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Abstract— Periodic-finite-type shifts (PFT’s) form a class of
sofic shifts that strictly contains the class of shifts of finite type
(SFT’s). In this paper, we investigate how the notion of “period”
inherent in the definition of a PFT causes it to differ from an
SFT, and how the period influences the properties of a PFT.

I. I NTRODUCTION

Shifts of finite type (SFT’s) are objects of fundamental im-
portance in symbolic dynamics and the theory of constrained
coding [2]. A well-known example of an SFT would be the
(d, k) run-length limited ((d, k)-RLL) shift, where the number
of 0’s between successive 1’s is at leastd and at mostk.
Constrained codes based on these(d, k)-RLL shifts are used in
most storage media such as magnetic tapes, CD’s and DVD’s.

A generalization of SFT’s was introduced by Moision and
Siegel [4] who were interested in examining the properties of
distance-enhancing constrained codes, in which the appearance
of certain words is forbidden in a periodic manner. This
new class of shifts, called periodic-finite-type shifts (PFT’s),
contains the class of SFT’s and some other interesting classes
of shifts, such as constrained systems with unconstrained
positions [1],[7], and shifts arising from the time-varying
maximum transition run constraint [6]. The class of PFT’s
is in turn properly contained within the class of sofic shifts
[3], a fact we discuss in more detail in Section II.

The properties of SFT’s are now quite well understood (cf.
[2]), but the same cannot be said for PFT’s. The study of
PFT’s has primarily focused on finding efficient algorithms
for constructing their presentations [1], [3], [5]. The difference
between the definitions of SFT’s and PFT’s is quite small. An
SFT is defined as a set of bi-infinite sequences (over some
alphabet) that do not contain as subwords any word from a
certain finite set. Thus, an SFT is defined by forbidding the
appearance of finitely many words at any position of a bi-
infinite sequence. A PFT is also defined by forbidding the
appearance of finitely many words, except that these words
are only forbidden to appear at positions of a bi-infinite
sequence that are indexed by certain pre-defined periodic
integer sequences; see Section II for a formal definition. This
paper aims to initiate a study of how the “period” inherent in
the definition of a PFT influences its properties.

After a review of relevant definitions and background in
Section II, we will see in Section III that given an SFTY,
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we can associate with it a PFTX in such a way that it is
only the period that differentiatesX from Y. We then seek
to understand how the period determines the properties of the
PFT X by means of a comparative study ofX and Y. We
investigate a different aspect of periods in Section IV, where
we study the influence of the period of a PFTX on the periods
of periodic sequences inX , and on the periods of graphical
presentations ofX .

II. BASIC BACKGROUND ON SFT’S AND PFT’S

We begin with a review of basic background, based on
material from [2] and [3]. LetΣ be a finite set of symbols; we
call Σ an alphabet. We always assume that|Σ| = q ≥ 2 since
q = 1 gives us a trivial case. Letw = . . . w−1w0w1 . . . be a
bi-infinite sequence overΣ. A word (finite-length sequence)
u ∈ Σn (for some integern) is said to be asubwordof w,
denoted byu ≺ w, if u = wiwi+1 . . . wi+n−1 for some integer
i. If we want to emphasize the fact thatu is a subword of
w starting at the indexi, (i.e., u = wiwi+1 . . . wi+n−1), we
write u ≺i w. By convention, we assume that the empty word
ǫ ∈ Σ0 is a subword of any bi-infinite sequence. Also, we
defineσ to be the shift map, that is,σ(w) = . . . w∗

−1w
∗
0w

∗
1 . . .

is the bi-infinite sequence satisfyingw∗
i = wi+1 for all i.

Given a labeled directed graphG, where labels come from
Σ, let S(G) be the set of bi-infinite sequences which are
generated by reading off labels along bi-infinite paths inG.
A sofic shift S is a set of bi-infinite sequences such that
S = S(G) for some labeled directed graphG. In this case,
we say thatS is presented byG, or thatG is apresentationof
S. It is well known that every sofic shift has adeterministic
presentation,i.e., a presentation such that outgoing edges
from the same state (vertex) are labeled distinctly. For a
sofic shift S, Bn(S) denotes the set of wordsu ∈ Σn

satisfyingu ≺ w for some bi-infinite sequencew in S, and
B(S) = ∪n≥0Bn(S). A sofic shiftS is irreducible if there is
an irreducible (i.e., strongly connected) presentation ofS, or
equivalently, for every ordered pair of wordsu andv in B(S),
there exists a wordz ∈ B(S) such thatuzv ∈ B(S).

A shift of finite type (SFT) YF ′ , with a finite set of
forbidden words (a forbidden set)F ′, is the set of all bi-
infinite sequencesw = · · ·w−1w0w1 · · · overΣ such thatw
contains no wordf ′ ∈ F ′ as a subword. That is, the finite
number of wordsf ′ in F ′ are not inB(YF ′). A periodic-
finite-type shift, which we abbreviate asPFT, is characterized
by an ordered list of finite setsF = (F (0),F (1), . . . ,F (T−1))

http://arxiv.org/abs/0801.1060v2


and a period T . The PFTX{F ,T} is defined as the set of
all bi-infinite sequencesw overΣ such that for some integer
r ∈ {0, 1, . . . , T − 1}, the r-shifted sequenceσr(w) of w

satisfiesu ≺i σ
r(w) =⇒ u 6∈ F (i mod T ) for every integer

i. For simplicity, we say that a wordf is in F (symbolically,
f ∈ F ) if f ∈ F (j) for somej. Since the appearance of words
f ∈ F is forbidden in a periodic manner, note thatf can be
in B(X{F ,T}). Also, observe that a PFTX{F ,T} satisfying
F (0) = F (1) = · · · = F (T−1) is simply the SFTYF ′ with
F ′ = F (0). Thus, SFT’s are special cases of PFT’s. We call a
PFT proper when it cannot be represented as an SFT.

Any SFT can be considered to be an SFT in which
every forbidden word has the same length. More precisely,
given an SFTY = YF∗ , find the longest forbidden word
in F∗ and say it has lengthℓ. Set F ′ = {f ′ ∈ Σℓ :
f ′ has somef∗ ∈ F∗ as a prefix}. Then, YF∗ = YF ′ , and
each word inF ′ has the same length,ℓ. Furthermore, we can
also assume thatBℓ(Y) = Σℓ \ F ′ since if not (that is, if
Bℓ(Y) ( Σℓ \ F ′), every word in(Σℓ \ F ′) \ Bℓ(Y) can be
added toF ′, without affectingY in any way.

Correspondingly, every PFTX has a representation of the
form X{F ,T} such thatF (j) = ∅ for 1 ≤ j ≤ T −1, and every
word inF (0) has the same length. An arbitrary representation
X{F ,T} can be converted to one in the above form as follows.
If f ∈ F (j) for some1 ≤ j ≤ T − 1, list out all words
with length j + |f | whose suffix isf , add them toF (0), and
deletef from F (j). Continue this process untilF (1) = · · · =
F (T−1) = ∅. Then, apply the method described above for
SFT’s to make every word inF (0) have the same length.

It is known that PFT’s belong to the class of sofic shifts.

Theorem II.1 (Moision and Siegel, [3]) All periodic-finite-
type shiftsX are sofic shifts. That is, for any PFTX , there is a
presentationG of X .

Moision and Siegel proved the theorem by giving an algo-
rithm that, given a PFTX , generates a presentation,GX , of
X . We call the presentationGX the MS presentationof X .
The MS algorithm, given a PFTX as input, runs as follows.

1) RepresentX in the formX{F ,T}, such that every word
in F has the same lengthℓ and belongs toF (0).

2) Prepare T copies of Σℓ and name them
V(0),V(1), . . . ,V(T−1).

3) Consider the words inV(0),V(1), . . . ,V(T−1) as states.
Draw an edge labeleda ∈ Σ from u = u1u2 · · ·uℓ ∈
V(j) to v = v1v2 · · · vℓ ∈ V(j+1 mod T ) if and only if
u2 · · ·uℓ = v1 · · · vℓ−1 andvℓ = a.

4) Remove states corresponding to words inF (0) from
V(0), together with their incoming and outgoing edges.
Call this labeled directed graphG′.

5) If there is a state inG′ having only incoming edges or
only outgoing edges, remove the state fromG′ as well
as its incoming or outgoing edges. Continue this process
until we cannot find such a state. The resulting graphGX

is a presentation ofX .

Remark II.2 It is evident that the MS presentation of a PFT is
always deterministic. Also, for a pathα in GX with length|α| ≥
ℓ, α terminates at some state that is a copy ofu = u1u2 . . . uℓ
iff the length-ℓ suffix of the word generated byα is equal tou.

III. I NFLUENCE OF THEPERIOD T ON A PFT

From this point on, whenever we consider an SFTYF ′ in
this paper, we will implicitly assume that every forbidden word
in F ′ has the same lengthℓ, and thatBℓ(Y) = Σℓ \F ′. As we
observed in the previous section, there is no loss of generality
in doing so. Given an SFTYF ′ , consider the PFTX = X{F ,T}

in which

F = (F (0),F (1), . . . ,F (T−1)) = (F ′, ∅, . . . , ∅).

While YF ′ ⊆ X{F ,T}, equality does not hold in general. Note
that it is only the influence of the periodT that causes the
shiftsX = X{F ,T} andY = YF ′ to differ. So, a comparative
study of X and Y is a useful means of understanding how
the periodT determines the properties of the PFTX . In this
section, we present a sampling of results that illustrate how
properties of the SFTY can affect those of the PFTX .

The following result, which shows that the irreducibility of
Y has a significant effect on the irreducibility ofX , may be
considered typical of the comparative study proposed above.

Theorem III.1 Suppose thatY = YF ′ is an irreducible SFT.
LetX = X{F ,T} be the PFT satisfying

F = (F (0),F (1), . . . ,F (T−1)) = (F ′, ∅, . . . , ∅).

If there exists a periodic bi-infinite sequencey in Y with a
periodp satisfyingp ≡ 1 (mod T ), then the MS presentation,
GX , of X is irreducible as a graph. That is,X is irreducible.

Proof: Throughout this proof, for a pathη in a graph, let
s(η) and t(η) be the starting state and the terminal state,
respectively, ofη in the graph. Also, for a statev = v1v2 . . . vℓ
in GX , v ∈ V(j) is denoted byv(j) for 0 ≤ j ≤ T − 1.

Let G′ be the graph defined in Step 4 of the MS algorithm.
Consider the subgraphH of G′ that is induced by the states in
Σℓ\F ′. SinceΣℓ\F ′ = Bℓ(Y), all states inH have incoming
edges and outgoing edges. Hence,H is a subgraph ofGX .

Key points of the proof are the following.
Claim 1: H is a presentation ofY.
Claim 2: H is irreducible as a graph if there exists a periodic
bi-infinite sequencey in Y with a periodp satisfyingp ≡ 1
(mod T ).

Once these claims are proved, it is straightforward to check
that the MS presentationGX of X is irreducible. Note that
the graphG′ is obtained fromH by adding words inF (0)

to V(1),V(2), . . . ,V(T−1) and corresponding incoming and
outgoing edges. Observe that (by Step 5 of the MS algorithm)
a word f ′ ∈ F (0) is a state inGX if and only if there exist
pathsρ1, ρ2 in G′ satisfyings(ρ1) = f ′, t(ρ1) ∈ Σℓ \ F ′ and
s(ρ2) ∈ Σℓ \ F ′, t(ρ2) = f ′. SinceH is irreducible,GX is
irreducible as well.

Proof of Claim 1: We need to show thatS(H) ⊆ Y and



Y ⊆ S(H). It is clear thatS(H) ⊆ Y since, by Remark II.2,
there is no path inH which generates words inF ′.

Conversely, take an arbitrary bi-infinite sequencex =
. . . x−1x0x1 . . . ∈ Y. Since f ′ 6≺ x for every forbidden
word f ′ ∈ F ′, we see that for any integeri, the states
corresponding toxi−ℓ+1xi−ℓ+2 . . . xi are in H. Therefore,
there exists an edge labeledxi+1 from xi−ℓ+1xi−ℓ+2 . . . xi ∈
V(j) to xi−ℓ+2 . . . xixi+1 ∈ V(j+1 mod T ) for all integersi
and0 ≤ j ≤ T − 1. Hence,x ∈ S(H), that is,Y ⊆ S(H).

Proof of Claim 2: A periodic bi-infinite sequencey ∈ Y with
periodp ≡ 1 (mod T ) can be written asy = (y1y2 . . . yn)

∞,
for somey1y2 . . . yn ∈ Σn, wheren is some multiple ofp
satisfyingn ≡ 1 (mod T ) andn ≥ ℓ.

As y ∈ Y, yn−ℓ+1 . . . yny1y2 . . . yn ∈ B(Y). Thus, for
every i ∈ {0, 1, . . . , T − 1}, there exists a pathα in H satis-
fying s(α) = z(i) = yn−ℓ+1 . . . yn and generatingy1y2 . . . yn.
Observe thatt(α) is also z(i

′) = yn−ℓ+1 . . . yn for some
i′ ∈ {0, 1, . . . , T − 1}. However, since|y1y2 . . . yn| = n ≡ 1
(mod T ), we havei′ = i + 1 mod T . This automatically
implies that for the wordz = yn−ℓ+1 . . . yn in B(Y), there is
a pathβjk in H such thats(βjk) = z(j) and t(βjk) = z(k)

for any ordered pair(j, k), where0 ≤ j, k ≤ T − 1.
Now take an arbitrary pair of statesu(r) and v(s) in H.

SinceY is irreducible, there exist wordsw′ andw∗ in B(Y)
so thatuw′z andzw∗v are inB(Y). Thus, there exists a path
γ generatingw′z such thats(γ) = u(r) and t(γ) = z(j) for
some0 ≤ j ≤ T − 1, and a pathδ generatingw∗v such that
s(δ) = z(k) for some0 ≤ k ≤ T −1 andt(δ) = v(s). As there
is a pathβjk from z(j) to z(k) from the argument above, we
have a pathγβjkδ starting fromu(r) and terminating atv(s).
Hence, the presentationH is irreducible as a graph.

From Theorem III.1, we can obtain the following corollary.

Corollary III.2 Let Y = YF ′ be an irreducible SFT such that
|F ′| < |Σ|. Then for allT ≥ 1, the PFTX = X{F ,T} with

F = (F (0),F (1), . . . ,F (T−1)) = (F ′, ∅, . . . , ∅)

is irreducible.

Proof: Since |F ′| < |Σ|, there is a symbola ∈ Σ which is
not used as the first symbol of any word inF ′. Hence, the
bi-infinite sequencea = a∞ is in Y. As a has period1, we
have from Theorem III.1 thatX is irreducible.

The proof of Theorem III.1 shows that the SFTY = YF ′

has a presentationH that is a subgraph of the MS presentation
GX of X = X{F ,T}, whereF = (F ′, ∅, . . . , ∅). This fact
may allow us to compare some of the invariants associated
with the two shiftsY and X , for example, their entropies
and their zeta functions (see [2, Chapters 4 and 6]). The
entropy (or the Shannon capacity)h(S) of a sofic shiftS
can be computed from a deterministic presentationG of S as
follows: h(S) = log2 λ, whereλ is the largest eigenvalue of
the adjacency matrixAG of G. Equivalently,λ is the largest
root of the characteristic polynomialχAG

(t) = det(tI −AG)
of AG (see,e.g., [2, Chapter 4]).

Returning to the shiftsX and Y as above, sinceH is a
subgraph ofGX , it may be possible to express the characteristic
polynomial ofAGX

in terms of the characteristic polynomial
of AH. This would allow us to compare the entropies ofX
andY. However, this seems to be hard to do in general. We
have a partial result in the special case whenY = YF ′ with
|F ′| = 1, andX = X{F ,2}, as we describe next.

Recall that|Σ| = q. Now suppose thatY = YF ′ is an SFT
with the setF ′ consisting of a single forbidden wordf ′, and
X = X{F ,2} is the PFT with period 2 andF = (F (0),F (1)) =
({f ′}, ∅). Also, let AGX

be the adjacency matrix of the MS
presentationGX of X , and letAH be that of the subgraphH
of GX induced by the states inΣℓ \ {f ′}. Observe that the
matrix AGX

is a (2qℓ − 1) × (2qℓ − 1) 0-1 matrix. Without
loss of generality, forAGX

, we can assume the following.
• The first qℓ − 1 rows and columns correspond to states

in V(0), and the lastqℓ rows and columns correspond to
those inV(1).

• Assign f ′ ∈ V(1) to the (2qℓ − 1)-th row and column,
and arrange the first row so that the(1, 2qℓ − 1)-th entry
of AGX

is 1.
• Let u ∈ V(1) be such that the longest proper suffix ofu

is equal to that off ′. Assign thisu to theqℓ-th row and
column so that theqℓ-th row and the(2qℓ − 1)-th row
are the same.

For a matrixM , setM (i,j) to be the submatrix ofM obtained
by deleting itsi-th row andj-th column. Then, observe that
A

(2qℓ−1,2qℓ−1)
GX

= AH. In this case, by applying elementary
row operations to the matrixN = tI −AGX

, we have

χAGX
(t) = det(N) =

∣

∣

∣

∣

B c

d t

∣

∣

∣

∣

, (1)

whereB is a (2qℓ−2)×(2qℓ−2) matrix satisfyingdet(B) =
χAH

(t), c is the(2qℓ−2)×1 column vector[−1 0 . . . 0]T , and
d ∈ {−1, 0}2q

ℓ−2. Using the form given in(1) for det(N),
we can derive the following theorem. The complete proof will
be published in the full version of this paper.

Theorem III.3 Let Y = YF ′ andX = X{F ,2} be the SFT
and PFT described above, respectively. Then, the characteristic
polynomialχAGX

(t) of the adjacency matrixAGX
is given by

χAGX
(t) = t(χAH

(t) + (−1)q
ℓ

det(B(1,qℓ))).

IV. PERIODS IN PFT’S

The periodT involved in the description of a PFT is not
the only notion of “period” that can be associated with the
shift. For any shiftX , we can always define itssequential
period, T (X )

seq , to be the smallest period of any periodic bi-
infinite sequence inX . Furthermore, ifX is an irreducible
sofic shift, we can define a “graphical period” for it as
follows. Let G be a presentation ofX with state setV(G) =
{V1, . . . , Vr}. For eachVi ∈ V(G), define per(Vi) to be
the greatest common divisor (gcd) of the lengths of paths
(cycles) in G that begin and end atVi, and further define



per(G) = gcd(per(V1), . . . , per(Vr)). It is well known that
whenG is irreducible, per(Vi) = per(Vj) for each pair of states
Vi, Vj ∈ V(G), and hence per(G) = per(V ) for anyV ∈ V(G).
The graphical period, T (X )

graph, of an irreducible sofic shiftX
is defined to be the least per(G) of any irreducible presentation
G of X .

Given a PFTX , define itsdescriptive period, T (X )
desc, to be

the smallest integer among allT ∗ such thatX = X{F∗,T∗}

for someF∗. In this section, we determine what influence, if
any, the descriptive period of a PFT has on its sequential and
graphical periods.

Let X = X{F ,T} be an irreducible PFT, and letG be an
irreducible presentation ofX . Proposition 1 of [3] says that if
X is proper, thengcd(per(G), T ) 6= 1. Using that proposition,
we can obtain the following result, which shows that a proper
PFTX can haveT (X )

desc arbitrarily larger thanT (X )
seq .

Proposition IV.1 Suppose thatY = YF ′ is an irreducible SFT,
such that the bi-infinite sequencea∞ ∈ Y for somea ∈ Σ. Let
X = X{F ,T} be the PFT satisfying

F = (F (0),F (1), . . . ,F (T−1)) = (F ′, ∅, . . . , ∅).

Then,a∞ ∈ X , soT (X )
seq = 1. Furthermore, ifX is a proper

PFT andT is prime, we haveT (X )
desc = T .

Proof: SinceY ⊆ X , it is clear thata∞ ∈ X , and hence,
T

(X )
seq = 1. Now, let X = X{F ,T} be a proper PFT withT

prime. First observe that the MS presentationGX of X is
irreducible since the bi-infinite sequencea = a∞ is in Y and
a has period 1. Also, note that per(GX ) must bekT for some
k ≥ 1 from the construction ofGX . However, if we consider
the period of the statesaℓ in GX , it is T . Thus, per(GX ) = T
by the irreducibility ofGX . SinceX is proper, we have from
Proposition 1 of [3] thatgcd(per(GX ), T ∗) 6= 1 for all T ∗

satisfyingX = X{F∗,T∗}. As T is prime,gcd(per(GX ), T ′) =
gcd(T, T ′) = 1 for all T ′ < T . Therefore,T is the descriptive
period ofX .

For example, consider an SFTY = YF ′ with a forbidden
setF ′ = {b2} for someb ∈ Σ. Then,Y is irreducible, and
a∞ ∈ Y for any a ∈ Σ \ {b}. In this case, for a PFTX =
X{F ,T} with T prime, such thatF = ({b2}, ∅, . . . , ∅), it may

be verified thatX is proper, and hence,T = T
(X )
desc.

Conversely,T (X )
seq can be arbitrarily larger thanT (X )

desc for
proper PFT’sX . We present such an example next.

Set Σ = {0, 1}. We define a sliding-block mapψ as
follows: for a non-empty wordu = u1u2 . . . un ∈ Σn, (resp.
a bi-infinite sequencew = . . . w−1w0w1 . . . over Σ), define
ψ(u) = u∗1u

∗
2 . . . u

∗
n−1, whereu∗i = ui + ui+1 (mod 2) for

1 ≤ i ≤ n − 1 (resp. ψ(w) = . . . w∗
−1w

∗
0w

∗
1 . . ., where

w∗
i = wi+wi+1 (mod 2) for eachi). By convention,ψ(u) = ǫ

when u ∈ Σ1. For k ≥ 1, consider the PFTXk = X{Fk,2}

with Fk = (F
(0)
k ,F

(1)
k ), defined as follows.

• F
(1)
k = ∅ for all k ≥ 1.

• F
(0)
1 = {0}, and fork ≥ 2, we setF (0)

k = ψ−1(F
(0)
k−1).

That is,F (0)
k is the inverse image ofF (0)

k−1 underψ.

It is easy to see that for eachk ≥ 1, every wordf ∈
F

(0)
k has length|f | = k, and in particular, we have0k ∈

F
(0)
k . Moreover, asψ is a two-to-one mapping, we have

|F
(0)
k | = 2k−1. The following proposition contains another

useful observation concerningψ. We omit the straightforward
proof by induction.

Proposition IV.2 For a binary wordu = u1u2 . . . ur of length
r > m, let u∗1u

∗
2 . . . u

∗
r−m = ψm(u). If m = 2j for some

j ≥ 0, thenu∗i = ui + ui+2j (mod 2) for 1 ≤ i ≤ r − m.
Furthermore, ifm = 2j − 1 for somej ≥ 0, thenu∗i = ui +
ui+1 + · · ·+ ui+2j−1 (mod 2) for 1 ≤ i ≤ r −m.

The corollary below simply follows from the fact that for
any f ∈ F

(0)
k , we must haveψk−1(f) = 0.

Corollary IV.3 If z ∈ Σ2j (for somej ≥ 0) has an odd
number of 1’s, thenz /∈ F

(0)
2j .

We next record some important facts about the PFT’sXk.

Proposition IV.4 For k ≥ 1, the following statements hold:
(a)Xk+1 = ψ−1(Xk); (b) Xk is irreducible iff1 ≤ k ≤ 6; and
(c)Xk is a proper PFT.
Proof: Statement (a) follows straightforwardly from the defi-
nition of the PFT’sXk.

For (b), first note thatXk is irreducible for1 ≤ k ≤ 6
since its MS presentation may be verified to be irreducible asa
graph. Whenk = 7, it can be shown thatXk is not irreducible,
which implies thatXk is not irreducible whenk ≥ 7 by (a).

To prove (c), suppose to the contrary thatXk is not a proper
PFT for somek ≥ 1. Then,Xk = Y for some SFTY = YF ′ ,
where every forbidden word inF ′ has the same length,ℓ.
Pick a j ≥ 0 such that2j ≥ k, and setr = 2j − k. By (a)
above,X2j = ψ−r(Xk) = ψ−r(Y). Note thatψ−r(Y) is also
an SFT, with forbidden setψ−r(F ′). All words in ψ−r(F ′)
have lengthℓ′ = ℓ+ r.

For the PFTX2j , observe that the bi-infinite sequencew =
(02

j−11)∞02
j

(102
j−1)∞ is in X2j asw contains a word in

F
(0)
2j (i.e., 02

j

) only once, by Corollary IV.3. Therefore, every
subword ofw is in B(X2j) = B(ψ−r(Y)).

Now, consider the bi-infinite sequence

w′ = (02
j−11)∞02

j

(102
j−1)2ℓ

′+1102
j

(102
j−1)∞.

Note that every length-ℓ′ subword ofw′ is also a subword
of w, and hence, is inB(ψ−r(Y)). This implies thatw′ ∈
ψ−r(Y). For the two distinct indicesm,n (m < n) such that
02

j

≺m w′ and02
j

≺n w′, we haven−m = 2j(2ℓ′+2)+1,
so thatm 6≡ n (mod 2). But, since02

j

∈ F
(0)
2j , this implies

thatw′ 6∈ X2j , which is a contradiction.

Statement (c) of Proposition IV.4 implies thatT (Xk)
desc = 2

for all k ≥ 1. In contrast, the following theorem shows that
T

(Xk)
seq grows arbitrarily large ask → ∞.

Theorem IV.5 For anyj ≥ 0 and2j + 1 ≤ k ≤ 2j+1, the
periods of periodic sequences inXk must be multiples of2j+1.



To prove Theorem IV.5, we need the next three lemmas.
We omit the simple proof of the first lemma.

Lemma IV.6 If x ∈ {0, 1}Z is a periodic sequence, then so is
ψ(x). Furthermore, any period ofx is also a period ofψ(x).

Lemma IV.7 For any j ≥ 0, F
(0)
2j+1 = {f∗f∗

1 : f∗ =

f∗
1 f

∗
2 . . . f

∗
2j ∈ Σ2j}.

Proof: Recall that for a wordf ∈ F
(0)
2j+1, ψ2j (f) = 0. Since

Proposition IV.2 shows thatψ2j (f) = f1 + f2j+1 (mod 2),
we havef1 = f2j+1. Noting that|F (0)

2j+1| = 22
j

= |Σ2j |, we

thus haveF (0)
2j+1 = {f∗f∗

1 : f∗ = f∗
1 f

∗
2 . . . f

∗
2j ∈ Σ2j}.

Lemma IV.8 For j ≥ 0, there is no periodic sequencex in
X2j+1 whose period is(2t+ 1)2j for somet ≥ 0.
Proof: We deal with j = 0 first. Note that F (0)

2 =
{00, 11}. So, if X2 has a periodic bi-infinite sequence
w = (w1w2 . . . wm)∞ with an odd periodm, then 00 6≺
w1w2 . . . wm, 11 6≺ w1w2 . . . wm, andw1 6= wm. But there is
no wordw1w2 . . . wm ∈ Σm that satisfies these conditions.

Now, considerj ≥ 1. Assume, to the contrary, that there
exists a periodic sequencex = . . . x−1x0x1 . . . ∈ X2j+1

whose period is(2t+ 1)2j for somet ≥ 0. Then,x is of the
form (x0x1 . . . x(2t+1)2j−1)

∞. Without loss of generality, we
may assume that for every even integeri, u ≺i x impliesu 6∈
F

(0)
2j+1. Then, for each integerm, xm2jxm2j+1 . . . x(m+1)2j /∈

F
(0)
2j+1. So, by Lemma IV.7, we havexm2j 6= x(m+1)2j .

This implies thatx0 = x(2t)2j as |Σ| = 2. But then,

x(2t)2j . . . x(2t+1)2j−1x0 ∈ F
(0)
2j+1, which is a contradiction.

We are now in a position to prove Theorem IV.5.

Proof of Theorem IV.5: To prove the theorem, it is enough
to show that forj ≥ 0, the periods of periodic sequences
in X2j+1 must be multiples of2j+1. It then follows, by
Lemma IV.6, that the same also applies to periodic sequences
in Xk, for 2j + 1 < k ≤ 2j+1.

When j = 0, the required statement clearly holds by
Lemma IV.8. So, suppose that the statement is true for some
j ≥ 0, so that periodic sequences inX2j+1 have only multiples
of 2j+1 as periods. Therefore, by Lemma IV.6, periodic
sequences inX2j+1+1 also can only have multiples of2j+1

as periods. However, by Lemma IV.8, no periodic sequence
in X2j+1+1 can have an odd multiple of2j+1 as a period.
Hence, all periodic sequences inX2j+1+1 have periods that
are multiples of2j+2. The theorem follows by induction.

Theorem IV.5 shows that for2j + 1 ≤ k ≤ 2j+1, we have
T

(Xk)
seq ≥ 2j+1. In fact, this holds with equality.

Corollary IV.9 T
(X1)
seq = 1, and fork ≥ 2, if j ≥ 0 is such that

2j + 1 ≤ k ≤ 2j+1, thenT (Xk)
seq = 2j+1.

Proof: When k = 1, T (X1)
seq = 1 as 1∞ ∈ X1. So letk ≥ 2,

and let j ≥ 0 be such that2j + 1 ≤ k ≤ 2j+1. We only
need to show thatT (Xk)

seq ≤ 2j+1. The bi-infinite sequence
w = (02

j+1−11)∞ is in X2j+1 since, by Corollary IV.3,w

contains no word inF (0)
2j+1 as a subword. Sincew has period

2j+1, by Lemma IV.6,w′ = ψ2j+1−k(w) ∈ Xk has period
2j+1 as well. Thus,T (Xk)

seq ≤ 2j+1.
Theorem IV.5 also implies the following corollary.

Corollary IV.10 T
(Xk)
graph ≥ T

(Xk)
seq holds when1 ≤ k ≤ 6.

Proof: SinceX1 is proper,T (X1)
graph ≥ 2 by Proposition 1 in

[3]. Thus,T (X1)
graph > T

(X1)
seq = 1.

So, let k ≥ 2 and suppose2j + 1 ≤ k ≤ 2j+1 for some
j ≥ 0. By Corollary IV.9, we haveT (Xk)

seq = 2j+1. On the
other hand, for any irreducible presentationG of Xk, we have
per(G) ≥ 2j+1. Indeed, for each vertexV in G, we have
per(V ) being a multiple of2j+1; otherwise we would have
a contradiction of Theorem IV.5. Hence,T (Xk)

graph ≥ 2j+1 =

T
(Xk)
seq as required.

Corollary IV.9 shows thatT (Xk)
seq grows arbitrarily large as

k → ∞, while T
(Xk)
desc = 2 for all k. It also follows from

Corollary IV.10 thatT (Xk)
graph is strictly larger thanT (Xk)

desc when
3 ≤ k ≤ 6. Equality can hold in Corollary IV.10 — for
example, whenk = 2. Indeed,X2 is proper, and its MS
presentation,GX2

, is irreducible, with per(GX2
) = 2, so that

T
(X2)
graph = 2. From Corollary IV.9, we also haveT (X2)

seq = 2.

Thus,X2 is an example of a proper PFTX in which T (X )
seq =

T
(X )
graph = T

(X )
desc holds.

Thus, to summarize, there appears to be no relationship
between the descriptive period of a PFT and its sequential
period, as we have examples where each of these can be
arbitrarily larger than the other. We have also found that, for a
PFTX , T (X )

graph can be larger thanT (X )
desc. However, we believe

that the reverse cannot hold; in fact, we conjecture thatT
(X )
desc

dividesT (X )
graph for any PFTX .

Finally, we note that we also have examples of proper PFT’s
X whereT (X )

seq is arbitrarily larger thanT (X )
graph. We omit the

proof due to space constraints.

Theorem IV.11 SetΣ = {0, 1} andk ≥ 2, and letP denote
the set of all periodic bi-infinite sequences overΣ with period
k!. Consider the PFTX = X{F ,2} with F = (F (0), ∅), such
thatF (0) = {w ∈ Σ2k! : ∃x ∈ P such thatw ≺ x}. The
following statements hold: (a)X is proper; (b)X is irreducible;
and (c)T (X )

seq ≥ k + 1 andT (X )
graph = 2.
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