the decoder, with anyk∗ descriptions such thatk∗ ∈ IK−1,
the firstk∗ layers are decoded. More precisely, the decoder receives descriptions inGv, such that|v| = k∗;
if there exists a unique set of codewords{ynα,j, α ∈ Ik∗ , j ∈ Gv}, in the corresponding bins that are jointly
typical, then the decoder reconstructs using the single-letter decoding functiongv(·); otherwise a decoding
failure occurs. To succeed with high probability for anyk∗ ∈ IK−1, the ratesRα,k, α ∈ IK−1 andk ∈ IK ,
only need to satisfy

0 ≤ Rα,j ≤ R′
α,j, α ∈ IK−1, j ∈ IK . (98)

and
∑

j∈Gv

(R′
α,j − Rα,j) < αh(Yα,1)− h(Yα,i, i ∈ Iα|Yk,j, k ∈ Iα−1, j ∈ Iα), (99)

for all v ∈ ΩK such that|v| = α, and for allα ∈ IK−1. Rewriting (99), we have
∑

j∈Gv

Rα,j ≥
∑

j∈Gv

R′
α,j − αh(Yα,1) + h(Yα,i, i ∈ Iα|Yk,j, k ∈ Iα−1, j ∈ Iα)

= αh(Yα,1)−
α

K
h(Yα,k, k ∈ IK |X, {Yj,k, j ∈ Iα−1, k ∈ IK}) + αδ

−αh(Yα,1) + h(Yα,i, i ∈ Iα|Yk,j, k ∈ Iα−1, j ∈ Iα)

= h(Yα,i, i ∈ Iα|Yk,j, k ∈ Iα−1, j ∈ Iα)

−
α

K
h(Yα,k, k ∈ IK |X, {Yj,k, j ∈ Iα−1, k ∈ IK}) + αδ. (100)

The last layer codebook is generated using the more conventional method, i.e., the conditional codebook, and
the following condition is sufficient

K
∑

k=1

RK,k > I(X ; YK|Yα,k, α ∈ IK−1, k ∈ IK). (101)
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By collecting the constraints on non-negative ratesRα,j in (98), (100) and (101), and definingRk =
∑K

α=1Rα,k, we can already form an achievable region. However, the upper bound in (98) introduces additional
difficulty when comparing to the outer bound derived in the next section, and thus it will be desirable to
remove this condition. In other words, with these constraints taken into consideration, it is not clear whether
the resulting region matches the polytopic template of the MLD coding rate region. Next we define a similar
region, and prove this region is indeed achievable and can bewritten in a form with the same structure as the
desired template. In [25], we gave a different scheme by using orthogonal binning, however we believe the
scheme given below is more straightforward. We first introduce a few more notations.

For a fixed set of (generalized symmetric) auxiliary random variables{{Yα,k, α ∈ IK−1, k ∈ IK}, YK},
define the following quantities forα ∈ IK−1,

H̃α(Y ) = h(Yα,i, i ∈ Iα|Yk,j, k ∈ Iα−1, j ∈ Iα)−
α

K
h(Yα,k, k ∈ IK |X, {Yj,k, j ∈ Iα−1, k ∈ IK}), (102)

and

H̃K(Y ) = I(X ; YK|Yα,k, α ∈ IK−1, k ∈ IK). (103)

Let R̃(Y ) be the set of non-negative rate vectors(R1, R2, ..., RK), such that

Ri ≥
K
∑

α=1

rαi , 1 ≤ i ≤ K, (104)

for somerαi ≥ 0, 1 ≤ α ≤ K, satisfying
∑

i∈Gv

r
|v|
i ≥ H̃|v|(Y ), v ∈ ΩK . (105)

Note here in fact the set of auxiliary random variables has more thanK components, however we still write it
asY for conciseness; we also slightly abuse the notation by letting H̃α(·) have either the enhanced distortion
vectorD∗ or a set of random variablesY as the argument, which is indeed justified as we shall show that they
are in fact the same by appropriate choice of the random variablesY . The regionR̃(Y ) is the rate region
satisfying (100), (101), and the lower bounds in (98), but not necessarily satisfying the upper bounds in (98).
Thus for a fixed set of random variables{{Yα,k, α ∈ IK−1, k ∈ IK}, YK} and the specific choice ofR′

α,k, the
achievable region directly implied by the PPR multilayer scheme, i.e., the one by collecting the constraints on
non-negative ratesRα,j in (98), (100) and (101), is a subset ofR̃(Y ). We now state the following theorem.

Theorem 6.2 We have

conv(R̃(Y )) ⊆ R(D), (106)

where the convex hull operator is taken over the set of generalized symmetric auxiliary random variables
{{Yα,k, α ∈ IK−1, k ∈ IK}, YK} in the alphabetsYK

1 ×YK
2 × ...×YK

K−1 ×YK , which are jointly distributed
with X, such that there exist deterministic functionsgα : Yα

1 × Yα
2 × ...× Yα

α → X , α ∈ IK−1 such that

Ed(X, gα({Yi,k, i ∈ Iα, k ∈ Iα})) ≤ Dα, α = 1, 2, ..., K − 1, (107)

andgK : YK
1 × YK

2 × ...× YK
K−1 × YK → X , such that

Ed(X, gK({Yi,k, i ∈ Iα, k ∈ Iα}, YK)) ≤ DK . (108)
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The proof of Theorem 6.2 relies on a result in [16], which is quoted below. Let “·” denote the usual inner
product in the Euclidean space. LetR̃∗(Y ) be the set of allR ≥ 0 such that for allA ∈ R

K
+ butA 6= 0

A ·R ≥
K
∑

α=1

fα(A)H̃α(Y ), (109)

wherefα(A) is defined in (16) of Section 2.C.

Theorem 6.3 ([16] Theorem 2)

R̃(Y ) = R̃∗(Y ). (110)

Remark:In the definition ofR̃∗(Y ), the requirement thatR ≥ 0 can be safely removed without loss of
generality wheñHα(Y ) ≥ 0. To see this, letA = (1, 0, ..., 0), then (109) reduces toR1 ≥ H̃1(Y ) by applying
Lemma 2.4.

In order to prove Theorem 6.2, consider the following. For a fixed set of (generalized symmetric) random
variables{{Yα,k, α ∈ IK−1, k ∈ IK}, YK}, since bothR(D) andR̃(Y ) are convex, they can be characterized
by the bounding planes. As such if we can prove that for anyA ∈ R

K
+ andA 6= 0, the following inequality

holds

min
R∈R(D)

A ·R ≤ min
R∈R̃(Y )

A ·R, (111)

then it follows that the regioñR(Y ) is an achievable region. By Theorem 6.3, we have

min
R∈R̃(Y )

A ·R =

K
∑

α=1

fα(A)H̃α(Y ). (112)

Thus it suffices to prove that there always exists a rate vector in the achievable rate region that satisfy (112)
with equality, i.e., there existsR ∈ R(D) such that

A ·R =
K
∑

α=1

fα(A)H̃α(Y ), (113)

for anyA ∈ R
K
+ andA 6= 0. This would imply (111), which further implies the claimed result. We prove

(113) and subsequently Theorem 6.2 in Appendix 12.
Notice that the regioñR(D) is justR̃(Y ) with {{Yα,k, α ∈ IK−1, k ∈ IK}, YK} defined by (73) and (74),

the variances of which are given by (80). Since for this specific choice of random variables, the values of
H̃α(Y ) = H̃α(D

∗), α = 1, 2, ..., K are given in the proof of Corollary 5.2 in Appendix 9, the following
corollary is now straightforward.

Corollary 6.1 LetD∗ be the enhanced distortion vector ofD, then for the Gaussian source

R̃(D∗) ⊆ R(D∗) ⊆ R(D). (114)
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6.3 Outer bounding the rate-distortion region

In this subsection, we provide a lower bound to the bounding plane of the Gaussian MD rate-distortion region.

Theorem 6.4 For the Gaussian source and anyA ≥ 0,

K
∑

α=1

AiRi ≥
1

2

K
∑

α=1

fα(A) log
(1 + dα)(Dα + dα−1)

(1 + dα−1)(Dα + dα)
. (115)

where the functionfα(A) is defined in (16),d1 ≥ d2 ≥ ... ≥ dK−1 > 0 are arbitrary non-negative values,
d0 , ∞ anddK , 0.

Proof 3 Recall the result in Lemma 2.4, and consider the following inequalities,

n

K
∑

i=1

Ai(Ri + ǫ) ≥
K
∑

i=1

AiH(Si). (116)

Let c1, c2, ..., cK be a set ofα-resolution as defined in Theorem 2.1. Then we can write

K
∑

i=1

AiH(Si)
(a)
=

K−1
∑

α=1





∑

Gv :|v|=α

cα(v)H(Si, i ∈ Gv)−
∑

Gv :|v|=α+1

cα+1(v)H(Si, i ∈ Gv)





+ AminH(Si, i ∈ IK)−AminH(Si, i ∈ IK |X
n)

(b)

≥ AminI(Si, i ∈ IK ;X
n)

+

K−1
∑

α=1





∑

Gv :|v|=α

cα(v)H(Si, i ∈ Gv)−
∑

Gv :|v|=α+1

cα+1(v)H(Si, i ∈ Gv)





−
K−1
∑

α=1





∑

Gv :|v|=α

cα(v)H(Si, i ∈ Gv |Y
n
α )−

∑

Gv :|v|=α+1

cα+1(v)H(Si, i ∈ Gv|Y
n
α )





= AminI(Si, i ∈ IK ;X
n)

+

K−1
∑

α=1





∑

Gv :|v|=α

cα(v)I(Si, i ∈ Gv; Y
n
α )−

∑

Gv :|v|=α+1

cα+1(v)I(Si, i ∈ Gv; Y
n
α )





=
K
∑

i=1

AiI(Si; Y
n
1 ) +

K−1
∑

α=2

∑

Gv :|v|=α

cα(v)
[

I(Si, i ∈ Gv; Y
n
α )− I(Si, i ∈ Gv; Y

n
α−1)

]

+ Amin

[

I(Si, i ∈ IK ;X
n)− I(Si, i ∈ IK ; Y

n
K−1)

]

, (117)

where (a) is by adding and subtracting the same terms, and dueto the fact thatSi, i ∈ IK are deterministic
functions ofXn, and (b) is by a conditional version of the covering propertyof the given sequence of the
optimalα-resolutions as defined in (18). At this point, the expression is quite similar to (83), and we can
apply Lemma 3.1 to complete the proof.
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Parallel to the sum rate case, we can specialize the lower bound by choosing the values ofd1, d2, ..., dK−1.

Corollary 6.2 For the Gaussian source, we have

K
∑

i=1

AiRi ≥
1

2

K
∑

α=1

fα(A) log
D∗

α−1

D∗
α

−
1

2

K
∑

α=2

fα−1(A) log(α−D∗
α−1) +

1

2

K
∑

α=2

fα(A) log(α− 1) (118)

≥
1

2

K
∑

α=1

fα(A) log
D∗

α−1

D∗
α

−
1

2

K
∑

α=2

fα−1(A) logα +
1

2

K
∑

α=2

fα(A) log(α− 1), (119)

whereD∗ is the enhanced distortion vector ofD.

The proof is given Appendix 13, which is along a similar line as the proof of Corollary 5.3, with the
additional application of Lemma 2.3 in one step.

Next we proceed to establish that the outer bound given aboveis indeed a polytope. More precisely, define
RL(D

∗) to be the set ofR ∈ R
K , such that (118) holds for anyA ∈ R

K
+ andA 6= 0. Note that we do not

requireRi ≥ 0 in this set. The following corollary establishes a polytopic outer bound.

Corollary 6.3 Let D∗ be the enhanced distortion vector ofD, thenRL(D
∗) ∩ R

K
+ is a polytope such that

R(D) ⊆ RL(D
∗) ∩ R

K
+ .

The proof of this corollary is given in Appendix 14. The key idea is the following: though we have an
uncountable number of bounding planes to characterizeRL(D

∗), if there exists a setSR ⊆ RL(D
∗) with

finite number of elements, such that for eachA, inequality (118) can be satisfied with equality for some
element inSR, thenRL(D

∗) is a polytope. The proof given in Appendix 14 proves the existence of such a
finite set.

6.4 Bounding the gap between outer and inner bounds

Now we are ready to prove Theorem 4.2 and Theorem 4.3, which are presented below.

Proof 4 (Proof of Theorem 4.2 and Theorem 4.3)Theorem 4.2 is implied by Theorem 6.1, Theorem 6.2 (or
rather Corollary 6.1), the fact thatD∗ enhancesD, and the fact that forα = 2, 3, ..., K

H̃α(D
∗) =

1

2
log

(α− 1)D∗
α−1

D∗
α(α−D∗

α−1)
≤

1

2
log

D∗
α−1

D∗
α

, (120)

andH̃1(D
∗) = 1

2
log 1

D∗

1

.

The first inequality in (61) can be proved by (119) and the definition of Ĥ(D∗), and invoking Theorem 4.2,
Theorem 6.3, Theorem 6.4 and Corollary 6.2. To prove the firstinequality in (62) of Theorem 4.3, we again
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combine Theorem 4.2, Theorem 6.3, Theorem 6.4, Corollary 6.2, and notice the following fact

K
∑

α=1

fα(A)H̃α

=
1

2
f1(A) log

1

D∗
1

+
1

2

K−1
∑

α=2

fα(A) log
(α− 1)D∗

α−1

D∗
α(α−D∗

α−1)
+

1

2
fK(A) log

(K − 1)D∗
K−1

D∗
K(K −D∗

K−1)

=
1

2

K
∑

α=1

fα(A) log
D∗

α−1

D∗
α

−
1

2

K
∑

α=2

fα(A) log(α−D∗
α−1) +

1

2

K
∑

α=2

fα(A) log(α− 1). (121)

The first inequality in (62) now follows from (118) and the definition of H̃(D∗).
To prove the second inequality in (61), we write

1

2

K
∑

α=2

fα−1(A) logα−
1

2

K
∑

α=2

fα(A) log(α− 1)

=
f1(A)

2
log 2 +

1

2

K−1
∑

α=2

fα(A)[log(α + 1)− log(α− 1)]−
fK(A)

2
log(K − 1)

(a)

≤
Asum

2
log 2 +

1

2

K−1
∑

α=2

Asum

α
[log(α + 1)− log(α− 1)]−

Amin

2
log(K − 1)

≤
Asum

2

K
∑

α=2

1

α− 1
logα−

Asum

2

K−1
∑

α=2

1

α
log(α− 1)−

Amin

2
log(K − 1), (122)

where in (a) we use Lemma 2.4. The second inequality in (62) can be proved similarly, and the details are
omitted.

6.5 Extension to general sources

Similar to the SID-RD approximation, we can extend the rate-distortion region approximation technique to
general sources under the MSE distortion measure. It is clear that the definition ofR̂(Y ) is not limited to the
Gaussian source, and denoteR̂′(D) asR̂(Y ) with the random variablesY defined as (66) and (67). Define
the following function,

R̂′
A
(D) , min

R∈R̂′(D)
A ·R (123)

We have the following theorem.

Theorem 6.5 For any general sourceX with unit variance under the MSE distortion measure, we have

R̂′(D) ⊆ R(D), (124)

moreover, for anyA ∈ R
K
+ andA 6= 0

R̂′
A
(D)− RA(D) ≤

K
∑

α=1

fα(A)

2
. (125)

The proof follows closely the sum rate case proof for generalsources, and we thus omit it here.
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7 Conclusion

We provide approximate characterizations of the individual-description R-D function, as well as the achievable
rate region, for the Gaussian MD problem under symmetric distortion constraints. This is done by combining
two inter-connected parts: the derivation of a novel outer bound, and careful analysis of achievability schemes
to generate inner bounds for easy comparison with the outer bound. The outer bound alone, or the inner
bound alone, will not be able to provide this results, and particular care has to be taken in order to make them
compatible. A result in a similar vein was recently obtainedby Etkin et al. [26] for Gaussian interference
channel.

The new lower bound is obtained by generalizing Ozarow’s well-known technique, and expand the prob-
ability space of the original problem by more than one randomvariables with special structure among them.
This technique appears to be promising, and we expect to see its application in other difficult multi-terminal
information-theoretic communication problems.

The multi-level diversity coding problem, which can be understood as a lossless counterpart of the MD
problem, shed tremendous light on the geometric structure of the MD rate-distortion region. We use the
lossless MLD coding rate region as a polytopic template for both inner and outer bounds for the MD rate-
distortion region. With the increasing complexity of a source coding problem being considered in information
theory literature, we expect the complexity of its losslesscounterpart to increase as well, and the difficulty
of the corresponding lossless problem becomes an increasingly dominant component of the overall problem.
In this context, our work can be understood as the first attempt to make explicit connection between the
lossless source coding problem and its lossy counterpart. It is worth noting in multi-terminal channel coding
problems, several well-known recent works can be understood as using deterministic models, for example,
the network coding results in [27], and the deterministic wireless relay channel model in [28]. There exists a
philosophical connection between the approach taken in this work and the “one-bit” approximation result for
the Gaussian interference channel in [26], as well as the approximate capacity result for the Gaussian relay
network [29]. In [29], an approximate characterization wasmotivated by the insight obtained in studying
deterministic relay networks [28], which has an analogous role as the lossless multi-level diversity coding
problem in our work. In both cases, the connection provides useful insight to the coding scheme and outer
bounding proof technique. We expect in the near future connection between the lossless (deterministic) model
and their lossy (non-deterministic) counterpart to be madeon other information theoretic problems, and the
approach of using the former as a guideline in treating the latter to be a fruitful path.
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8 Proof of Lemma 3.1

Proof 5 DefineZa = Na +Nb andZb = Nb. To prove the first statement, we consider the following chain of
inequalities

I(Si, i ∈ Gv ; Y
n
a )

= nh(Ya)− h(Y n
a |Si, i ∈ Gv)

= nh(Ya)− h(Xn + Zn
a |Si, i ∈ Gv)

= nh(Ya)− h(Xn + Zn
a − X̂n

v|Si, i ∈ Gv)

(a)

≥ nh(Ya)− h(Xn + Zn
a − X̂n

v)

(b)

≥ nh(Ya)−
n

∑

i=1

h[X(i) + Za(i)− X̂v(i)]

(c)

≥ nh(Ya)−
n

∑

i=1

1

2
log

{

(2πe)E[(X(i) + Za(i)− X̂v(i))
2]
}

= nh(Ya)−
n

∑

i=1

1

2
log

[

(2πe)(Ed(X(i), X̂v(i)) + da)
]

,

whereX̂n
v is the reconstruction with descriptionsSi, i ∈ Gv, and its i-th position is denoted aŝXv(i).

The inequality (a) is because conditioning reduces entropy, (b) is because of the chain rule for differential
entropy and the fact that conditioning reduces entropy, and(c) is because Gaussian distribution maximizes
the differential entropy for a given second moment. Sincelog(·) is a concave function, we have

n
∑

i=1

1

2
log

[

(2πe)(Ed(X(i), X̂v(i)) + da)
]

≤
n

2
log

(

2πeEd(Xn, X̂n
v) + da

)

.

And it follows

I(Si, i ∈ Gv; Y
n
a ) ≥ nh(Ya)−

n

2
log

(

2πeEd(Xn, X̂n
v) + da

)

≥ nh(Ya)−
n

2
log

(

(2πe)(D|v| + da
)

)

=
n

2
log

1 + da
D|v| + da

,

which is the first claim.
To prove the second claim, we write the following

I(Si, i ∈ Gv; Y
n
b )− I(Si, i ∈ Gv ; Y

n
a )

= nh(Yb)− nh(Ya) + h(Y n
a |Si, i ∈ Gv)− h(Y n

b |Si, i ∈ Gv).
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For the latter two terms, we have

h(Y n
a |Si, i ∈ Gv)− h(Y n

b |Si, i ∈ Gv)

(a)
= h(Y n

a |Si, i ∈ Gv)− h(Y n
b |N

n
a , {Si, i ∈ Gv})

(b)
= h(Y n

a |Si, i ∈ Gv)− h(Y n
a |N

n
a , {Si, i ∈ Gv})

= I(Y n
a ;N

n
a |Si, i ∈ Gv),

where (a) is becauseNn
a is independent ofY n

b and{Si, i ∈ Gv}; (b) is by the definition ofYa. Continuing
along this line, we have

I(Y n
a ;N

n
a |Si, i ∈ Gv)

(a)
= h(Nn

a )− h(Nn
a |X

n +Nn
a +Nn

b , {Si, i ∈ Gv})

= h(Nn
a )− h(Nn

a |X
n +Nn

b +Nn
a , X̂

n
v, {Si, , i ∈ Gv})

(b)

≥ h(Nn
a )− h(Nn

a |X
n − X̂n

v +Nn
a +Nn

b )

(c)

≥
n

∑

i=1

(

h(Na(i))− h(Na(i)|X(i)− X̂v(i) +Na(i) +Nb(i)
)

=
n

∑

i=1

I(Na(i);X(i)− X̂v(i) +Nb(i) +Na(i))

(d)

≥
n

∑

i=1

1

2
log

Ed(X(i), X̂v(i)) + da

Ed(X(i), X̂v(i)) + db
(e)

≥
n

2
log

D|v| + da

D|v| + db
,

where (a) is becauseNa is independent ofSi, i ∈ Gv; (b) is because conditioning reduces entropy; (c) is by
applying the chain rule, and the facts thatNn

a is an i.i.d. sequence and conditioning reduces entropy; (d)is
by applying the mutual information game result (see page 263, [22], as well as [24]) that Gaussian noise is
the worst additive noise under a variance constraint, and takingNa(i) as channel input; finally (e) is due to
the convexity and monotonicity oflog x+da

x+db
in x ∈ (0,∞) whenda ≥ db ≥ 0. This completes the proof for the

second claim.

We note that a similar line of argument was used in [8] to derive a sum rate lower bound for a system with
two levels of distortion constraints. However, Lemma 3.1 generalizes that result since there exists only one
auxiliary random variable in the setting of [8], but there are two auxiliary random variablesYa andYb in the
current setting.

9 Proof of Corollary 5.2

Proof 6 We first rewrite the rate formula given in Theorem 5.2. For a fixed set of (generalized symmetric)
auxiliary random variables{{Yα,k, α ∈ IK−1, k ∈ IK}, YK}, recall the definion the following quantities for
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α ∈ IK−1

H̃α(Y ) = h(Yα,i, i ∈ Iα|Yj,k, j ∈ Iα−1, k ∈ Iα)−
α

K
h(Yα,i, i ∈ IK |X, {Yj,k, j ∈ Iα−1, k ∈ IK}), (126)

and

H̃K(Y ) = I(X ; YK|Yα,k, α ∈ IK−1, k ∈ IK). (127)

Then it follows that
K
∑

α=1

1

α
H̃α(Y ) =

K−1
∑

α=1

1

α
h(Yα,i, i ∈ Iα|Yj,k, j ∈ Iα−1, k ∈ Iα)

+
1

K
h(YK |Yj,k, j ∈ IK−1, k ∈ IK)−

1

K
h({Yj,k, j ∈ IK−1, k ∈ IK}, YK|X), (128)

where the right hand side is the rate expression given in Theorem 5.2.
Now for the specific set of random variables defined by (73) and(80), we have forα = 2, 3, ..., K − 1

H̃α(Y ) = h(Yα,i, i ∈ Iα|Yj,k, j ∈ Iα−1, k ∈ Iα)

−
α

K
h(X + Zα,i, i ∈ IK |X, {X + Zj,k, j ∈ Iα−1, k ∈ IK})

(a)
= h(Yα,i, i ∈ Iα|Yj,k, j ∈ Iα−1, k ∈ Iα)−

α

K
h(Zα,i, i ∈ IK |Zj,k, j ∈ Iα−1, k ∈ IK)

(b)
= h(Yα,i, i ∈ Iα|Yj,k, j ∈ Iα−1, k ∈ Iα)− h(Zα,i, i ∈ Iα|Zj,k, j ∈ Iα−1, k ∈ Iα)

(c)
= h(Yα,i, i ∈ Iα|Yj,k, j ∈ Iα−1, k ∈ Iα)− h(Yα,i, i ∈ Iα|X, {Yj,k, j ∈ Iα−1, k ∈ Iα})

= I(Yα,i, i ∈ Iα;X|Yj,k, j ∈ Iα−1, k ∈ Iα), (129)

where (a) and (c) are becauseX is independent ofZα,i; (b) is because of the chain rule and the fact thatZα,i

is independent of{Zα,k, α ∈ IK , k 6= i}. Because of the Markov string{Y1,k, k ∈ IK} ↔ {Y2,k, k ∈ IK} ↔
... ↔ {YK−1,k, k ∈ IK} ↔ X, we have

H̃α(D
∗) = h(X|Yα−1,i, i ∈ Iα)− h(X|Yα,i, i ∈ Iα) =

1

2
log

(α− 1)D∗
α−1

(α−D∗
α−1)D

∗
α

, (130)

by the choices of the variances of the Gaussian random variables Nα,k. For α = 1 and α = K, it is
straightforward to verify that

H̃1(D
∗) =

1

2
log

1

D∗
1

,

H̃K(D
∗) =

1

2
log

(K − 1)D∗
K−1

(K −D∗
K−1)D

∗
K

. (131)

Combining (130) and (131) we have,
K
∑

α=1

1

α
H̃α(D

∗) =
1

2
log

1

D∗
1

+
1

2

K
∑

α=2

1

α
log

(α− 1)D∗
α−1

(α−D∗
α−1)D

∗
α

=
1

2

K
∑

α=1

log
D∗

α−1

D∗
α

−
1

2

K
∑

α=2

1

α
log

α−D∗
α−1

α− 1
, (132)

which completes the proof by definingD∗
0 , 1.
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10 Proof of Corollary 5.3

Proof 7 To facilitate discussion, define the following index set of loose constraints

CL = {α : D∗
α < Dα}, (133)

and it follows thatCc
L = IK\CL; note that1 ∈ Cc

L. For a givenα ∈ CL, defineN(α) as the index of lower
neighboring distortion constraint toα that is not loose, i.e.,N(α) = maxk<α,k∈Cc

L
k.

We first consider the case when the distortion vector is givensuch that it satisfies the conditions

Φα−1(Dα−1) ≥ Φα(Dα), α = 2, 3, ..., K, (134)

where we takeD0 , 1. Note this impliesDα = D∗
α, α = 1, 2, ..., K, andCL = ∅. In this case we choose

dα = Φα(Dα), for α = 1, 2, ..., K − 1, which is clearly valid. We start from Theorem 5.4 to show that for the
specific choice ofdα, the claims holds.

K
∑

i=1

Ri ≥
K

2

K
∑

α=1

1

α
log

(1 + dα)(Dα + dα−1)

(1 + dα−1)(Dα + dα)

=
K

2

K−1
∑

α=2

1

α
log

[

Dα−1

Dα

1 + (α− 1)Dα

1 + (α− 2)Dα−1

α− 1−Dα + Dα

Dα−1

α+ 1−Dα

]

+
K

2
log

1

D1(2−D1)
+

1

2
log

[

DK−1

DK

K − 1−DK + DK

DK−1

1 + (K − 2)DK−1

]

=
K

2

K
∑

α=1

1

α
log

Dα−1

Dα

+
K

2

K−1
∑

α=2

1

α
log

[

1 + (α− 1)Dα

1 + (α− 2)Dα−1

α− 1−Dα + Dα

Dα−1

α + 1−Dα

]

+
K

2
log

1

(2−D1)
+

1

2
log

[

K − 1−DK + DK

DK−1

1 + (K − 2)DK−1

]

=
K

2

K
∑

α=1

1

α
log

Dα−1

Dα

+
K

2
log

1

(2−D1)
+

K

2

K−1
∑

α=2

[
1

α
−

1

α + 1
] log (1 + (α− 1)Dα)

+
K

2

K−1
∑

α=2

1

α
log

α− 1−Dα + Dα

Dα−1

α + 1−Dα

+
1

2
log

(

K − 1−DK +
DK

DK−1

)

(a)

≥
K

2

K
∑

α=1

1

α
log

Dα−1

Dα

+
K

2
log

1

(2−D1)
+

K

2

K−1
∑

α=2

1

α
log

α− 1

α + 1−Dα

+
1

2
log (K − 1)

=
K

2

K
∑

α=1

1

α
log

Dα−1

Dα

−
K

2

K
∑

α=2

1

α− 1
log(α−Dα−1) +

K

2

K
∑

α=2

1

α
log(α− 1)

≥
K

2

K
∑

α=1

1

α
log

Dα−1

Dα

−
K

2

K
∑

α=2

1

α− 1
logα+

K

2

K
∑

α=2

1

α
log(α− 1) (135)

where in (a) we usedDα

Dα−1

≥ Dα, and omitted the third term which is positive. Thus the claimis true if (134)
holds.
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For the case when (134) does not hold, then we choosedα = Φα(Dα), for α ∈ Cc
L as before; however for

anyα ∈ CL, we choosedα = dN(α). Note that with such a choice, we havedα = dα−1 and therefore,

log
(1 + dα)(Dα + dα−1)

(1 + dα−1)(Dα + dα)
= 0, α ∈ CL. (136)

If we replaceDα withD∗
α in the left hand side of the above equation, the equality still holds; moreover

dα = Φα(D
∗
α), α ∈ CL (137)

Thus by using this particular choice of(d1, d2, ..., dK−1), we have

K
∑

i=1

Ri ≥
K

2

K
∑

α=1

1

α
log

(1 + dα)(Dα + dα−1)

(1 + dα−1)(Dα + dα)

=
K

2

K
∑

α=1

1

α
log

(1 + dα)(D
∗
α + dα−1)

(1 + dα−1)(D∗
α + dα)

, (138)

and the exact same derivation holds as in the case when (134) holds, withD∗
α replacingDα. Dividing both

side of (135) byK completes the proof of the corollary.

11 Proof of Theorem 5.5

Proof 8 We pick up the story from (83) for the lower bound and rewrite it slightly differently.

n
K
∑

i=1

(Ri + ǫ) ≥
K−1
∑

α=1

K

α
(

K

α

)

∑

Gv :|v|=α

[

I(Si, i ∈ Gv ; Y
n
α )− I(Si, i ∈ Gv; Y

n
α−1)

]

+
[

I(Si, i ∈ IK ;X
n)− I(Si, i ∈ IK ; Y

n
K−1)

]

. (139)

where now the random variablesYα, α = 1, 2, ..., K − 1 are defined as in (66) and (67), and for simplicity we
defineY0 = 0, i.e., a constant.

Next we consider the upper bound̂R′(D), c.f. Theorem 6.1, using the same set of random variablesYα,
α = 1, 2, ..., K as above

R̂′(D) =

K
∑

α=1

1

α
I(X ; Yα|Yα−1) =

K
∑

α=1

1

α
[I(X ; Yα)− I(X ; Yα−1)]. (140)

Note we have used that fact thatX ↔ Yα ↔ Yα−1 is a Markov string for anyα ∈ IK . The auxiliary random
variables used in the lower and upper bounds are in fact the same, and it is clear that this is a valid choice in
deriving the lower bound by definition.
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Thus we can now bound the difference between the upper and lower bound on the symmetric individual-
description rate as follows

K
∑

α=1

1

α
I(X ; Yα|Yα−1)−

1

nK

[

I(Si, i ∈ IK ;X
n)− I(Si, i ∈ IK ; Y

n
K−1)

]

−
K−1
∑

α=1





1

nα
(

K

α

)

∑

Gv :|v|=α

[I(Si, i ∈ Gv; Y
n
α )− I(Si, i ∈ Gv ; Y

n
α−1)]





=
K−1
∑

α=1







1

α
(

K

α

)

∑

Gv :|v|=α

[

I(X ; Yα)− I(X ; Yα−1)−
1

n
I(Si, i ∈ Gv ; Y

n
α ) +

1

n
I(Si, i ∈ Gv; Y

n
α−1)

]







+
1

K

{

I(X ; YK)− I(X ; YK−1)−
1

n
I(Si, i ∈ IK ;X

n) +
1

n
I(Si, i ∈ IK ; Y

n
K−1)

}

(141)

Now consider an arbitraryα ∈ IK−1, and an arbitraryv such that|v| = α, it follows that

I(X ; Yα)− I(X ; Yα−1)−
1

n
I(Si, i ∈ Gv; Y

n
α ) +

1

n
I(Si, i ∈ Gv; Y

n
α−1)

= h(Yα)− h(Yα|X)− h(Yα−1) + h(Yα−1|X)

−
1

n
[h(Y n

α )− h(Y n
α |Si, i ∈ Gv)] +

1

n
[h(Y n

α−1)− h(Y n
α−1|Si, i ∈ Gv)]

(a)
= −h(Zα) + h(Zα−1) +

1

n
h(Y n

α |Si, i ∈ Gv)−
1

n
h(Y n

α−1|Si, i ∈ Gv)

(b)
=

1

2
log

dα−1

dα
−

1

n
I(Y n

α−1;N
n
α−1|Si, i ∈ Gv)

(c)

≤
1

2
log

[

dα−1

dα

Dα + dα
Dα + dα−1

]

=
1

2
log

2−Dα

1−Dα + Dα

Dα−1

(c)

≤
1

2
(142)

where (a) is due toY n
α andY n

α−1 are independent squences, (b) holds sinceYα−1 = Yα +Nα−1, and in (c) we
used the bounding technique used in the proof of Lemma 3.1, and continued to use the definition of

dα =

K
∑

i=α

σ2
i =

Dα

1−Dα

, α = 1, 2, ..., K − 1, (143)

and finally in (c) we used the factDα − Dα

Dα−1

≤ 0 andDα ≥ 0.
The last term in (141) can be bounded similarly by noticingI(Si, i ∈ IK ;X

n) ≥ I(Si, i ∈ IK ; Y
n
K)

I(X ; YK)− I(X ; YK−1)−
1

n
I(Si, i ∈ IK ;X

n) +
1

n
I(Si, i ∈ IK ; Y

n
K−1)

≤ I(X ; YK)− I(X ; YK−1)−
1

n
I(Si, i ∈ IK ; Y

n
K) +

1

n
I(Si, i ∈ IK ; Y

n
K−1)

= −h(ZK) + h(ZK−1) +
1

n
h(Y n

K |Si, i ∈ IK)−
1

n
h(Y n

K−1|Si, i ∈ IK)

≤
1

2
log

[

dK−1

σ2
K

DK + σ2
K

DK + dK−1

]

≤
1

2
(144)
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where the last step is byσ2
K = DK

1−DK
.

Now summarize all the bounds derived above, we have that

R̂(D)− R(D) ≤
K
∑

α=1

1

2α
, (145)

which completes the proof.

12 Proof of Theorem 6.2

Proof 9 (Proof of Theorem 6.2) Fix a set of (generalized symmetric) random variables{{Yα,k, α ∈ IK−1, k ∈
IK}, YK}. For a givenA ≥ 0, let lα be the non-negative integer defined in Lemma 2.2 for theα-level. For any
α ∈ IK , let

Rα,k =

{

0 if 1 ≤ k ≤ lα;
H̃α

α−lα
if lα + 1 ≤ k ≤ K.

(146)

Rα,k will be the rate assigned to theα-th layer for thek-th description; denote(Rα,1, Rα,2, ..., Rα,K) asRα.
It is clear from the original PPR multilayer scheme [6] that if each of the description has rate approximately
H̃α/α at theα-th level, then any of theα descriptions can guarantees decoding with high probability. How-
ever, because the firstlα descriptions are not given any rate for theα-th layer in (146), this can not be achieved
directly without proper coding.

The generalized coding scheme is by combining the original PPR multlayer scheme with proper MDS
channel codes. The PPR multilayer scheme is still used as themain encoding step, and let us denote the
codeword (the output index written in a large enough appropriate alphabet) for theα-th level for description
k asCα,k, forα ∈ IK . A post-coding packaging step is now added at theα-th layer as follows. The lastK− lα
codeword indices are written in the descriptions as in the original scheme. Each of the firstlα codeword indice
Cα,k, k = 1, 2, ..., lα is encoded by a (K − lα, α− lα) MDS code, and each of the resulting codeword (index)
is written into one of the lastK − lα description. This results in an additional ratẽHα/α(α − lα) in each
description. Note that sincelα ≤ α − 1, the above MDS code rate is always well defined. It is clear that the
rate of thek-th description,k > lα, for theα-th layer is

Rα,k =
H̃α

α
+

H̃α

α(α− lα)
∗ lα =

H̃α

α− lα
, (147)

as we claimed.
At the decoder, supposek descriptions in the setGv are available, where|v| = k. Consider a specific level

α ∈ Ik, and the pre-decoding unpackaging procedure is as follows.Supposenα of indices inGv is smaller or
equal tolα, i.e.,nα = |Gv∩Ilα |. In the remainingk−nα descriptions, clearly we can recover their respective
codewords, i.e.,Cα,i for i ∈ Gv \ Ilα. However, sincenα ≤ lα, we have alsok − nα ≥ α − nα ≥ α − lα
pieces of the MDS encodedCα,i for i ∈ Ilα, which can be correctly decoded by the property of the MDS code.
SinceGv ∩ Ilα ⊆ Ilα, we can recover allCα,i for i ∈ Gv . This holds true for allα = 1, 2, ..., k, and then the
main decoding step in the PPR multilayer scheme can be applied.

We remark here that the decoding can be easily improved, because ifnα < lα, there is additional informa-
tion that the main decoding step is not utilizing. However the above simple procedure suffices for proving the
current theorem.
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It remains to show (113) is true with the given rate vector, the proof of which follows closely the step in
[16] for the proof of Theorem 6.3. Let{c(v)} be an optimalα-resolution forA. We have

A ·Rα =
∑

v∈Ωα
K

cα(v)(v ·Rα) + (A−
∑

v∈Ωα
K

cα(v)v) ·Rα.

By Lemma 2.1, for anyv where|v| = α such thatcα(v) > 0, vi = 1 for i = 1, 2, ..., lα; moreover, exactly
α − lα of the remaining components are1’s. Since the firstlα components ofRα are 0’s, and the remaining
components are equal, we have

v ·Rα = (α− lα)
H̃α

α− lα
= H̃α for v : cα(v) > 0.

It follows that

∑

v∈Ωα
K

cα(v)(v ·Rα) = H̃α

∑

v∈Ωα
K

cα(v) = fα(A)H̃α. (148)

Since

A−
∑

v∈Ωα
K

cα(v)v = A− Ă (149)

has zeros in the lastK − lα components, andRα has zeros in the complement positions, we have

(A−
∑

v∈Ωα
K

cα(v)v) ·Rα = 0. (150)

It follows

A ·Rα = fα(A)H̃α. (151)

Summing overα ∈ IK now completes the proof sinceRi =
∑K

α=1Rα,i.
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13 Proof of Corollary 6.2

Proof 10 Follow the proof approach for Corollary 5.3, however we directly useD∗ to replaceD. Letdα =
Φα(D

∗
α) for α = 1, 2, ..., K − 1, we have

K
∑

i=1

AiRi ≥
1

2

K−1
∑

α=2

fα(A)



log
D∗

α−1

D∗
α

+ log
1 + (α− 1)D∗

α

1 + (α− 2)D∗
α−1

+ log
α− 1−D∗

α + D∗

α

D∗

α−1

1 + α−D∗
α





+
1

2
f1(A) log

1

D∗
1(2−D∗

1)
+

1

2
fK(A) log





D∗
K−1

D∗
K

K − 1−D∗
K +

D∗

K

D∗

K−1

1 + (K − 2)D∗
K−1





(a)

≥
1

2

K
∑

α=1

fα(A) log
D∗

α−1

D∗
α

+
1

2

K−1
∑

α=2

[fα−1(A)− fα(A)] log(1 + (α− 1)D∗
α)

−
1

2

K
∑

α=2

fα−1(A) log(α−D∗
α−1) +

1

2

K
∑

α=2

fα(A) log(α− 1)

(b)

≥
1

2

K
∑

α=1

fα(A) log
D∗

α−1

D∗
α

−
1

2

K
∑

α=2

fα−1(A) log(α−D∗
α−1) +

1

2

K
∑

α=2

fα(A) log(α− 1), (152)

where (a) is true becauseDα

Dα−1

≥ Dα, and in (b) we omitted the second term, because Lemma 2.3 implies

fα(A) ≤ α−1
α

fα−1(A) ≤ fα−1(A). This completes the proof.

14 Proof of Corollary 6.3

Proof 11 Clearly we only need to prove that the setRL(D
∗) is a polytope. Sincelog(α − D∗

α−1) ≥ 0 for
α ≥ 2, we can construct a set of independent fictitious sourceU1, U2, ..., UK , such that

H(Uα) =
1

2
log(α + 1−D∗

α), α = 1, 2, ..., K − 1, (153)

andH(UK) = 0. The MLD coding rate region for thisK-source can be equivalently given in two forms, as
implied by Theorem 6.3, with̃Hα(Y ) replaced byH(Uα). Since the rate region of this MLD coding problem
is clearly a polytope, there exists a finite set of rate vectors, denoted asSr, such that for anyA, there exists at
least one rate vector(r1, r2, ..., rK) ∈ Sr, such that

K
∑

i=1

Airi =
1

2

K
∑

α=2

fα−1(A) log(α−D∗
α−1) (154)

Now defineR̀i = Ri + ri, i = 1, 2, ..., K, and consequently (118) reduces to the condition that

K
∑

i=1

AiR̀i ≥
1

2

K
∑

α=1

fα(A) log
D∗

α−1

D∗
α

+
1

2

K
∑

α=2

fα(A) log(α− 1), (155)
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We can again define a set of fictitious independent sourcesW1,W2, ...,WK , such that

H(Wα) = log
D∗

α−1

D∗
α

+ log(α− 1), α = 2, 3, ..., K, (156)

and

H(W1) = log
1

D∗
α

. (157)

Now we would like to apply Theorem 6.3 to assert (155) is in fact a characterization of the MLD coding rate
region for this source, however one technicality has to be addressed first. Recall thatR is not constrained to be
non-negative, because otherwiseR̀ must satisfy the additional constraint̀R ≥ r, and Theorem 6.3 can not be
applied directly. However, by relaxingR to allow negative component,̀R may have non-positive components,
which will render Theorem 6.3 not applicable without the fact given in the remark immediately after Theorem
6.3. With that remark, now by applying Theorem 6.3, we see that (155) is indeed a characterization of the
MLD coding rate region for this source.

Since the MLD coding rate region is a polytope, there exists afinite set of rate vectorsSR̀ such that for any
A, there exists at least one rate vector(R̀1, R̀2, ..., R̀1) ∈ SR̀, such that (155) is satisfied with equality. Since
bothSr andSR̀ are finite, it follows that there exists a finite setSR, such that for anyA, there exists at least
one vectorR = R̀− r ∈ SR satisfying (118) with equality. This subsequently impliesthat the setRL(D

∗) is
a polytope, which completes the proof.
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