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Abstract

We consider multiple description coding for the Gaussiamra® with K descriptions under the sym-
metric mean squared error distortion constraints, andigecan approximate characterization of the rate
region. We show that the rate region can be sandwiched bettmaepolytopes, between which the gap
can be upper bounded by constants dependent on the numbkesaniptions, but independent of the exact
distortion constraints. Underlying this result is an exdwracterization of the lossless multi-level diversity
source coding problem: a lossless counterpart of the MDIpneb This connection provides a polytopic
template for the inner and outer bounds to the rate regioorder to establish the outer bound, we gener-
alize Ozarow'’s technique to introduce a strategic expangfdhe original probability space by more than
one random variables. For the symmetric rate case with ampauof descriptions, we show that the gap
between the upper bound and the lower bound for the indiVidiesscription rate is no larger than 0.92 bit.
The results developed in this work also suggest the “sapafapproach of combining successive refine-
ment quantization and lossless multi-level diversity ogds a competitive one, since it is only a constant
away from the optimum. The results are further extended beige sources under the mean squared error
distortion measure, where a similar but looser bound on dipehglds.

Introduction

arXiv:0810.3631v1 [cs.IT] 20 Oct 2008
|_\

In the multiple description (MD) problem, a source is enabd#o several descriptions such that any one
of them can be used to reconstruct the source with certailityjuand more descriptions can improve the
reconstruction. The problem is well motivated by sourcegsnaission over unreliable network and distributed
storage systems, since there exists uncertainty as to wiaickmissions are received successfully (or which
servers are accessible) by the end user.

In the early works on this problem, for example [1, 2], onlyotadescriptions are considered. Even in
this setting, the quadratic Gaussian problem is the onlyptetaly solved case [2], for which the achievable
region in [1] is tight. Through a counter-example, Zhang &edger showed that this achievable region is
however not tight in general [3], and a complete characéon of the rate-distortion (R-D) region has not
been found to this date. See [4] (and the references thdmia)review of works related to this problem in
the information theory literature.

Recent research attention has shifted to the gedérdéscription problem, partly motivated by the avail-
ability of multiple transmission paths in modern commutimanetworks. In [5][6], an achievable individual
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description rate was provided for symmetric multiple dggmns, where each description has the same rate,
and the distortion constraint depends only on the numbees€riptions available. This achievable region is
based on joint binning of the codebooks for each descriptidrich has a similar flavor as the method often
used in distributed source coding problems. Another aahlevregion was given in [7] using more conven-
tional conditional codebooks. Wang and Viswanath [8, 9]eyalized the Gaussian MD problem to vector
Gaussian source with many descriptions, and tight sum oaterlbound was established for certain cases
with only two levelsof distortion constraints (see also the outer bound resy]).

In this work, we consider general multiple description cgpgwith K descriptions under symmetric dis-
tortion constraints. The distortion constraints are symnimé the sense that with anly < K descriptions,
the reconstruction has to satisfy the distortiop regardless of which specific combinationtoflescriptions
is used. Though the distortion constraints are symmetrecrates of the descriptions are not necessarily the
same in this setting, thus generalizing the case treates][B][ Nevertheless the completely symmetric case
as considered in [5][6], i.e., with both symmetric rate aigtaition constraints, is indeed an interesting spe-
cial case, and will be treated with particular care. Our nfagus is on the Gaussian source under the mean
squared error (MSE) distortion constraint, however we alsow that the results can be extended to more
general sources under the same distortion measure.

Though completely characterizing the rate-distortionoe®@f the Gaussian multiple description problem
is difficult if not impossible, we provide an approximate waerization. Underlying this approximation is
the lossless symmetric multi-level diversity (MLD) codipgoblem previously studied in [15, 16]; see Fig.
. The MLD coding problem can be interpretted as a losslessareof the MD problem, and thus one of
our main insights is to use the MLD rate region as a polytogmcpilate for inner and outer bounding the MD
rate-distortion region. We show that the MD rate-distartiegion can be sandwiched between two polytopes,
between which the gap can be upper bounded by constantsdiapern the number of descriptions, but
independent of the exact distortion constraints. The MDr@pdystem is illustrated in Fid.] 1 fak® = 3
together with the MLD coding system.

One of the main contributions of this work is a novel lower bdtio the sum rate for the Gaussian source,
under K levels of symmetric distortion constraints. This geneesiprevious results in [2, 8, 9], where only
two levels of distortion constraints are enforced in thaesys Though the lower bound given here may not
be tight, it is the first provably good bound with more than tewels of distortion constraints enforced, to
the best of our knowledge. We derive this lower bound by gdimng Ozarow’s technique in treating the
Gaussian two-description problem. More specifically, weeard the probability space of the original problem
by more than one auxiliary random variables, and imposeaicearkov structure on these random variables.
Ozarow’s technique has been applied to various problemddezethe MD problem [2, 7-9], for example, the
results on multi-terminal source coding by Wagner and Amairagm [10], and the joint source channel coding
problem with bandwidth expansion by Rezeical. [11]. However, in all these previous works the probability
space is expanded by only one additional auxiliary randoriabke (in [8, 9] it is one additional auxiliary
random vector since vector source was being consideredgri@g a similar technique has also been applied
to the Gaussian interference channel problem [12], andastiegly the results there indeed require expanding
the probability space by more than one random variables.Mbesum rate lower bound given in our work
can be optimized oveK — 1 variables to provide the tightest bound. However an exgdiciution for this
optimization problem appears difficult, thus instead weod®oa specific set of values to provide a suboptimal
lower bound, which nevertheless still offers insight on greblem and allows us to give an approximate
characterization of the MD rate region.

For the inner bounds, we analyze two achievability schenties:first is a very simple scheme based
on successive refinement coding [13, 14] coupled with me\te! diversity coding (SR-MLD) [15-18]; the
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Figure 1: MD and MLD coding system diagrams far = 3. More details on MLD coding are given in the
next section.

second is a generalization of the multilayer coding schemggsed by Puri, Pradhan and Ramchandran
[5][6], which we will refer to as the PPR multilayer schemen the special case of symmetric rate, the
first scheme reduces to the well-known unequal loss protectiethod [20], and we thus also refer to it as
the SR-ULP scheme. The SR-MLD (or SR-ULP) scheme is in fadpamation-based scheme where the
guantization step and lossless source coding step arapedaseparately. As illustrated in Fg. 3, the output
of a successive refinement code is cascaded with the lossidgdevel diversity coding scheme.

The generalization of the second scheme of [5][6] has twe&sp we first show that the definition of
the symmetric distribution, over which the scheme is optéedi can be relaxed straightforwardly; secondly
by introducing additional coding component and invokingules ona-resolution, we establish an achievable
region that matches the polytopic template of MLD coding ragion. Interesting, the achievable rate region
under a fixed set of auxiliary random variables is not a ceptiigmatroid, unlike those often seen in other
multiterminal source coding problems.

With the inner and outer bounds, we quantify the differenesvieen them. For the symmetric rate prob-
lem, the individual-description rate-distortion (R-D)nfttion can be bounded within a constant depending
only on the number of descriptions, but not the distortionstraints. Moreover, regardless of the number of
descriptions, the gap between the lower bound and the ugperdusing the SR-ULP coding scheme is less
than1.48 bits, and for the PPR multilayer scheme, the gap is less@ttgnbit. In order to establish these
results, method similar to the enhancement technique higl$sed. We also generalize the results to other
sources under the mean squared error constraints, and sb@wrh rate gap between lower and upper bounds
can be bounded within a constant, depending also only onutmbar of descriptions.

In addition to providing an approximate characterizatidrth® symmetric individual-description R-D
function, we also consider thete regionunder symmetric distortion constraints. We first illustrahe
basic ideas explicitly by considering the three-desaipttase, and then extend the result to the general
K-description problem. For the three-description case,iveevghat the outer and inner bounds can be repre-



Figure 2: Bounding the rate distortion region for the thdescription case, where the distances between
corresponding planes of the inner and outer bounds are meebly Euclidean distance. The inner bound is
drawn in with dashed lines, and the outer bound with soliédin
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Figure 3: The separation approach based on successivamefihand lossless multi-level diversity coding.

sented by ten planes with matching normal direction, andetihidean distances between the corresponding
planes are shown to be less than certain small constansg tbsults are illustrated in Fig. 2. Then using the
a-resolution approach introduced in [16], we show that ferdleneral-description Gaussian problem under
symmetric distortion constraints, the bounding planesefrate region can be bounded both from above and
below, between which the gap is bounded, and subsequentlyderan approximate characterization of the
R-D region.

It is surprising that the simple separation-based schengerabining successive refinement and lossless
multi-level diversity coding is able to achieve performamnly a constant away from the optimal scheme; see
Fig.[3 for the illustration of this system. This result ingdithat in certain practical high rate applications, this
simple scheme may be sufficient, since additional gain wdjuire much more complicated system design,
and the resulting system will be significantly less flexikldoreover, when distortion constraints are placed
only on the lask levels for the decoders witk — k£ + 1, K — k+ 2, ..., K descriptions, we show that even the
gap between the lower and upper bound on the sum rate is astyoaflyy diminishing when the total number
of descriptiongs” becomes large with fixed. Thus virtually no gain is possible even in terms of sate for
this case.

We emphasize that the general approach used in approxgraegnMD rate-distortion region is likely



to provide insightful result for other network source (arenel) coding problems. More precisely, even
though the exact rate-distortion region (or capacity nepimf a multiuser information theory problem may

have a general convex shape with a curvy boundary, simpjgqpat inner and outer bounds are likely to exist
which can provide a good approximate characterization. g2oimg to general bounds, polytopic bounds are
much easier to analyze. To apply this approach, it is ddsitalat the inner and outer bounds both follow a
“common template” such that they can be conveniently cosgharhe result in our work suggests that a good
choice of the template for a rate-distortion problem is thdearlying lossless compression problem.

The rest of the paper is organized as follows. In Secflon 2eeige a formal definition of the problem,
and then briefly review the multi-level diversity problentdahea-resolution method. In Sectidh 3, we present
a set of simplified results for the case with three descriystis an illustrative example. Sectidn 4 summarizes
the main results of the paper. In Section 5, we focus on dwyithe upper and lower bounds for the sum rate,
and in Sectiof]6, the inner and outer bounds for the rate meayi® presented. Finally Section 7 concludes the
paper. Detailed and technical proofs are given in the apgpesd

2 Notation, problem formulation and review

In this section we first provide the necessary notations hadotoblem definition, then briefly review the
multi-level diversity coding problem and some essentiaésolution results [15, 16] which play an important
role in the development of our results. Wherever the natatar definitions become less transparent, we will
specialize them to the three description case, i.e., thel€as 3. This special case will continue to serve as
our working example, particularly in Sectibh 3.

2.1 Notation and problem definition

Let {X (i) }i=12,. be a memoryless stationary source. At each time iridéxe random variablé () in an
alphabetY’ is governed by the same distribution lam¢. In most of this work, we assum& = R, i.e., the
real alphabet; moreover the reconstruction alphabet tsdsally assumed to He. We useR, to denote
the set of non-negative reals. The veckal), X (2), ..., X (n) will be denoted as{™. Capital letters are used
for random variables, and the corresponding lower-caserseire used for the realization of these random
variables. Letd : X x X — [0, 00| be a single-letter distortion measure, and the multieti¢ension is
defined as

Al ) = 3 dlali), (i) @

In this work, we are particularly interested in the squamedradistortion measuré(z, y) = (x—y)2. As such,

it will be assumed without loss of generality that the sourae a normalized unit variance. In this context,
the most important case is the zero-mean unit-variancesgausourceX ~ N (0, 1). In fact for the majority

of this work we shall only consider the Gaussian source,gbstated otherwise explicitly.

We shall adopt most of the notations in [16] introduced fa mhulti-level diversity coding (MLD) prob-
lem, which can be understood as a special case of the mudiglaiption problem as we shall explain shortly.
Throughout the paper, boldface letters are used to dekietectors. For the generél -description problem
being considered, a lengthblock of the source samples is encoded iRtalescriptions. Lev be a vector in
{0, 1}, and denote théth component ob by v;. Define

Qr ={vec{0,}: jw|=0a}, a=1,2 ., K (2)
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where|v| is the Hamming weight o6, and defing), = Ule % . Essentially, the sé?, provides a compact
way to enumerate the possible combinations of the desmniptior equivalently a compact way to enumerate
the possible decoders. Particularly for the cas&’ct 3, we have

Q3 = Q3 UN3UQS = {100,010,001} U {110,101,011} U {111}. (3)

Decoder, v € Qf has access to the| descriptions in the sefy = {i : v; = 1}. For the casé{ = 3, we
have

GIOO = {1}7 GOIO = {2}7 GOOI = {3}7 GllO = {172}7 GlOl = {173}7 GOll = {273}7 Glll = {17273} (4)

The symmetriaistortion constraints are given such that any decedsan reconstruct the source to satisfy a
certain distortionDy), i.€., the distortion constraint depends only on the nunobeescriptions the decoder
has access to, but not the particular combination of ddsmnig

Formally, the problem is defined as follows. An, (M;,i € Ik), (Ap,v € Qk)) code, wherelx =
{1,2,..., K}, is defined as

S Xm— Iy, ielg (5)
Ty : [Licqy I = X", v € Q, (6)
and
Ap = Ed(X", X}), v e Q, (7)
where
XP =Ty (S;(X™),i € Gy), (8)

andE is the expectation operator. For the cdse= 3, we have three encodefs(-), Sz(-) and Ss(-), and
seven decoderB o, To10, 1001, 1110, Tho1, To11 @andTiq1, each decoder being associated with a reconstructed
source sequencﬁ{; and inducing an expected distortidy,.

A K-tuple(Ry, Ry, ..., Rk ) is (D1, Do, ..., Dk )-admissible if for every > 0, there exists for sufficiently
largen an(n, (M;,i € Ix), (Ap,v € Qk)) code such that

1
—logM; < R, +¢€, 1€lg, (9)
n
and
Ap < D|'U\ +e€ wvE Qg (10)

Throughout the paper, we use logarithm of base 2, such teattk is measured by bits. L&t D) be the
collection of all D-admissible rate vector, and this is the region of inteneghis work. In the following
sections, we shall assumie> D; > Dy, > ... > Dy > 0 without loss of generality. One important special
case is when the rates of the all the descriptions are the, s@né/; = M for anyi € Ix. For this symmetric
rate case, theymmetric individual-descriptiorate distortion (R-D) functiom?(D) is defined simply as

R(D) = inf R. (11)
{R:R>R;,(R1,Ra2,...,Rx)ER(D)}
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Figure 4: The similarity between MD coding and MLD coding fr = 3. They are essentially the same
source coding problem with different distortion criteria.

SinceR(D) is a closed set, the infimum can in fact be replaced by a minim@ihough in [(11) we do
not explicitly enforce the constraint th&;, = R, = ... = Rk, it is straightforward to see this constraint
can be added without causing any essential difference. eocdse/’ = 3, we often expand the distortion
vector and write the rate region and symmetric individuadetiption rate distortion function (SID-RD) as
R(D1, Dy, D3) andR(D+, Dy, D3), respectively.

Throughout the paper, when a ratds of interest, we us& or R to denote its inner (upper) bounds, and
useR to denote its outer (lower) bound; when rate redgiors of interest, similar convention is taken.

2.2 A brief review of the symmetric multi-level diversity cading problem

The symmetric MLD coding problem considered in [15, 16] candescribed as follows. A total df in-
dependent sourcés, V5, ..., Vi are observed at the encoder, and encoded Ahiescriptions. A decoder
Ty, which is called a levelv| decoders, should reconstrugt Vs, ..., Vjy, losslessly in the Shannon sefise
Particularly in the case ok = 3, three independent sourckg V5> andV; are observed at the encoder, and
encoded into three descriptions. The first level decodiexs 1v10 andTyy;, should reconstrudt; losslessly,
the second level decodef3o, 71101 andTy;; should reconstructV;, 13), and the third level decodér;;,
should reconstrudf;, V5, V3). The connection

In the framework of MD coding afore-introduced, we can siynipéat the multi-sourc&’, V5, ..., Vi as
the single super sourc¥, and the distortion measurgy,(-,-) is level-dependent, and thus also decoder-
dependent, which is simply a Hamming distortion measureatipg only onVy, Vs, ..., Vjy|. Therefore the
lossless symmetric MLD coding problem essentially prositiee solution to this symmetric MD problem
at an extreme point of zero distortions for discrete menesylsources; Figl]l 1 and Figl 4 illustrate the
connection between the two problems in terms of the encédigegding functions and the distortion measure,
respectively.

The main result for the symmetric MLD coding problem in [16] is that source separation cod}ig
in fact optimal for this problem. The source separation egdicheme and the corresponding region can
be described as follows. Each source vedt@ris encoded independently of the other sources, and-the
th description is allocated rat¢' for the a-th source sourc&'. Each description is then the collection of
encoded information (codes) produced for all the sourchs.réte region is thus the set of non-negative rate

LIt can be shown that lossless in the Shannon sense and ®ssthsiiminishing Hamming distortion does not cause esakent
difference.

2This coding scheme was originally called superpositionirmgpdbut here we adopt the nanseurce separation codings
suggested by Raymond Yeung, in order to avoid confusionthiétsuperposition coding in broadcast channel.
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vectorsR that satisfy the following condition [16]

Ri=>r i=12..K, (12)
a=1
for somery > 0, « = 1,2, ..., K such that
Sl > H(Vi), v e Q. (13)

i€Gy

The collection of information in all the descriptions may fgglundant for any given sourdé,, o < K,
though any given specific description is maximumly compeddsy itself. Clearly, the equality i (I12) can
be replaced by> without loss of generality. As pointed out in [17], the caih (13) has an interpretation
closely related to Slepian-Wolf coding, that the sourcedsare randomly binned (for theth description)
with rater, such that the source vectBf’ can be recovered as long as the sum rate fromaaigscriptions
for this source is larger thaH (V,,). In [17], a connection to the maximum distance separable $MEddes
was used to prove this result. Indeed, the Slepian-Wolfpméation and the MDS codes interpretation are in
fact closely related in this setting.

2.3 Review of thea-resolution results

The rate region characterizatian {12) ahd (13) for MLD cgdimoblem is given in a parametrized form, i.e.,
involving variables more than the rate tuple of interdet, R, .., . Rx). Though for smaller value ok, e.g.,
K = 3, itis possible to explicitly investigate the faces and eefpoints of the rate region, for larger value of
K this becomes intractable. To overcome this difficulty,dheesolution method was invented in [16] to reveal
the inherent structure of the MLD coding rate region. Nextdiectly quote a few definitions and results from
[16]; some further results will be given after related niatias are properly introduced. The readers in their
initial reading may skip the lemmas and theorem in this sctiis®, and they will not be needed until Section
6.

Let w andv be two vectors ilRX. Defineu > v if and only if u; > v;, Vi € Ix. Similar notation holds
foru,v € {0,1}X. ForanyA = (A}, Ay, ..., Ag) > 0, a mapping,, : Q% — R, whereR, is the set of
non-negative real numbers, satisfying the following prtipe

co(v) >0, forall ve Q%, (14)
and
Z ca(V)v < A (15)
VeQy

is called anv-resolution forA; it will be denoted ag ¢, (v)} or simply as,. Define a functiory,, : R — R,
for a € Ik by

falA) = max > co(v), (16)

vy



where the maximum is taken over all theresolution ofA. If {c,(v)} achievesf,(A), then it is called an
optimal a-resolution forA, or simply «-optimal. Without loss of generality up to a permutation lué rate
vector components, we may assume

A > Ay > > Ag. (17)
Defintion 2.1 Let{c,(v)} be ana-resolution ofA, thenzveﬂ% co(v)v is called the profile of ¢, (v)}.
Lemma 2.1 ([16], Lemma 1) Let {c,(v)} bea-optimal for A, and let(A;, A, ..., A ) be its profile. If there
existl <i < K suchthat4; — A; > 0, thenc,(v) > 0 impliesy; = 1.

Lemma 2.2 ([16], Lemma 2) Let {c,(v)} be a-optimal for A, and let(A;, A, ..., Ax) be its profile, then
there exist®) <[, < a — 1suchthatd; — A; > Oifandonly ifl <i </|,.

Defintion 2.2 For 2 < a < K, letc, andc,_; bea-optimal and(« — 1)-optimal for A, respectively. Then
Co—1 COVErsc,, denoted by, ;1 = c,, if

> camt(wH(S; i € Gu) = > ca(v)H(S;,i € Gy), (18)
fu,eQ?{*l VeQy
for any K jointly distributed random variablé;, S,, ..., Sk.
The following lemma is straightforward with the above ddfams.

Lemma 2.3 Let ¢,_; and ¢, be (o« — 1)-optimal and«-optimal, respectively. 1t, ; > ¢,, then(a —
1)fa—1(A> Z afa(A>'

Proof 1 (Proof of Lemmal2.3) Let S, S, ..., Sk be independently and identically distributed random vari-
ables with entropyd (S;) = H(S) > 0 for anyi € Ik, then it follows

(0= fat(AHES) = > cor(@)(a=1DH(S) = > ca1(u)H(S; i € Gu)

> Y c(W)H(Shi € Gy) = Y ca(v)aH(S) = afu(A)H(S). (19)

VEQY VeQY
Dividing both ends by7 (S) completes the proof.

By using Lemma 2]3 and the definition ff(A), the following lemma is rather immediate.
Lemma 2.4 The follows are true.

e The optimall-resolution is uniqueg; (v) = A; for Gy = {i}. Moreoverf;(A) = Ele A, £ Asum

e The optimalK -resolution is uniquex (v) = fx(A) = minc;, A; 2 Apin, WhereGy = I.

e Foranya suchthatk > o > 2, f,(A) < 4sum

The following theorem is instrumental for the result praednn [16], and it is also important for us to
establish the result on the MD R-D region far > 3.

Theorem 2.1 ([16], Theorem 3)For any A > 0, there exist,, 1 < a < K, wherec, is a-optimal for A,
such that

C1 > Cy > ... = Ck. (20)
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3 A simple approximation for K = 3

In this section we give a set of approximate characterinatifothe SID-RD function and the rate-distortion
region for the three description case. For the sake of saityglonly the simple SR-MLD scheme is consid-
ered, and subsequently the set of results in this sectiant Bsstrong as those given in the following sections,
however we choose to present them first for better exposiliba approximate rate-distortion region charac-
terization for this case has a more explicit algebraic fang can also be illustrated pictorially, which suites
particularly well for the purpose of facilitating undensting. Moreover, as we shall show, even this set of
simple results in fact provides a quite good approximatarttie three description case.

3.1 Approximating the symmetric individual description rate distortion function
3.1.1 A simple upper bound

For the symmetric rate case, the source separation codiegrcreduces to the following simple unequal loss
protection scheme; see, for example, [20]. Souice$s, V5 are losslessly compressed independent of each
other. The encodet], is repeated in all three description{® 2) maximum distance separable (MDS) code
is applied to the encodeld, bitstream, and the resulting codeword is evenly split irdohedescription; the
encoded; is then evenly split into each description without addiibooding. This simple scheme clearly
has the symmetric individual description rateffV;) + 1 H(Vs) + LH(V3).

For the MD problem, consider now constructing the bitstregyusing thei-th layer of a successive
refinement code for the Gaussian source, to satisfy thertiiaonstraintD;, for i = 1,2,3. This coding
structure is illustrated in Fig.l 3, where thxh layer output is taken to be the random sourgeSince the
guadratic Gaussian source is successively refinable iS8following rate ofB; is achievable

1. D,y

ﬁi:—l
5108 5

i=1,2,3. (21)

whereD, £ 1.
With B; playing the role of the source vectby”, it is clear that the following individual description rate
is achievable, which provides a simple upper bound on theR8Ilfunction (defined in[(111))

1 1 D 1 D 1
10g——|——1 _1“—_1 21 = lgm

R(Dy.Dy.D
(1’2’3)2 D, 2%D, T3% D, T 12

(22)

3.1.2 A simple lower bound

Next we consider lower bounding the sum rate. To do this wiewthie following chain of inequalities.

’fl(Rl + Rz + Rg)

@ H(S)) + H(Ss) + H(Ss) — H(S1S5S5|X™)

)+ H(S) + H(Ss) — H(SySySs|X™) — % (H(S1S5) + H(S5Ss) + H(S1S5)]

H(S
% [H(S1S2) + H(S283) + H(S193)] — H(S1S55S3) + H(S155S3) = Hs, (23)

10



where (a) is becausg, i = 1,2, 3, are deterministic functions of"; (b) is by adding and subtracting the
same term. This step may appear rather arbitrary, howevesardook reveals that the terms bear similarity
to Han’s inequality on subsets of random variables [22].

Next defineY, = X + N, andY; = X + N; + N, whereN; and N, are mutually independent Gaussian
random variables, also independent of the Gaussian séreéth variances? anda3, respectively. Define
d, £ o?+03 andd, = o3, whose values are to be chosen later. The following steangial for establishing
the lower bound, which differs significantly from the teaimme of [2] and [8] in that we now utilize the two
auxiliary random variable¥; andY;. Consider the following quantity

, 1
H, - {H<slmn> FHSAYD) + B[V — L H(SS0Y7) + HS8 ) + H(5153|Y1")]}
1
+ {5 [H(S159:|Y5") + H(S255]Y5") + H(S15:3]Y5")] — H(515253|Y2")} . (24)

It is seen thatfl; > 0, because each brace [M)24) is nonnegative by applying theitamnal version of
Han’s inequality [Zﬁ. Intuitively, we expect certain conditional independebedold approximately such
that each brace is approximately zero. In this sense, théfase roughly suggests thet is approximately

a reconstruction with only (and any) one description, sunet the individual descriptions are independent
givenY;; the second brace roughly suggests tais approximately a reconstruction using only (and any)
two descriptions, such that pairs of descriptions are ieddpnt givery;. Then it follows

n(R1 + RQ + R3) Z Hg - Hg
1
=I(S;;Y7") + 1(S2; Y1) + 1(S3; Y7") + 5[1(515% Yy') — 1(5152; Y1)

1 1
+ 5 [1(8253 Y5") = I(8255: Y7")] + S (5155 ¥2') — 1(5185: Y1)
+ [1(5152537)(”) — 1(5152537}/2”)] (25)

If H; is close to zero, then the bounding above should yield megérinesult, which is indeed the case.
We need the following lemma to proceed, the proof of whicmig\ppendiX8. Note that this lemma is not
limited to the case oi = 3.

Lemma 3.1 Let S;, i € Ix be a set of encoding functions such that there exist decddimgions to satisfy
the distortion constraint®d) = (Dy, D, ..., Dg). LetY, = X + N, andY, = X + N, + N,, whereN, and N,
are mutually independent Gaussian random variables indéest of the Gaussian sourcé, with variance
o2 ando?, respectively. Then by defining = d, ando? + o = d,, we have

1. Mutual information bound between encoding functions and a noisy source

1+d,

| 26
Dy +da (26)

I(S;,i € Gp; Y)') > = log

n
2
2. Bound on mutual information different between encoding functions and different noisy sources
(1 + dp)(Djw) + da)
(1+do)(Djw| + dp)

1(Si,1 € GuyYy") — I(Si,i € Gu; Y,') > glog (27)

30ne can also optimize the distribution of auxiliary randoaniablesY; andY>, however in this work we only consider the
specific Gaussian distribution given above, which yieldiatieely simple and easily computable bounds.
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Clearly we can now apply the first statement in Lenima 3.1 tditeethree terms in(25), and the second
statement in Lemmia_3.1 to the first three bracket$ in (25),Hopsing appropriatd, andd,. For the last
bracket, leb? = 0 ando? = o3 in Lemmd 3.1, then again the second statement can be applied.

Any valid choice ofd; andd,, i.e.,d; > dy > 0, yields a valid lower bound. One could optimize within
this set of lower bounds to find the tightest one, howeverauitla matching inner bound, solving this rather
involved optimization problem offers little insight. Irestd, we shall choose some specific values, which
indeed provides insightful results. Without loss of getigrave may assumé, > Dy, > D3. Thusd, = D,
andd,; = D, are a valid choice, and subsequently we have

1
R(Dy, Dy, D3) > 5(31 + Ry + R3)

.- log (14 D1)*(1 4 D3)(Dy + D2)*(Dy + Ds)?

=12 29 DS D3 D3

@ 1 1 3

> -~ log e — ° 28
=12 DD, D2 4 (28)

where (@) is by using the facts+ D; > 1 andD; + D;,, > D; fori =1, 2.

3.1.3 Comparing the upper and lower bounds
Combining [22) and (28), we have

1 1 1 1
> R(D1, Dy, D3) > —log ———

3
log ——=—— _2 29
12 °® D3D,D? 1 (29)

The beginning and the end of inequalities differ only by asn:ant% bit, which provides an approximation for
the SID-RD function. This result reveals that the simple 3IER scheme is surprisingly competitive, since it
is within % bit of the optimum performance.

3.2 Approximating the rate-distortion region
3.2.1 A simple inner bound

For K = 3, the symmetric MLD coding rate region given [n.{12) ahdl (18h de written explicitly in the
following form by applying the Fourier-Motzkin eliminaig21] (see also [15])

Ri ZHl, i:1,2,3, (30)

RZ+RJ 22H1+H27 27&]7 'Lv] 6{17273}7 (31)

2R, + R; + Ry, > 4H, +2H, + H3, (i, j, k) is a permutation of1, 2, 3), (32)
3

Ry + Ry + Rs > 3H1+§H2+H3. (33)

whereH; = H(V;) fori = 1,2,3.
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Figure 5: Simple inner and outer bounds (D, D, D3). The gaps between the corresponding planes are
measured by the Euclidean distance.

Clearly the achievability of the MLD coding rate region giMey (30)-[33) implies that the following rate
region is achievable for the MD problem by using the sepanagcheme illustrated in Figl 3.

R, > %log Dil’ 1=1,2,3, (34)
Ri+Rj2%logﬁ, i#3, 1,5 €{1,2,3}, (35)
2R, + Rj + Ry, > % log D?DyDy (1,7, k) is a permutation of1, 2, 3), (36)
Rl—i—Rg—l—RgZilogm. (37)

3.2.2 A simple outer bound

To derive an outer bound to match the template induced by B¥MED coding rate region, we need to
consider bounding the rate combinationsfof R; + R; and2R; + R; + Ry, in addition to the sum rate
R1 + Rs + Rs3. Clearly, the first two kinds of combination can be treatedilsirly as the sum rate, and we
next show the last kind of rate combination can be appragyidtounded. We start with the following chain
of inequalities,

n(2R; + R; + Ry) > 2H(S;) + H(S;) + H(Sk)
> 2H(S:) + H(S;) + H(Sk) — H(S:S;) — H(S:Sk)
+ H(S:S;) + H(S:Sk) — H(S;S;Sk) + H(S:S;Sk)
— [H(S:Y") + H(S;|Y7") — H(S:5;1Y7")] — [H(S:[YY") + H(Sk[Y") — H(S:Sk|YT")]
— [H(S:55]Y3") + H(SiSk|Y5') — H(S:5;5k[Y5")] — H(5152551X™), (38)
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where the brackets are nonnegative becduSg S;|Y7"), I(S;; Sk|Yy") andl(S;S;; S:Sk|Ys") are nonnegative.
Through some algebra, we arrive at

n(2R; + Rj + Ri) > 21(S;; Y1) + 1(S;: Y1) + 1(Sk; Y1) + [1(5:55; Y5") — 1(5:55; Y1")]
+ [L(SiSk; Y5') — L(SiSk; YT)] + [L(S:iS;Sk; X™) — 1(S:S;5%; Y5")], (39)

and now Lemma_3]1 can be applied. By takihg= D; andd, = D, and further removing non-essential
terms as in the sum rate case, an outer bound can be derieatkttils are omitted here for brevity.

3.2.3 Comparing the inner and outer bounds

With the simple inner and outer bounds, we conclude thatdbedistortion region is sandwiched between
them as illustrated in Fid.] 5, where the gaps between thegponding planes are measured by the Euclidean
distance. Note that the bounds given here are looser thae thiwen in Fig.[2, and in later sections we
will discuss how the tighter bounds are derived. In additmproviding an approximate characterization of
the R-D region, the result further implies that the simpleMBED scheme is in fact not very far away from
optimality, since it is within a small constant of the outeud.

We use this section to illustrate the underlying ideas inrtémeainder of this paper. The result for the
general K -description case given in the later sections are more weehland we develop the general case
result not only for the SR-MLD scheme, but also for the PPRtitayer scheme which is not separation-
based. There are several difficulties in doing so: (1) Thereo explicit representation of the inner and
outer bounds as in the case for = 3. (2) The PPR multilayer scheme is originally designed oolythe
symmetric-rate case, and we need to “inflate” the singlepaiet to a rate region. (3) To find tighter bounds,
the simple choice for the values @fused in this section is not sufficient. We first summarize thenmesults
for the generalK-description problem in Sectidn 4, then in Secfidon 5 [and 6shadl discuss in more details
how these difficulties are addressed.

4 Main results

In this section, we present several theorems which summdr&main results for the Gaussian MD problem.
The result on approximating the SID-RD function is first giyfollowed by the rate-distortion region approx-
imation. More details are given in the Sectidnh b, 6 and theagjres. Since the treatment for general sources
under the MSE distortion measure is notationally more w@d) they are thus delayed to those sections.

4.1 Approximating the symmetric individual description rate distortion function

Define the following functions

K

- 1 1 D,y

D)= = —1 = 40
RD) 233 oy (40)

K K

~ 1 1 Da—l 1 1 Oé—Da_l

D)= - —1 - = — |log ———— 41
R(D) 2;a0g D, 2;a{0g a—1 ] (41)

(1+dy)(Dy + do1)
(1+do1)(Dy+dy)’

(42)
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whered; > dy > ... > dg_1 > 0, dy £ oo anddx £ 0; Dy £ 1 and we take the conventidog 2 = 0. For
convenience we define

R(D) = sup R(D, d), (43)

d1>2d2>..>2dk—1>0
Define the following functions

aD
d, (D) = ——, =1,2,..., K. 44
(D)=1—F% «a (44)
For a given distortion vectab = (D, D, ..., Dk ), we shall associate it with a@nhanced distortion vector
D* = (D3, Ds, ..., Dj) using a recursive procedure.

Di = Dy,

(a—1)DZ 4 *
Di — { o D7, P (Ds) > @o1(D} ) . k=23, .. K. (45)

Dy, otherwise
This enhanced distortion vector is introduced in order thaee certain cases where the given distortion
vectors can not be satisfied with equality using the codihgs®es we consider; moreover, it has the property
that it does not significantly effect the lower bound. Mor¢aile on the enhanced distortion vector are given
in Section[b.B. We shall also assumg < 1 for simplicity at this point, but will discuss the cases when
D; = 1 shortly.
We are now ready to present the main theorem of this subsectio

Theorem 4.1 Let D* be the enhanced distortion vector bf, then the Gaussian SID-RD function under
symmetric distortion constraints satisfies

R(D*) > R(D*) > R(D) > R(D) > R(D, d), (46)
foranyd, > dy, > ... > dx_1 > dx = 0 andd, = co. Moreover,
R(D*) - R(D) < li L toga— 1 i Liog(a = 1) 2 P(K) < 148, (47)
— - 2a:2a—1 2a:2a -
R(D*) — R(D) < EEK: [ L _ 1] loga £ L(K) < 0.92. (48)
— - 2 a—1 « -

Remark:In Theoreni 4.ll, we bound the gaps between the inner and cutedb by universal constants.
This is not necessary, and we will show in Secfion 5 that thenHe can in fact be distortion dependent,
however we relax these bounds to make it universal here. Theencal values are derived using integral
approximation for series which does not yield the tightestritls possible. In Table 1 we have included a few
values of these bounds.

An important and interesting special case is when only teedaveral levels have distortion constraints,
since usually the packet loss probability is not exceedifmgh, and for the majority of the time only a
small number of packets can be lost. Though the universaldauTheorent 4]1 also holds for degenerate
cases where only certain levels of distortion constrairisteapplying the theorem using the general bound
R(D, d) can improve the universal constants significantly. In otdelo so, the valuegly, ds, ..., dx 1) need
to be chosen carefully.

15



Table 1: Valued(K) andL(K) for K = 1,2,3, ..., 8.
K 2 3 4 5 6 7 8
(K) | 0.5000| 0.7296| 0.8648| 0.9550| 1.0200| 1.0693| 1.1082
(K) | 0.2500| 0.3821| 0.4654| 0.5235| 0.5665| 0.6000| 0.6268

Corollary 4.1 For the Gaussian source, when only distortion constraiis 1, Dx .12, ..., Dk €xist for

k € Ik, (or equivalentlyD, = D, = ... = Dg_;, = 1,) we have
) 1 & 1 1 &K1
*) < Z _ = - _
R(D*) - R(D) < 5 g o log « 5 E - log(av — 1)
a=K—k+2 a=K—k+2

_ R 1 1

D*) - R(D) < - — =1 . 49
R S L (49)

Remark:These bounds are usually significantly tighter than thetemts given in Theorem 4.1. Itis easily
seen that when is kept fixed and<’ — oo, the gap approaches zero; in fact, in this case even the gem ra
bounds become asymptotically tight. Corollaryl4.1 thusliegthat the SR-ULP scheme is even more closer
to optimum, and the benefit of using more complicated schesndisninishing as the number of description
increases, when we are guaranteed to receive all but a constaber of descriptions.

4.2 Approximating the rate-distortion region

We first define two regions, which are in fact two inner bouraghe Gaussian MD rate region. The first
region is based on the SR-MLD scheme illustrated in Elg. 8 reow we define this (achievable) region for
generall > 3. Let R(D) be the set of non-negative rate vectols, R, ..., R ), such that

K
Rz rf, 1<i<K (50)

a=1

for somery > 0,1 < o < K, satisfying

S > He (D), Yo e Qx, (51)
iEGv
where
3 1 Da—l
H, (D)= -1 =12 .. K 2
Oé( ) 2 Og _Da b a b ) b ) (5 )

andD, £ 1. Itis clearly that since the Gaussian source is succegsigéhable, the right hand side 6f (52)
simply gives the rate for each layer in the optimal successfinement code[ (50) and {51) are simply the

counterpart ofl(12) and (13).
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The second region is based on a generalization of the PPRayeitscheme, the details of which are
given in Sectiof 6. First leD* be the enhanced distortion vectorBfand define the following quantities

. 1.1
H(D*) = = log —

) 1 —1)D*

A.(D*) = - log (@=DDiy 93 k. (53)

T2 (a— D;—I)DZ’

Let ﬁ(D*) be the set of non-negative rate vectoRs, R,, ..., Rk ), such that
K
Ri>Y rf, 1<i<K, (54)
a=1

for somery > 0,1 < o < K, satisfying

> > Hy (D), v e Q. (55)
i€Gy

The following theorem establishes that b®D) andR (D) are inner bounds to the Gaussian MD rate-
distortion region.

Theorem 4.2 Let D* be the enhanced distortion vector b,
R(D*) C R(D*) C R(D*) C R(D). (56)

For K > 3, itis difficult to enumerate the faces of the inner and outarrials, thus we alternatively seek
to approximately characterize the bounding planes of tteedsstortion region, defined for ang € R and
A # 0, as the following function

Ra(D)%= min A R (57)
ReR(D)

Define the following function

14dy)(Dy + do1)
1+dy1)(Da +dy)

RA(D.d) 2 5" fuA)log | (58)

where the functiory, (A) is defined in[(I16) and; > d, > ... > dx_1 > 0, dy = oo anddx = 0. Define
further the following function

R4(D) = Sup RA(D,d). (59)

d1>de>...>dg_1>0

The next theorem establishes the upper and lower boundeddrdunding planes of the rate-distortion
region. Since the rate-distortion region is convex, if tipper and lower bounds for the bounding planes
coincide, a complete characterization is then availablee dpper and lower bounds given in the following
theorem do not coincide in general, however the gap betwaem is bounded, yielding an approximate
characterization of the rate region.
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Table 2: The values of,(A) and bounds foK" = 3.

an
0)|(2,1,1) | (1,1,1)

~—

A (1,0,0) | (1,1,
fi(A) 1 2 4 3
f2(A) 0 1 2 15
f3(A) 0 0 1 1
I-Iby@D| 0| | e | e
|-lIby@2)| o© Lo |zl | e
Theorem 4.3 For the Gaussian source and amyy > 0,
Yony fa(A)Ho(D*) > Y0, fa(A)Ho(D*) > Ra(D) > Ry(D) > Ru(D, d) (60)
foranyd, > dy, > ... > dx_1 > 0, dy = oo anddx = 0. Moreover, for anyA € RK and A # 0,
K . 1 K
> ol A)Ho(D*) = Ro(D) < 5D fam1(A)loga — 5 Z fa(A)log(ar— 1)
a=1 a=2
Asume— 1 Asums—= 1 Amin
< 1 — —1 —1)— —log(K —1 61
<= ;a_loga : ;aog(a ) — =5 log(K — 1), (61)
and
K K
~ N 1
Y falA)Ho(D*) — Ru(D) < §Z[fa 1(A) — fa(A)]loga
a=1 a=2
Asume—. 1 1 A
< 52um [a — - ]loga+ 2(Ks_un£ Apin) log(K). (62)
a=2

Remark: It is not immediately clear that the outer bound, which iscHied in terms of an uncountable
number of bounding planes indexed Ry is still a polytope as for the cagé = 3. Nevertheless it can indeed
be shown that when we specialize these bounds for apprepghaice ofd, it is an equivalent characterization
of a polytope. Moreover, the bounds given[inl(61) dnd (62)established using the bound induced by this
specific choice ofl. We shall return to this point with more details in Secfion 6.

Remark:Theoreni 4.3, which provides approximate characterizatidthe rate-distortion region, is given
in a similar manner as Theorém 4.1, which provides approama&haracterizations of the SID-RD function.
The second bound if (61) and the second bourld in (62) are mplieie whereas the first bounds involve the
function f,(A) which requires solving an optimization problem. These lisumply that the gaps between
the bounding planes of inner and outer bounds is upper-tlbyg constants independent of the distortion
constraints.

Remark: Whether the polytopic inner bound is a good approximateattarization of the rate region
does not depend on whether the outer bound is a polytopenbubn how large the gap is between the inner
and outer bounds. Though for the Gaussian source, the outiedlcan be specialized to be a polytope, for
general sources this does not necessarily hold. Nevesthadeen for general sources, the inner bound, which
is an approximate characterization of the rate regionjlisagtolytope.
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Example for K = 3: Now we apply the result in Theorelm 4.3 to the casdsof= 3. As illustrated in
Sectiorl 8, it suffices to consider the choices of veetan the following set

{(1,0,0), (1,1,0),(2,1,1), (1,1,1)}. (63)

In Table[2, we list the value of,(A), which can be easily verified since theresolution formulation is a
linear optimization problem. Using (b1) ard [62), it is gjfaforward to compute the bounds between the
inner and upper bounds, as shown in the last two rows of Tabi®& that here the distance is normalized in
terms of Euclidean distance. This improves the result gineectior 8, which was illustrated in Figl. 2.

5 Sum rate bound and SID-RD function approximation

In this section, we provide more details on the derivationesiilts regarding SID-RD function. Some inter-

mediate results will be given, which may in fact be of intétssthemselves when tighter distortion dependent
bounds are needed. We first introduce more formally two &ebie individual description rates, which are

given in a general form that can also be applied to other ssutben the derivation of the outer bounds is
discussed. With both the inner and outer bounds, we analy@éaund the gap between them. Finally, we
extend the results to general sources under the MSE datorteasure.

5.1 Achievable rate using the SR-ULP scheme

The SR-MLD coding scheme reduces to the SR-ULP scheme wleeraté is also symmetric, i.eR; =
Ry = ... = Rg. For a general source, we have the following theorem.

Theorem 5.1 For any given set of random variablé¥?, Ys, ..., Yi) jointly distributed with the source,
such that there exist deterministic functionps: Y* — X to satisfy

Ed(X, ga(Y1,Ys,....Y,)) < D,, a=12,..K, (64)
we have
K
1
R(Dy,Ds,....Dg) <> —I(X:;Yo|V1,Ya, ..., Yary), (65)
a=1 «
whereY; £ 0.

This theorem is a natural consequence of combining thetresiduccessive refinement [13, 14] and the
property of the MDS codes, and thus the proof is omitted. Tesrem is given formally in order to facilitate
the analysis for general sources. In this work, we consluefdllowing natural distribution often seen in the
successive refinement problem

K
Yo=X+) N, a=12 K (66)

=

where N; ~ N(0,0?) are mutually independent and also independenk of For convenience, we denote
S K _N; asZ,. The values of variance?, i = 1,2, ..., K are chosen such that the distortion constraint
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at each level is satisfied with equality when the reconstrads the linear minimum mean squared error
estimator (LMMSE), i.e., they are determined by the set oiagigns

K 2
D, = E:—C;f a=12 K. (67)
1+> o?

i=a 1

Itis clear that there always exists a unique and valid soiutr these variances when the distortion constraints
are given in the natural monotonic order. Through basiclkalge calculation, we arrive at the following
corollary for R(D) defined in[(4D),

Corollary 5.1 For the Gaussian source,

R(D) < R(D). (68)

5.2 Achievable rate using the PPR multilayer scheme

In the two-part paper [5] and [6], an achievable symmetrdiviiual rate is given for the symmetric MD
problem, and the main theorem is quoted below together witbcassary definition.

Theorem 5.2 ([6] Theorem 2) For any probability distribution
p(ﬂj, {ya,jaa S IK—laj € IK}ny) = p('r)p({ya,jaa S IK—laj € IK}ayK‘x>7 (69)
wherep({ya.;, @ € Ix_1,j € Ik}, yx|x) is symmetric over’ x YXE-D+1 and a set of decoding functions

Jgu : y""””' - X, veQg, |[v|<K,
gy YEEUT s x| = K, (70)

such that

E(d(X, grU(Yw-,a S ]|’U|7] c G'v))) < D|’U|7 v E QK, |v| < K,
E(d(X, gv({Yoy, @ € I}, j € G}, Yi))) < Di, |v] = K, (71)

the following symmetric individual description rate is @&rable

K-1
1
R = —H(Ya 4,7 Iay;"a. Io1,5 €14
;Q(JJG Yij,i € Inm1,J € La)
1 . . 1 . .
_'_?H(YKD/;,]aZ € IK—luj S IK) - EH({K,jul € IK—luj S IK}7YK|X) (72)

A symmetric distribution is defined in [6] as follows.

Defintion 5.1 A joint distributionp({yaj, &« € Ix_1,j € Ik}, yx|z) is called symmetricifforall <n;, < K
where: € I, the following is true: the joint distribution of and all (n; + ny + ... + nx_1) random
variables where any,, are chosen from the s¢t, 1, Y. o, ..., Yo i }, conditioned on¥X,, is the same.
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Intuitively, the PPR multilayer scheme provides layerddiimation in the descriptions, and theth layer
information can only be decoded when at leastescriptions are available. The encoding auxiliary random
variableY,, ; is essentially the information provided in thi¢h description for the-th layer. In [S] and [6], a
clever scheme of organizing the information is given, riésglin the achievable rate given in Theorem|5.2.

We notice that the definition in Definitidn 5.1 is however uoessarily restrictive and can be straight-
forwardly relaxed. The following alternative definition af symmetric distribution can replace the more
restrictive one. This relaxed version of symmetric disttibn will be useful since our choice of distribution,
which provides simplification in computing the inner bouisdn this relaxed set, but not in the original more
restrictive set.

Defintion 5.2 A joint distributionp({ya.;,« € Ix_1,j € I}, yx|x) is calledgeneralized symmetric for
any permutationr(-) : Ix — Ik, the joint distributionp({y (), @ € Ix-1,J € Ix},yx|z) is the same as
P({Yaj, o € Ix1,j € I}, yklz).

It is straightforward to check that Theorém|5.3 holds trueemwe replace the requirement of symmetric
distribution with the generalized version. The originatsien of symmetric distribution essentially requires
the distribution to be invariant undéf — 1 different permutations,,(-), one for each layex = 1,2, ..., K —1;

i.e., if we permute(Y; 1, Y7 o, ..., Y1 k }, and then permutéYs 4, Ya 5, ..., Y5 i } differently, and so on for each
a=1,2,.., K — 1, the resulting distribution should remain the same as tleeba&iore such permutations.
This requirement was however never completely utilizedendoding scheme. Instead the coding scheme in
fact only requires invariance under a single permutation which is applied to all the levels simultaneously,
ie.,m () =m(), fora=1,2,..., K — 1. More formally, we state this generalized result as a theaore

Theorem 5.3 The statement of Theorédm 5.2 holds when the symmetrichditstmh requirement is replaced
with the generalized symmetric distributions.

From Theorend 5]3, an achievable individual descriptioe @n be derived by choosing a specific set
of encoding auxiliary random variables, and more specificale shall choose the following set of random
variables. Let

K-1
Yo =X+ Ny a=12,..K-1 k=12 . K (73)

=

where N, , are mutually independent zero-mean Gaussian random iesjakhich are also independent of
X. Their variances are denoted&s, and they satisfy?, = o7, for anyk, k' € Ix; we thus denote?, as

o2. For convenience, we shall den@i’i;l N, asZ, . For the last layer, i.eq = K, we use
YK:X—E(X|Ya,k,a€]K_l,kEIK)+NK, (74)

whereNy is a zero-mean Gaussian random variable independent gfthirey else, with variance?.. Clearly,
X—E(X|Yar a € Ix_1,k € Ir) isthe innovation ofX given all the lower-level random variables. It remains
to specify the variances qf{ N, x,a € Ix_1,k € 1,}, Nk}, which is in fact not trivial as we shall discuss
next. Notice that for all the layers except that= K-th layer,Y,_; ; <+ Y, ; <+ X is a Markov string, thus the
lower layers are useless when higher layers are decode@eTiat this choice of encoding auxiliary random
variables does not satisfy the original symmetric distidourequirement, consider the joint distribution of
(Y11,Ys1) and that of(Y; 1, Y2 2). GivenX, the first pair of random variables are dependent, while ¢cersd
pair of random variables are independent; this clearlyated the original symmetric distribution requirement.
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The key difficulty we face is now the following: when descrpts in the setiy, wherejv| = a — 1 <
K — 1, are received, the decoding function can reconstruct theceaising the random variab{é’,_, ;. €
G }; note that from[(7B), it is clear that Sind&_2, = Y,—1% + Na—2x, Using only{Y,_1,,7 € Gy} to
reconstruct the source does not lose optimality, i.e., thest layer random variables are useless given the
higher layers. If one more description, say théh description, is further received, the decoding functio
now can utilize the random variable associated with thideson Y,_, ;. Thus even if then-th layer
random variablesY, ;,i € Gy U {j}} do not provide additional information beyond the lower lasgndom
variables{Y,_;,i € Gy U {j}}, the decoder is still able to improve the reconstructionr akie original
decoding function with descriptions iHy. This is in fact a key observation in [5] that improves theteys
performance over the simple SR-ULP scheme. This observatiplies that for certain distortion vectdp,
it is not possible to satisfy all the constraints with eqtidi with the PPR multilayer scheme because some
constraints are too loose, and thus the distortion regisrsbme degenerate regimes. The enhanced distortion
vector given in Sectiofl4 is thus introduced to eliminates thffect. This enhanced distortion vectbr*
serves a similar role as the enhanced channel in [19], wher®1tMO Gaussian broadcast channel capacity
is established.

The enhanced distortion vect®* has the following three important properties:

e EnhancementD* enhanced the distortion vectf, i.e.,D; < D;,i =1,2,...K.

e Monotonicity: D* = (D3, D3, ..., D3,) is a monotonically decreasing sequence, thus a valid tistor
vector.

e ®-monotonicity: it satisfies the condition
O,(D:) <P, (D! ), a=23, .. K. (75)

These properties are straightforward to check by the coctstn of D;.

The ®-monotonicity property is exactly the condition being dkext in the definition of the enhanced
distortion vector, withD? replacingD,. Thus the definition of the enhanced distortion vector ¢iffety
constructs a new distortion vector in a sequential manhéhei original distortion vector does not satisfy
the ®-monotonicity property. The desireb-monotonicity property removes the degenerate regimeshand
corresponding difficulty previously discussed. To see, tbimsider the following two cases: (1) when de-
scriptions inGy, are received, wheri| = «; (2) when descriptions ity are received, where = o — 1
andGy C Gy. For the latter, using the given Gaussian auxiliary randanables{Y,,_, ;,i € Gy}, linear
estimation induces a distortion

K-1 2
. lor;
Dy = et T (76)
Ei:a—l o, +ta—1
Similarly, using the random variabl€¢¥’, ;,: € G, }, linear estimation induces
K-1 9o
D = iza 7 (77)

In the case that each individual encoding auxiliary randamiableY,, ; does refine ovey,_, j, i.e., there is
no explicit information embedded in theth layer, we have? |, = 0, i.e.,D/,_, is given by
K-1 9
A . (78)
S oi+a—1

=
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Now suppose the distortion constraint at the— 1)-th level is given byD, ; = D! _, as in [78), then the
degenerate case previously discussed indeed occurs ifdioetibn constraint at the-th level is given such
thatD, > D! . Through elementary algebra, it is clear that this is edeieao the condition

aD,, (= 1)Dy—q

7
1-D. 1-D.,’ (79)

which is exactly the negation df (I75), wittD,, ., D,,) replacing(D;_,, D).

Thus if the condition[(75) does not hold for the given distortconstraintsD,,_, and D,,, our choice of
Gaussian encoding auxiliary random variables will not He &bachieve the giveD,,_1, D, ) simultaneously
with equality, but can naturally achieve strictly bettestdrtions with equality. For the enhanced distortion
vector(Ds, Ds, ..., D), which indeed satisfies the conditign{75), the distortionstraints can always be sat-
isfied with equality in this achievability scheme, by chawgsthe appropiate variancés?, o2, ..., 0%). Con-
versely, given an enhanced distortion ved®t, the variances of the auxiliary random variab{g¢sv, ., a €
Ix_1,k € Ix}, N} are uniquely determined. More precisely, the variancesfony = 1,2,..., K — 1 are
determined by

o7 = @ (Dy), (80)

which always give a set of valid choices of the variances.sTihom here on, in the PPR multilayer coding
scheme, the Gaussian auxiliary random variables will berasd to have the variances thus determined.

With the enhanced distortion vect®* properly defined, we have the following corollary, the probf
which is given in Appendik]9.

Corollary 5.2 For the Gaussian source,
R(D) < R(D*) < R(D*). (81)

The first inequality is clearly true becaug¥ enhanced.

5.3 Lower bounding the sum rate

Next we generalize the lower bounding derivation given iot®a[3 for X' = 3 to the case of generél. The
generalization is notationally involved, and the resutusnmarized in the following theorem.

Theorem 5.4 For the Gaussian source, the sum rate underAhéescription symmetric distortion satisfies

K K
K1, (1+da)(Da+da)
> | 5
;Rz_ 2;aog(1+da_1)(Da+da)’ (82)

whered; > d, > ... > dx_; > 0 are arbitrary non-negative values, = co anddy = 0.

Proof 2 The bounding technique extends the method used in [2, 8p9jeVver with the new ingredient that
we expand the probability space with more than one additicaredom variables, and then utilize the special
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structure in the expanded probability space to bound therstien We have the following chain of inequalities

@<= | K K
) il H(S;,i€ Gy) — ————— H(S;,i € Guy)
2 o, 2 PRSI EAPP

+ H(S;, i€ Ix) — H(S;,i € Ig|X™)

K—-1 K K
+ — H(S;ieGy)— ———— H(S;,i € Gy)
2 e 2 PESTEAND
L K
- S H(S;i € Gp|lY") — —————— H(S;,i € Gp|Y™)
a=1 _Oé(g) Gy :|V|=a (a + 1)(al—i1) Gvig;a—l-l
= I(SZ,’L S I]QX”)
(= I K
+ — 1(S;,i € Gy Y)) — ——— 1(S;,i € Go; Y
2 ol o2 EESRAPP O
K-1 K
=N IS Y)Y Y [I(Sni € Gy V) = I(Sii € Gui Y]
i=1 a=2 a(a) G’U |V|=a
+ [1(Siyi € I; X™) — I(Si,i € I; Yii_y)] - (83)

where (a) is by adding and subtracting the same terms whergdsitive term in the bracket chases the
negative one; (b) is true because the subtracted brackebismegative due to conditional version of Han’s
inequality [22]; {Y., « € Ik} are defined in[(66), though here we are not using them to cocistodes. For
convenience we denote, = Zj{:a 0]2.. Now we can apply Lemnia 8.1 dn83) to get the desired result by
noticing

Dl + do Dl + o0

1 =1 =0 84
8 1+d0 08 1—|'OO ’ ( )

with the conventioiiog 2> = 0.

Note that the lower bound in Theorém 5.4 is in fact a set of ldwainds, parametrized ¥ > d, >
... > dg_1 > 0. We may optimize it to find the tightest lower bound, howeaarexplicit optimization is not
only difficult, but also fails to offer much insight due to tleek of matching achievability result. Instead we
shall choose a specific set of values to get a (sub-optimahdhaesulting in the following corollary.
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Corollary 5.3 For the Gaussian source, the SID-RD function under symmeistortion constraintd) sat-
isfies

1<\ 1. D 1L 1 1L 1
R(D) > =) —log—21l__ log(ov — D =Y Zlog(a—1
(D) > 2;a0g D 2;@_1%(@ a_1)+2;aog(a )
K K K
11, D, 1 1 11
> =% Zog 2@ ] N Zlogla — 1 85

whereD* is the enhanced distortion vector bf.

This corollary is proved in Appendix_10. It is worth notingatithe left hand side of (85) is regarding
the SID-RD function of distortion vectaD, and the right hand sides &f (85) are only related to the erdthn
distortion vector. Indeed the enhanced distortion vedagiven in such a way that it does not change the
lower bound under the chosen valug(@f, ds, ..., dx_1).

5.4 Bounding the gap between lower and upper bounds

Now it is rather straightforward to prove Theoreml4.1. Siieenhanced), we have by Corollary 511 and
Corollary(5.2 that

R(D) < R(D*) < R(D*) < R(D*). (86)

Now combining[(86) with Theorein 5.4 and Corollary]5.3 givéedrem 4.11.

Theoren{ 4.1l provides one possible approximation for the-BIDfunction with universal constant bit
bound. Various improvements can be made, for example rimteéce of(d;, ds, ..., dx 1) and better choice
of random variables in the PPR multilayer coding scheme. edeer, when proving Corollafy 8.3, we have
omitted many terms, which may make the bound looser. In facthe case with only two level distortion
constraints, the outer bound in Theorlem 5.4 reduces cyrtedhe one given in [8] and [9]. It was shown in
[2], [8] and [9] that for certain cases this bound is indeegghtti which however requires optimization to find
the optimal bound. We will not pursue such refinements hergglave them to interested readers.

In order to prove Corollarly 411, notice that this case ingplie can choos®, = D, = ... = Dg_;, = 1,
and furthermore we can sét_, = co. Thus the lower boun®(D, d) implies that

K

<1+d )(D _'_da—l)
@ o (14 da1) (Do + o)’ (87)

R(D) =

N —

Apply the procedure of computing the enhanced distortiozctoreon (Dg _j41, D k42, .., Dx) only, and
denote the output D%, 1, D9, -, Dk ). We then follow the proof of Corollardy 5.3 and arrive at

K

K
1 1 . 1 1
R(D) > 3 Z o log Z log a—D; )+ 3 Z —log(ar — 1)
a=K—k+1 a= K—k+2 a=K—k+2
K K K
1 1 D 1 1 1
> 3 Z —log O‘Zl — 5 loga + 5 Z —log(a —1). (88)

a=K—k+1 o C" =K- a=K—k+2

It is clear thati, = 0 for a = 1,2, ..., K — k. Thus we have proved the bound for the differences between
the upper and lower bounds as given in Corollary 4.1.
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5.5 Extension to general sources

In this subsection we generalize the result for the Gaussiarce to other sources under the MSE distortion
measure, and show similar but looser bounds hold for the stnerindividual description rate under the
quadratic distortion measure. We derive the result usiegR-ULP scheme, but not the PPR multilayer
scheme, which appears difficult to analyze for general ssurtnterestingly, forX = 2 and the symmetric
distortion constraints, the sum rate gap between the uppendderived using the SR-ULP scheme and
the R-D function is upper-bounded ly5 bits, which is the same value as that derived in [23] for the tw
description case; nevertheless our result is a strongere $in [23] the achievable scheme is more involved
than the SR-ULP scheme yet the bounding constant is the same.

Some additional definitions are necessary. For a generatesoiwith finite differential entropy, zero
mean and unit variance, define the following quantity,

K
a=1

where random variablg,, o = 1,2, ..., K are defined as i (66) and (67).
The following theorem is the main result of this section.

I(X;Y,|Y1,Ys, ... Y1) (89)

QI+

Theorem 5.5 For any general sourc& with unit variance under the MSE distortion measure, we have

R(D) > R(D), (90)
moreover,
. K
R(D 2_; o (91)

This theorem essentially states the the SR-ULP scheme hattadditive Gaussian codebook operates
within Ele(m)—l of the optimal coding scheme, in terms of individual dedariprate, for any source with
unit variance. The first statement in the theorem is triviehpplying Theorerh 511, and the second statement
is proved in Appendik11.

Unlike Theoreni 411, there is no explicit lower bound on thB-8&D function. Indeed, in the proof of
Theoreni 5.5, the outer bound is never explicitly writtenawdnan single letter form or an analytical form that
can be computed directly. The key proof idea is to consthetawer and upper bound in appropriate forms
such that certain terms are the same, and then cancel tesettebound the remaining terms.

6 Rate-distortion region approximation

In this section, we develop the results further to provideapproximate characterization for the MD rate-
distortion region. The main difficulties are as follows. dfly, the PPR multilayer scheme was originally
designed for the symmetric rate only instead for an achievidie region, and thus certain generalization
has to be introduced to “inflate” it to a rate region. We applg &-resolution method to assert that the
achievability of the corner points of a region which matctiespolytopic template of the MLD rate region,
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and therefore by a time-sharing argument provide an achievegion. The second difficulty is in generalizing
the sum-rate lower bounding technique to other rate contibima The terms in deriving the lower bound are
well-structured for the sum rate case, however for geneatal combinations the terms lack such structure.
Unlike the casd< = 3, there is no explicit method to enumerate the appropridéeaambinations, i.e., the
bounding faces of the rate regions. To overcome this ditficule combine ther-resolution method with the
sum rate lower bounding technique to provide the outer bpandather the lower bound for the bounding
planes of the rate region.

6.1 Achievable rate-distortion region by the SR-MLD scheme

Parallel to the SID-RD case, we give a general definition efrtite region not necessary using a Gaussian
codebook, which is based on the SR-MLD coding scheme iltestrin Fig.[B. LetR(Y) be the set of
non-negative rate vecto(s;, Ry, ..., Rk ), such that

K
Ri=> rf, 1<i<K, (92)
a=1
for somer® > 0,1 < o < K, satisfying
S > I(X Y V1, Ve, Yioed), Yo € Q. (93)

i€G

We have slightly abused the notation in the above definitipnigtting the argument dfz(-) be a fixed set of
random variables rather than a set of distortion conssathis however does not cause much confusion due
to their apparent difference.

Theorem 6.1 We have

~

conv(R(Y)) C R(D), (94)

whereconv(-) is the convex hull operator, and it is taken over the set ofil@uy random variablesY =
(Y1,Ys, ..., Yk) in some alphabet®; x ), x ... x Vg, which are jointly distributed withX, such that there
exist deterministic functiong, : )y x M, x ... x )V, — X to satisfy

Ed(X, ga(Y1,Ya, .. Ya)) < Da, a=1,2,..., K. (95)

By choosing the auxiliary random variablgs, o = 1, 2, ..., K as specified by (66) and (67), itis clear that
R(D) is a (proper) subset @onv(R(Y)), and thus an achievable region. Note that the regmv(R(Y))
may be a general convex region with curvy boundary, thus rmilgope. Howeverfz(D) is a subset of
this set by specializing it to a particular distributionsu#ing in a polytodﬁ Interestingly it is not a contra-
polymatroid as often encountered in multiuser informattweory. A contra-polymatroid is usually defined as
a mapping from subsets (of the rate indices) to a non-negegad number. However, here even for the three
description case, there are four mappings associatedhetbet of all three rates, one boundiRgt- R, + Rs,
and the other three on the formak; + R, + Ry, thus does not result in a valid mapping. As such, the theory
characterizing the vertex points of a contra-polymatradsinot offer simplification in the MD problem. The

a-resolution method invented in [16] is one approach to askltieis difficulty.

“It is the projection of the polytopR1, Ry, ..., R, {r{, o € Ix,i € Ik }) on the firstK components.
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6.2 Achievable rate-distortion region by the PPR multilaye scheme

In this subsection, we first briefly describe the PPR mulétagoding scheme, and then discuss the diffi-
culties in generalizing this achievable symmetric rat@lte® an achievable rate region. To overcome these
difficulties, we combine thea-resolution method with an additional coding step to prexddch an rate region.

The PPR multilayer coding scheme can be described rougtlyllag/s. At layera, o € Ix_, and for
any descriptiork € I, codebooks of size"f«.» are generated using the marginal distributiorYgf,. The
rate I, , should be sufficiently large such that for any source codéyaith high probability there exist
codewords in the codebodk, k), o € Ix_; andk € I that are jointly typical with it. This can be done if
we choose

R, > h(Ya1) — ?h(Yak,k € Ig| X AY,k,j € In—1,k € Ix}). (96)

Though there is no requirement thigf , = R, ,, for anyk # &', we intentionally make them equal to simplify
the resulting achievable region; i.e., we choose

1
ok = h(Ya) — ?h(Ya,k, ke Ix| X AYjkj€ In—1,k € Ix})+9, (97)

for an arbitrarily small but positivé. Next codewords in a codebook are randomly and independesgigned
into a total of2" %+ bins,a € Ix_; andk € I. Atthe decoder, with ani* descriptions such that ¢ I,
the firstk* layers are decoded. More precisely, the decoder receiwesipigons inGy, such thatv| = k*;

if there exists a unique set of codewords ;, a € I;~,j € Gy}, in the corresponding bins that are jointly
typical, then the decoder reconstructs using the singlerldecoding functiom(-); otherwise a decoding
failure occurs. To succeed with high probability for atiye I, the ratesR, ;, o € Ix_; andk € I,
only need to satisfy

0<R,; <R,

,j?

OZEIK_l, j EIK (98)
and
> (RL,; = Ray) < ah(Yay) — h(Yai,i € Lo|Yij k € In—1,j € ), (99)

j€Gp
for all v € Qk such thatv| = «, and for alla € T ;. Rewriting [99), we have
S Ray > Y RL;—ah(Yan) + h(Yaii € L|Yiy, k € Loy, j € 1)
J€GY J€GY
= ah(Y,,) — %h(ya,k, k€ Ix| X, {Vipj € Ln1,k € I }) + b
—ah(Yo1) + h(Ya,,i € 1o|Yej, k € In-1,j € 1)
= h(Ya:, i€ 1Yy, k€1ls1,j € 1,)

_%h(Yakak € Ig|X Yk, J € In—1,k € Ix}) + aé. (100)

The last layer codebook is generated using the more coovehtnethod, i.e., the conditional codebook, and
the following condition is sufficient

K
> Ricr > I(X: Y|V, a € Iy, k € I). (101)
k=1

28



By collecting the constraints on non-negative raigs; in (98), (100) and[(101), and defining, =
Ele R, 1, we can already form an achievable region. However, therlppend in [98) introduces additional
difficulty when comparing to the outer bound derived in thetrsection, and thus it will be desirable to
remove this condition. In other words, with these constsaiaken into consideration, it is not clear whether
the resulting region matches the polytopic template of théModing rate region. Next we define a similar
region, and prove this region is indeed achievable and cawrittten in a form with the same structure as the
desired template. In [25], we gave a different scheme bygusithogonal binning, however we believe the
scheme given below is more straightforward. We first intceda few more notations.

For a fixed set of (generalized symmetric) auxiliary randamables{{Y, s, o € Ix_ 1,k € Ik}, Yk},
define the following quantities far € I 1,

H(Jz(Y) - h(Ya,Zﬁi S Ia‘Yk,_ﬁ k S Ia—17.j c Ia) - %h’<Ya,k7 k S IK‘X7 {}/}ij € Ia—17 k S IK})? (102)

Hg(Y) = I(X;Yg|Yap, o € Ix_1, k € Ig). (103)

Let R(Y") be the set of non-negative rate vectoks, R,, ..., Rk ), such that

K
R>Y"rf, 1<i<K, (104)

a=1

for somery > 0,1 < o < K, satisfying

Sl > Hy(Y), veQ. (105)
i€eGy

Note here in fact the set of auxiliary random variables hagertttan/’ components, however we still write it
asY for conciseness; we also slightly abuse the notation biptefi,, (-) have either the enhanced distortion
vectorD* or a set of random variabl@s$ as the argument, which is indeed justified as we shall shouitibg

are in fact the same by appropriate choice of the randomhlag&”. The regionR(Y) is the rate region
satisfying [10D),[(101), and the lower bounds[inl (98), butmexessarily satisfying the upper bounddin (98).
Thus for a fixed set of random variable§Y,, ., o € Ix 1,k € Ik}, Y} and the specific choice dt,, ,, the
achievable region directly implied by the PPR multilayeresme, i.e., the one by collecting the constraints on
non-negative rateg, ; in (@8), (100) and(101), is a subsetB{Y). We now state the following theorem.
Theorem 6.2 We have

conv(R(Y')) € R(D), (106)

where the convex hull operator is taken over the set of géimechsymmetric auxiliary random variables
{Yar o € Ix_1,k € I}, Yi } inthe alphabet®[ x VX x ... x YE | x Vi, which are jointly distributed
with X, such that there exist deterministic functions: ;' x V5 x ... x V¢ — X, a € Ix_, such that

Ed(X, ga({Yik 1 € In,k € 14})) < Do, a=1,2,.. K -1, (107)
andgr : Y x YK x .. x YE | x Yg — X, such that

Ed(X, gxc({Yip.i € I,k € I}, Yx)) < Dx. (108)
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The proof of Theorern 612 relies on a result in [16], which istgd below. Let *” denote the usual inner
product in the Euclidean space. [7et(Y') be the set of alR > 0 such that for allA € R but A # 0

K
ARZ Zfa(A)j:Ia(Y)v (109)
a=1

wheref, (A) is defined in[(1B) of Sectidn 2.C.
Theorem 6.3 ([16] Theorem 2)

R(Y) =R*(Y). (110)

Remark:In the definition ofR*(Y), the requirement thaR > 0 can be safely removed without loss of
generality wher,,(Y") > 0. To see this, led = (1,0, ..., 0), then [109) reduces t8, > H,(Y") by applying
Lemmd2.4.

In order to prove Theorem 6.2, consider the following. Foxadiset of (generalized symmetric) random
variables{{Y, s, o € Ix_1,k € Ix}, Yi}, since bothR(D) andR(Y) are convex, they can be characterized
by the bounding planes. As such if we can prove that for Ang RX and A # 0, the following inequality
holds

mn A-R< min A-R, (111)
ReR(D) ReR(Y)

then it follows that the regiof (Y") is an achievable region. By Theoréml6.3, we have

K
hin A-R-= 2 ol A)H,(Y). (112)

Thus it suffices to prove that there always exists a rate véctine achievable rate region that satisfy (112)
with equality, i.e., there existR € R(D) such that

K
A-R=) fu(A)HL(Y), (113)

forany A € RE and A # 0. This would imply [II1), which further implies the claimeesult. We prove
(113) and subsequently Theoreml6.2 in Appendix 12.

Notice that the regio®(D) is just R(Y') with {{Y,, a € Ix_1, k € Ix}, Y} defined by[(78) and (T4),
the variances of which are given Hy {80). Since for this dfechoice of random variables, the values of
H,(Y) = H,(D*), a = 1,2,..., K are given in the proof of Corollafy 8.2 in Appendix 9, the éoling
corollary is now straightforward.

Corollary 6.1 Let D* be the enhanced distortion vectorbf, then for the Gaussian source

R(D*) C R(D*) C R(D). (114)
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6.3 Outer bounding the rate-distortion region

In this subsection, we provide a lower bound to the boundiagegof the Gaussian MD rate-distortion region.

Theorem 6.4 For the Gaussian source and amyy > 0,

s 1 & (14 do)(Dy + do_1)
;AiRi > 5;]21@4) log (1 +do1)(Datdo) (115)

where the functioryf,(A) is defined in[(I6)d; > d» > ... > dx_1 > 0 are arbitrary non-negative values,
do £ o0 anddK =S 0.

Proof 3 Recall the result in Lemnia 2.4, and consider the followirgguralities,
K
n Z Ai(Ri +€) > Z AH(S;). (116)

Letey, co, ..., cx be a set ofv-resolution as defined in Theorém12.1. Then we can write
Y ca@H(S,i€Gy)— Y carr(v)H(S;i € Go)

(a)
E A;H(S;) =
a=1 | Gy: |'U|—a Gp:|V|=a+1

+ Amin (SZ‘,'L € ]K) — AminH(Sia'L. € IK|Xn)

MN

(b)
2 Amin](Siai S ]KvXn)

K-1
+ 1 Y GHSLi€Gy)— Y. capr(v)H(S,i € Gy)
a=1 | Gy:|V|=a Gp:|U|=a+1
K-1[
- Y wWH(SLieGulY) = > cant(v)H(S;,i € GylYY)
a=1 | Gy:|V|=a Gy:|U|=a+l1
= Apin (i, € Ie; X™)
K-1 [
+ Y a@)I(Sii€ GV = Y cara(0)I(Sii € G V)
a=1 Grv'|’U|=a Gp:|V|=a+1
K
Z 1(S;; Y +Z > calv) [I(Sii € GuiY)) — 1(Sii € Go; Y y)]
=1 a=2 Gy: \v\—a
+ Agin [1(Siy3 € Tie; X™) = I(Siyi € T Yi_))] (117)

where (a) is by adding and subtracting the same terms, andaltlee fact thatS;,i € Ix are deterministic
functions of X", and (b) is by a conditional version of the covering propesfythe given sequence of the
optimal a-resolutions as defined if_(118). At this point, the expresssoquite similar to[(8B), and we can
apply Lemm@&_3]1 to complete the proof.
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Parallel to the sum rate case, we can specialize the lowerddoyichoosing the values df, d, ..., dx 1.

Corollary 6.2 For the Gaussian source, we have

K

K K
1 * )
;AZRZ > 5 ;fa(A log Z fam1(A)log(a = D; ) + 5 ; fu(A)log(a — 1) (118)
> — log ==L _ = )1 ) B
> Q;fa(A) %8 - nga 1(A)logar + = Zfa ogla — 1), (119)

whereD* is the enhanced distortion vector bf.

The proof is given Appendik 13, which is along a similar lirethe proof of Corollary 513, with the
additional application of Lemnia 2.3 in one step.

Next we proceed to establish that the outer bound given abondeed a polytope. More precisely, define
R (D*) to be the set oR € R¥, such that[(118) holds for ang € RX and A # 0. Note that we do not
requireR; > 0 in this set. The following corollary establishes a polytputer bound.

Corollary 6.3 Let D* be the enhanced distortion vector B, thenR ,(D*) N R% is a polytope such that
R(D) C Ry (D*) NRX.

The proof of this corollary is given in Appendix]14. The kewdis the following: though we have an
uncountable number of bounding planes to charactékizeD™), if there exists a sefp C R, (D*) with
finite number of elements, such that for eadh inequality [118) can be satisfied with equality for some
element inSg, thenR ;(D*) is a polytope. The proof given in Appendixi14 proves the exisé of such a
finite set.

6.4 Bounding the gap between outer and inner bounds
Now we are ready to prove Theoréml4.2 and Thedremn 4.3, whechrasented below.

Proof 4 (Proof of Theorem[4.2 and Theoreni 4]3)Theoreni 4.2 is implied by Theoréml6.1, Thedrem 6.2 (or
rather Corollary(6.1), the fact thaD* enhanced, and the fact that fonn = 2.3, ..., K

(a =1)D;_, 1 Dy,

< -1lo
Di(a—Di ) —2 ° Dr

N 1
H,(D*) = 3 log (120)

and H,(D*) = 1log 4.

The first inequality in[{(61) can be proved by (119) and the ét&fimof £ (D*), and invoking Theoref 4.2,
Theoren 613, Theoreim 6.4 and Corollaryl6.2. To prove theifiesfuality in [62) of Theorein 4.3, we again
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combine Theorein 4.2, Theorém|6.3, Thedrem 6.4, Corgll&aéd notice the following fact

K ~
> falA)H,
a=1
1 1 1= (a—1)D:_, 1 (K —1)D3_
= 3/i(A)log 5 + 5 2 falA)log o2ty + 5 il A) log 55—
K K
=03 Ay tog o Z fulA)logla— Dy )+ Y fulA)logla— 1), (121)
a=1 a=2

The first inequality in[{62) now follows frof (118) and the ni¢itin of A (D).
To prove the second inequality {n {61), we write

K
%Zfa—l( logoz——Zfa )log(aw — 1)

_fi ( g2+ = Z fa(A)log(a+ 1) —log(a —1)] — fKé“‘) log(K — 1)

(@) Asum Asum Amin
< log 2 4+ = 1 1) -1 —1)| — log(K —1
< DS +2; UMog(a +1) — log(a — 1)] — 5= log(K — 1)

K K-1

Asum 1 Asum 1 Amin
< 1 — —1 —1) — log(K — 1 122
<= a§:2 —plsa——5 a§:2 - log(a —1) — — = log( ), (122)

where in (a) we use LemmaR.4. The second inequalify in (62peaproved similarly, and the details are
omitted.

6.5 Extension to general sources

Similar to the SID-RD approximation, we can extend the digtertion region approximation technique to
general sources under the MSE distortion measure. It is tlaathe definition ofR(Y") is not limited to the

Gaussian source, and den®& D) asR(Y') with the random variable¥” defined as[{686) and (57). Define
the following function,

Ry(D)2 min A R (123)

RcR/ (D)

We have the following theorem.

Theorem 6.5 For any general sourc& with unit variance under the MSE distortion measure, we have
R'(D) C R(D), (124)

moreover, for anyd € RY and A # 0
K
R, (D Z

The proof follows closely the sum rate case proof for gersvatces, and we thus omit it here.

(125)
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7 Conclusion

We provide approximate characterizations of the indivigiescription R-D function, as well as the achievable
rate region, for the Gaussian MD problem under symmetritodisn constraints. This is done by combining
two inter-connected parts: the derivation of a novel outemul, and careful analysis of achievability schemes
to generate inner bounds for easy comparison with the owtenda The outer bound alone, or the inner
bound alone, will not be able to provide this results, andi@alar care has to be taken in order to make them
compatible. A result in a similar vein was recently obtaitgdEtkin et al. [26] for Gaussian interference
channel.

The new lower bound is obtained by generalizing Ozarow'd-ebwn technique, and expand the prob-
ability space of the original problem by more than one randanmbles with special structure among them.
This technique appears to be promising, and we expect tasapplication in other difficult multi-terminal
information-theoretic communication problems.

The multi-level diversity coding problem, which can be ursieod as a lossless counterpart of the MD
problem, shed tremendous light on the geometric structtitbteoMD rate-distortion region. We use the
lossless MLD coding rate region as a polytopic template fthbnner and outer bounds for the MD rate-
distortion region. With the increasing complexity of a smicoding problem being considered in information
theory literature, we expect the complexity of its losslessnterpart to increase as well, and the difficulty
of the corresponding lossless problem becomes an incgdgslominant component of the overall problem.
In this context, our work can be understood as the first attémpake explicit connection between the
lossless source coding problem and its lossy countergastwiorth noting in multi-terminal channel coding
problems, several well-known recent works can be undeds&sousing deterministic models, for example,
the network coding results in [27], and the deterministicelass relay channel model in [28]. There exists a
philosophical connection between the approach taken snibrk and the “one-bit” approximation result for
the Gaussian interference channel in [26], as well as theoappate capacity result for the Gaussian relay
network [29]. In [29], an approximate characterization wagtivated by the insight obtained in studying
deterministic relay networks [28], which has an analogale as the lossless multi-level diversity coding
problem in our work. In both cases, the connection providegul insight to the coding scheme and outer
bounding proof technique. We expect in the near future cctimebetween the lossless (deterministic) model
and their lossy (non-deterministic) counterpart to be nmadether information theoretic problems, and the
approach of using the former as a guideline in treating ttierléo be a fruitful path.
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8 Proof of Lemmal3.1

Proof 5 DefineZ, = N, + N, and Z, = N,. To prove the first statement, we consider the followingrchéi
inequalities
I(SZ, i € Gy; Yn)
=nh(Y,) — h(Y)'|S;:,i € Go)
=nh(Y,) — (X" + Z|S;,i € Gy)
nh(Y,) — h(X" + Z" — X,U\Si,z € Go)

—~
S
N

> nh(Y,) = (X" + 2 — Xp)
2 nh(¥2) ~ 2 RIXG) + Z4(i) ~ Kol
S (v, - 3 5 log { reEIX () + Z,() - Xo(0)?]}

@
Il
—

Il
S
=
>
I
-
T

.
I
—_

log | (27e) (Ed(X (i), Xo(0)) + da)]

where X7 is the reconstruction with descriptior,i € Gy, and itsi-th position is denoted a&y (i).
The inequality (a) is because conditioning reduces enir@pyis because of the chain rule for differential
entropy and the fact that conditioning reduces entropy, @)ds because Gaussian distribution maximizes
the differential entropy for a given second moment. Singe) is a concave function, we have

n
n

Z % log | (2re) (B(X (i), Xv(i)) + d,)| < 5 log (2meBa(x", £3) +d.).

And it follows

[(Si,i € Go: Y™) > nh(Y,) — glog (mEd(X“,X;;) + da)

> nh(Y,) — 5 log ((27e)(Dyw| +d.))

nl 1+4d,
= — 10 —_,
2 "% Dy +d,

which is the first claim.
To prove the second claim, we write the following

](SZ,’L c G'U;YZL) — ](SZ,’L c G/U;Yan)
=nh(Y,) —nh(Y,) + h(Y)'|Si, i € Gy) — h(Y}'|S:,1 € Go).
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For the latter two terms, we have

h(Y")Si,i € Go) — h(Y]|Si,i € G)

W h(YISi i € Go) — h(Y;"|NP, {S,i € Gp})

© h(Y|Si,i € Go) — h(YIND, {Si,i € Go})

= I(Y"; N*|S;,i € Go),

where (a) is becaus®’” is independent of,* and {S;,i € Gy}; (b) is by the definition ot,. Continuing
along this line, we have

[(Y; N"|S;,i € Gy)

@ B(N?) = (N X" + N + NP, {S;,i € Go})

— h(NZ) = R(NZIX" + N+ N X, {85 1 € Gu})

®) N

> h(N7) = h(NZIX" = X + N7+ N})

(©) — .

> 3 (ANG@) = RN ()X (3) = Ko (i) + Nali) + Ny(i) )
=1

= > T(Na(i); X (i) = Xo (i) + Ny(i) + Na(i)

i=1

@ 1, Ed(X(i), Xp()) + dq

where (a) is becaus®, is independent of;, i € Gy ); (b) is because conditioning reduces entropy; (c) is by
applying the chain rule, and the facts thaf’ is an i.i.d. sequence and conditioning reduces entropyjgd)
by applying the mutual information game result (see page &3, as well as [24]) that Gaussian noise is
the worst additive noise under a variance constraint, arldrg N, (i) as channel input; finally (e) is due to

the convexity and monotonicity lok; ﬁfﬁ: inx € (0,00) whend, > d, > 0. This completes the proof for the
second claim.

We note that a similar line of argument was used in [8] to deaisum rate lower bound for a system with
two levels of distortion constraints. However, Lemimad 3.hayalizes that result since there exists only one

auxiliary random variable in the setting of [8], but there &wvo auxiliary random variables, andY; in the
current setting.

9 Proof of Corollary 6.2

Proof 6 We first rewrite the rate formula given in Theoréml|5.2. For adiset of (generalized symmetric)
auxiliary random variableq{Y, x,« € Ix_1,k € Ik}, Yk}, recall the definion the following quantities for
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a € Iy

Ha(Y) - h(Ya,iai S Ia|Y},k7j € Ia—la k S Ia) - %h(Ya,iai S ]K|X7 {Y},kaj S Ia—la k S IK})a (126)

and
Hg(Y) = I(X;Yg|Yap,a € Ix_1, k € Ig). (127)
Then it follows that
1~ |
Z ~Ha ~h(Yoii € La[Yinj € Loy, k € L)
a=1 @ a=1 @

. 1 .
+ ?h(YKﬂ/},k,J €lg_1,kelg)— ?h({Y},k,J € lx_1, ke lx},Yr|X), (128)

where the right hand side is the rate expression given in fmei&.2.
Now for the specific set of random variables defined by (73)@8y we have forn = 2.3, ..., K — 1

Ho(Y) = h(Yai,i € La|Yjn,j € Tacr,k € 1)

_ %h(X V Zoiii € Ig| X AX + Zjpj € Loy, ki € Ic})

- h(Ya,iai S [a|Y},kaj € Ioz—lv ke Ia) - %h(za,iai S IK|Zj,k7j € [a—la ke IK)

—~
S
N

—
=

=h(Yoi,t € I|YjkJ € Iom1,k € 10) — M Zayiyi € 10| Zjg, j € Lo—1,k € 1)

[

= h(Ya,iai € Ia|Y},k7j S Ia—la ke Ia) - h(Ya,iai € Ioz|X7 {Y},kaj € Ioz—la ke Ia})
=1Yoi,t € 10; X|Yjp, 5 € In—1, k € 1,), (129)
where (a) and (c) are because is independent of, ;; (b) is because of the chain rule and the fact tiat,

is independent of Z,, i, o € I,k # i}. Because of the Markov string ;. k € I} <> {Yor, k € Ik} <
v {Yk_1k k € Ik} <> X, we have

—~
~

~ , _ 1 (o« —1)Dx_,

H,(D*) = h(X|Yy_1,,i € I,) — WX |Y,;, i€ l,)==1 ol

(D*) = (X [Ya-s1,1 € o) = WX [Yasi € L) = log (550

by the choices of the variances of the Gaussian random asal, . Fora = 1 anda = K, itis
straightforward to verify that

(130)

~ 1 1

H,(D*) = 3 log — Dr

; 1 (K-1)Dj,

Hyg(D*) = =1 . 131

Combining[(13D) and:(Bl) we have,
- 1)D;_,

1
; Ha a _ D* )D*

=—Zl ———Z log a1 (132)

which completes the proof by definify = 1.
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10 Proof of Corollary

Proof 7 To facilitate discussion, define the following index sebokk constraints
Cp={a:D; < D,}, (133)

and it follows thatC§{ = Ix\Cy; note thatl € C¢. For a givena € Cp, defineN(«) as the index of lower
neighboring distortion constraint ta that is not loose, i.e.N(a) = max;<q kece k-
We first consider the case when the distortion vector is geueh that it satisfies the conditions

Dy 1(Do_y) > ®o(Ds), a=2,3,..,K, (134)

where we také), = 1. Note this impliesD, = D, a = 1,2,.... K, andC; = 0. In this case we choose
do = ®,(D,), fora=1,2,..., K — 1, which is clearly valid. We start from Theorém]|5.4 to showt fhathe
specific choice of,,, the claims holds.

ZK:R N K K 1 . (14+dy)(Dy + do_1)
Lo = 9 L P (T day)(Da + da)

1
KK‘111 Doy 1+ (a—1)Dy, @—1—= Do+ g
2 « D, 1+ (a—2)Dy a+1—D,

K 1 1 D_K—l—DK+D
+=log ———— + = log | =21 Dr
2 °Di(2—D;) 2 Dk 1+ (K —2)Dg_,
_ Kill Da_l_‘_EKZ_lll 1+(a_1>Da O[_l_Da+D€i1
2 £ Dy 24a " |14+(a@a=2)Dasy  a+1-Dg
S L1y K-1-Dit o5
— 10
2 %2 -D) 2 ®| 11 (K—-2)Dx,

_ ggélog%;+§1ogﬁ+§§%—ailuogaﬂa—lwa)
L

g) %gélogl)ﬁ;ljtglog@_ll)l) %iié g fl__lDa+§log(K—1)

- %gélogl)ﬁ;l_géal—llog(a Da_1)+§é—log(a—1)

> %gélogl}a;l—géaillogangéélog(a—l) (135)

where in (a) we use%% > D,,, and omitted the third term which is positive. Thus the claitnue if (134)
holds.
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For the case wher (184) does not hold, then we chdgse ¢,(D,,), for o € C¢ as before; however for
anya € Cr, we choosé,, = dy(,). Note that with such a choice, we ha¥g= d,_, and therefore,

(1+do)(Dy + do-1)

1
1+ dy 1) (Do +d)

= 0, o € CL. (136)

If we replaceD,, with D’ in the left hand side of the above equation, the equalitytstids; moreover
do = D,(D2), a€e(Cy (137)

Thus by using this particular choice 6f;, ds, ..., dx 1), we have
K
K 1
2Bz 5 s
K
K 1
= = -1
2 — 08

and the exact same derivation holds as in the case when (1843,hwith D replacing D,. Dividing both
side of [13b) by completes the proof of the corollary.

1+d.)(D +da 1
1+da—1)( o

1+do)(DE + do-
1+ do-1)(Df +dy

, (138)

~
Il
[y
| e

)
da)
)
)

11 Proof of Theorem 5.5

Proof 8 We pick up the story frorh (83) for the lower bound and rewtitdightly differently.

K K-1
K
”Z(RH—E)Z m Z [1(Si,i € Gu; Y)) = I(Ss,i € Gu; Yo )]
i=1 a=1 a/ G:|U|=a

+ [I(Sii € I; X™) — I(Siyi € I; Yii_y)] - (139)

where now the random variablég, a = 1,2, ..., K — 1 are defined as i (66) and (67), and for simplicity we
defineY, = 0, i.e., a constant.

Next we consider the upper bou(D), c.f. Theoreni 6]1, using the same set of random variatiles
a=1,2,..., K as above

K K
;El X;Yo|Yory) = Zl— — I(X; Yaa)]. (140)

Q

Note we have used that fact th&t« Y, «> Y,,_; is a Markov string for anyx € I. The auxiliary random
variables used in the lower and upper bounds are in fact tlleesaand it is clear that this is a valid choice in
deriving the lower bound by definition.
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Thus we can now bound the difference between the upper ard bmmnd on the symmetric individual-
description rate as follows

1
I(X;Y,|Ya1) — e [I(Si,i € I; X)) —I(S;,i € IK;YK"_l)}

QIr

K-1

S [(Sii € GoiV)') — I(Siyi € G Y )

a=1 _noz ([of) G,U;\’U|:a

I
i N
—
@‘
Q

[ 1 1
I(X;Y,) — (XY, 1) — EI(Si,i € Gy Y)') + EI(Si,i € GU;YO:‘_l)} }

1
I(X YK 1)——I(SZ,Z€IK7XH)+ ](SZ,'LGIK,Y[? 1)} (141)
Now consider an arbltraryy € Ix_1,and an arbltraryv such thaljfu| = q, it follows that

I(X:Y,) — I(X; Yy 1) — (SZ, i€ Gos Y + I(SZ, i € G Y™ ))
= h(Ya) - h(Ya|X) - h(Ya—l) + h( a—1|X)

—[AYS) = h(Y('[Si, 0 € Gu)l + —[A(YoLy) = h(YoL|5i i € Go)
a 1 1
@ W(Za) + M(Za) + —h(Y]|Sii € Go) = —h(Y;L, |00 € Go)
® 1 do— 1 n n ,
= glog dal = (Y34 Ny |83 € Gu)
(©) 1 lo da—l Da + da
= 2% Do+ dos
1 2-D, ©1
= -1 < - 142
QOgl_Da_‘_DD(il_z ( )

where (a) is due td’)* andY," , are independent squences, (b) holds sifige, =Y, + N,—_1, and in (c) we
used the bounding technique used in the proof of Lemnha 3dic@mtinued to use the definition of

K
dzza?:& a=1,2..,K-1 (143)
(07 — 7 ]_—DOC’ ) PR )

and finally in (c) we used the fa&l, — =—— < 0andD, > 0.
The last term in[(141) can be bounded similarly by noticligg;, i € Ix; X") > 1(S;,i € Ik; Y7)

1 1
I(X,YK) — I(X;YK_l) — EI(S“Z S IK;Xn) + EI(S“Z c IK;YKn_l)
1 1
< I(X,YK) - I(X;YK_l) - E](S“Z S IK,Y[?) + E](SZ,'L S ]K’Ylg—l)
1 1
= —h(Zg)+ h(Zk-1) + Eh(yﬂsi,i € Ix) — Eh(yﬁ—ﬂsﬂ € Ix)
1 dK—l DK + 0’%{ < 1

< =1 Z
- 2 8 O'%{ DK+dK_1 -2

(144)
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where the last step is by; = 25—

Now summarize all the bounds derived above, we have that

~

K
R(D) - RD)< Y o (145)
a=1

which completes the proof.

12 Proof of Theorem 6.2

Proof 9 (Proof of Theorem[6.2) Fix a set of (generalized symmetric) random varialjl€g, ., o € Ix_1,k €
Ix}, Yk }. ForagivenA > 0, letl, be the non-negative integer defined in Lenhma 2.2 fonthevel. For any
(NS ]K, let

(146)

R 0~ if 1<k<l,
ok Hao jf | +1<k<K.

a—lq

R, ;. will be the rate assigned to theth layer for thek-th description; denot¢R, 1, Ra 2, ..., Ra.x) 8S Re.

It is clear from the original PPR multilayer scheme [6] th&kiach of the description has rate approximately
H, /o at thea-th level, then any of tha descriptions can guarantees decoding with high probabilitow-
ever, because the firgt descriptions are not given any rate for theth layer in [146), this can not be achieved
directly without proper coding.

The generalized coding scheme is by combining the origi®R Pnultlayer scheme with proper MDS
channel codes. The PPR multilayer scheme is still used am#ie encoding step, and let us denote the
codeword (the output index written in a large enough appiaeralphabet) for thev-th level for description
kasC,y, fora € Ix. A post-coding packaging step is now added atttth layer as follows. The last —1,,
codeword indices are written in the descriptions as in thgioal scheme. Each of the firgt codeword indice
Cor k=1,2,..,1,is encoded by a — [,,a — [,) MDS code, and each of the resulting codeword (index)
is written into one of the lask’ — [, description. This results in an additional raféa/a(a —[,) in each
description. Note that sinde < « — 1, the above MDS code rate is always well defined. It is cleatr ttina
rate of thek-th descriptionk > [, for thea-th layer is

Rop=—2 4+ —— s, =

147
a  ala—1) a—1ly’ (147)

as we claimed.

At the decoder, suppogalescriptions in the s&f, are available, wherév| = k. Consider a specific level
a € I, and the pre-decoding unpackaging procedure is as foll@&uppose:,, of indices in(Gy, is smaller or
equaltol,, i.e.,n, = |Gy N1, |. Inthe remaining: —n,, descriptions, clearly we can recover their respective
codewords, i.e.(,; fori € Gy \ I,,. However, sincer, < l,, we have als& —n, > a —n, > o —,
pieces of the MDS encodéd, ; for i € I, which can be correctly decoded by the property of the MD®cod
SinceGy N 1, C I, we can recover all’, ; for i € Gy. This holds true for allv = 1,2, ..., k, and then the
main decoding step in the PPR multilayer scheme can be applie

We remark here that the decoding can be easily improved usedé,, < [, there is additional informa-
tion that the main decoding step is not utilizing. However dbove simple procedure suffices for proving the
current theorem.
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It remains to show (113) is true with the given rate vectog pinoof of which follows closely the step in
[16] for the proof of Theorern 613. Ldt(v)} be an optimak-resolution forA. We have

A -Ro= ) ca)(v-Ra)+ (A= Y ca(v)v): Ra

Ve Ve

By Lemma 2]1, for any where|v| = « such thatc,(v) > 0, v; = 1 fori = 1,2, ...,1,; moreover, exactly
a — [, of the remaining components ar&. Since the first, components oRR,, are 0’s, and the remaining
components are equal, we have

v R = (a—1.) H‘*l L, for  w:ca(w)>0.
O — by
It follows that
S caw)(w-Ra) = Ho Y calv) = fal A)H,. (148)
Ve Ve
Since
A- > cvjv=A-A (149)
VeQy

has zeros in the lask’ — [, components, an® . has zeros in the complement positions, we have

(A= ) ca(v)v)  Ro=0. (150)
VeQy
It follows
ARy = f.(A)H,. (151)

Summing ovetr € I now completes the proof sinég = Zle R ;.
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13 Proof of Corollary

Proof 10 Follow the proof approach for Corollary 5.3, however we ditg useD* to replaceD. Letd, =
o, (Df)fora=1,2,..., K — 1, we have

K K-1 . . —1-D +

1 Dy 14+ (a—=1)D a B

ARy > = A) [log =21 4] @ 4] Do
; —2;“ R TRy 1y S B R 5

« K —-1-Dj
K-1 -
Dy, 1+ (K—-2)Dj_,

+ %fl(A) log + %fK(A) log

1
Di(2 - D7)

(a) 1 K D* | 1 K-1
> 5 > fa(A )log == Doc1 5 2_[fam1(A) = fa(A)]log(1 + (@ = 1) D;))
a=1 a=2 1 p
Z far1(A)log(a— D ) + 5 Z fa(A)log(a —1)
a=2
(Q BN A)l )1 D BN A)l 1 152
_Q;fa( Og __Zfozl oga— a—l)_‘_i;fa( )Og(Oé— )7 ( )

where (@) is true becausg% > D,, and in (b) we omitted the second term, because Lemnha 2.8s8npl
fa(A) <2=1f, 1 (A) < fa_1(A). This completes the proof.

14 Proof of Corollary

Proof 11 Clearly we only need to prove that the $&t(D") is a polytope. Sinceg(a — D ;) > 0 for
«a > 2, we can construct a set of independent fictitious soUkcés, ..., Uk, such that

1
H(U,) = §log(a +1-D), a=12,...K—1, (153)

and H(Uk) = 0. The MLD coding rate region for thi&-source can be equivalently given in two forms, as
implied by Theorem 6.3, witH,,(Y") replaced byH (U,). Since the rate region of this MLD coding problem
is clearly a polytope, there exists a finite set of rate vex;tdenoted as,., such that for any4, there exists at
least one rate vectairy, rs, ..., 7x) € S,, such that

K
> A= Zfa 1(A)log(er — D;,_) (154)
i=1

Now define®; = R; + r;,i = 1,2, ..., K, and consequentl{ {1118) reduces to the condition that

K . 1K
Z AiR; > 2 Z fa(A) log
i=1 a=1

L= Zfa ) log(a — 1), (155)
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We can again define a set of fictitious independent souiGes$ls, ..., Wi, such that

D*
H(W,) = log DLj +loga—1), a=23,.. K, (156)
and
1
H(Wy) = log D (157)

Now we would like to apply Theoréem 6.3 to asdert{155) is ihdazharacterization of the MLD coding rate
region for this source, however one technicality has to lfresised first. Recall tha is not constrained to be
non-negative, because otherwiBamust satisfy the additional constraift > r, and Theorer 613 can not be
applied directly. However, by relaxing to allow negative componen may have non-positive components,
which will render Theorern 6.3 not applicable without thetfgizen in the remark immediately after Theorem
[6.3. With that remark, now by applying Theoreml 6.3, we see(@®) is indeed a characterization of the
MLD coding rate region for this source.

Since the MLD coding rate region is a polytope, there exidisite set of rate vectorS;, such that for any
A, there exists at least one rate vec(d?l, Ro, ..., fi’l) € Sy, such that[(155) is satisfied with equality. Since
bothS, andS;, are finite, it follows that there exists a finite sgt, such that for anyA, there exists at least
one vectorR = R — r € S, satisfying [IIB) with equality. This subsequently impties the sefR , (D*) is
a polytope, which completes the proof.
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