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Abstract— A coded modulation system is considered in which
nonbinary coded symbols are mapped directly to nonbinary
modulation signals. It is proved that if the modulator-channel
combination satisfies a particular symmetry condition, thecode-
word error rate performance is independent of the transmitted
codeword. It is shown that this result holds for both linear-
programming decoders and sum-product decoders. In particular,
this provides a natural modulation mapping for nonbinary codes
mapped to PSK constellations for transmission over memoryless
channels such as AWGN channels or flat fading channels with
AWGN.

I. I NTRODUCTION

Low-density parity check (LDPC) codes [1], as well as
their nonbinary counterparts [2] have been shown to ex-
hibit excellent error-correcting performance when decoded by
the traditionalsum-product(SP) decoding algorithm. In [3],
Feldman et al. introduced the idea oflinear-programming
(LP) decoding of LDPC codes. This was later generalized to
nonbinary codes in [4].

For classical coded modulation systems,geometric unifor-
mity [5] was identified as a symmetry condition which, if satis-
fied, guarantees codeword error rate performance independent
of the transmitted codeword, where maximum-likelihood (ML)
decoding is assumed. Some recent coded modulation schemes
with SP decoding used this symmetry condition for design
[6]. An analagous symmetry condition was defined in [7] for
binary codes overGF (2) with SP decoding; this was extended
to nonbinary codes overGF (q) by invoking the concept of
cosetLDPC codes [2].

In this work it is shown that for the cases of LP and SP
decoding of linear codes over rings, there exists a symmetry
condition under which the codeword error rate performance
is independent of the transmitted codeword (for the case of
LP decoding this theorem generalizes [3, Theorem 6], and
is stated in [4]). This provides a condition somewhat akin
to geometric uniformity for state-of-the-art nonbinary coded
modulation systems.

II. GENERAL FRAMEWORK

We consider codes over finite rings (this includes codes
over finite fields, but may be more general). Denote byR

a ring with q elements, by0 its additive identity, and let
R

− = R\{0}. Let C = {c ∈ R
n : cHT = 0} be a linear

code defined with respect to them×n parity-check matrixH
overR. Denote the set of column indices and the set of row
indices ofH by I = {1, 2, · · · , n} andJ = {1, 2, · · · ,m},
respectively. Forj ∈ J , let H(r)

j denote thej-th row of

H, and for i ∈ I, let H(c)
i denote thei-th column. Denote

by supp(c) the support of a vectorc. For eachi ∈ I, let
Ji = supp(H(c)

i ) and for eachj ∈ J , let Ij = supp(H(r)
j ).

Also let Aj,i = Ij\{i} andDj,i = Ji\{j}.
Given anyc ∈ R

n, we say that parity checkj ∈ J is
satisfiedby c if and only if

∑

i∈Ij

ci · Hj,i = 0 (1)

For j ∈ J , define the single parity check codeCj by

Cj = {(bi)i∈Ij
:
∑

i∈Ij

bi · Hj,i = 0}

Note that while the symbols of the codewords inC are indexed
by I, the symbols of the codewords inCj are indexed byIj .
We define the projection mapping for parity checkj ∈ J by

xj(c) = (ci)i∈Ij

Then, given anyc ∈ R
n, we may say that parity checkj ∈ J

is satisfied byc if and only if

xj(c) ∈ Cj (2)

since (1) and (2) are equivalent. Also, we say that the vector
c is a codeword ofC, writing c ∈ C, if and only if all parity
checksj ∈ J are satisfied byc.

Assume that the codeword̄c = (c̄1, c̄2, · · · , c̄n) ∈ C has
been transmitted over aq-ary input memoryless channel, and a
corrupted wordy = (y1, y2, · · · , yn) ∈ Σn has been received.
HereΣ denotes the set of channel output symbols; we assume
that this set either has finite cardinality, or is equal toRl

or Cl for some integerl ≥ 1. In practice, this channel may
represent the combination of modulator and physical channel.
It is assumed hereafter that all information words are equally
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probable, and so all codewords are transmitted with equal
probability.

Next we set up some definitions and notation. We define
the mapping

ξ : R 7→ {0, 1}q−1 ⊂ R
q−1

by
ξ(α) = x = (x(γ))γ∈R−

such that, for eachγ ∈ R
−,

x(γ) =

{

1 if γ = α

0 otherwise.

We note that the mappingξ is one-to-one, and its image is the
set of binary vectors of lengthq − 1 with Hamming weight 0
or 1. Building on this, we also define

Ξ : R
n 7→ {0, 1}(q−1)n ⊂ R

(q−1)n

according to

Ξ(c) = (ξ(c1) | ξ(c2) | · · · | ξ(cn))
We note thatΞ is also one-to-one.

Now, for vectorsf ∈ R
(q−1)n, we adopt the notation

f = (f1 | f2 | · · · | fn)

where
∀i ∈ I, f i = (f

(α)
i )α∈R−

In particular, we defineλ ∈ R(q−1)n by setting, for eachi ∈ I,
α ∈ R

−,

λ
(α)
i = log

(

p(yi|0)
p(yi|α)

)

and p(yi|ci) denotes the channel output probability (density)
conditioned on the channel input.

Also, we may use this notation to write the inverse ofΞ as

Ξ
−1(f) = (ξ−1(f1), ξ

−1(f2), · · · , ξ−1(fn))

III. D ECODING ALGORITHMS

A. Linear-Programming Decoder

The linear-programming (LP) decoder of [4] operates as
follows. The linear program described here is equivalent to
that given in [4]; however, some changes of notation have
been made in order to facilitate the proof to come in section
IV. The variables of the LP are

f
(α)
i for each i ∈ I, α ∈ R

−

and
wj,b for each j ∈ J , b ∈ Cj

and the constraints are

∀j ∈ J , ∀b ∈ Cj , wj,b ≥ 0 (3)

and
∀j ∈ J ,

∑

b∈Cj

wj,b = 1 (4)

and

∀j ∈ J , ∀i ∈ Ij , ∀α ∈ R
−,

f
(α)
i =

∑

b∈Cj , bi=α wj,b (5)

The set of points(f ,w) which satisfy (3)-(5) form a polytope
denoted byQ. The cost function to be minimized over this
polytope isF (f ) = λfT , and the minimizer is denoted bŷf .
If f̂ ∈ {0, 1}(q−1)n, the output is the codewordΞ−1(f̂) (it is
proved in [4] that this must be the maximum-likelihood code-
word). Otherwise, the decoder outputs a ‘decoding failure’.

B. Sum-Product Decoder

The sum-product (SP) decoder operates as follows. Note
that in practice, computations are usually carried out in the
log-domain, but this does not affect our analysis.

Initializing

mi(α) = p(yi|α) ∀i ∈ I, ∀α ∈ R (6)

and
m

D,0
j,i (α) = 1 ∀j ∈ J , ∀i ∈ Ij , ∀α ∈ R (7)

N iterations of fully parallel SP decoding may be represented
by the following recursive formulas. For eachk = 1, 2, · · ·N ,

m
U,k
j,i (α) = mi(α) ·

∏

l∈Dj,i

m
D,k−1
l,i (α) (8)

for eachj ∈ J , i ∈ Ij , α ∈ R, and

m
D,k
j,i (α) =

∑

P

l∈Aj,i
dlHj,l=−αHj,i







∏

l∈Aj,i

m
U,k
j,l (dl)







(9)

for eachj ∈ J , i ∈ Ij , α ∈ R. Finally, decisions are made
via

gi(α) = mi(α) ·
∏

j∈Ji

m
D,N
j,i (α) ∀i ∈ I, ∀α ∈ R (10)

and
hi = argmax

α∈R

{gi(α)} ∀i ∈ I (11)

The output of the decoder is thenh = (h1, h2, · · · , hn).

IV. M AIN RESULT

Symmetry Condition.
For eachβ ∈ R, there exists a bijection

τβ : Σ −→ Σ

such that the channel output probability (density) conditioned
on the channel input satisfies

p(y|α) = p(τβ(y)|α− β) (12)

for all y ∈ Σ, α ∈ R. WhenΣ is equal toRl or Cl for l ≥ 1,
the mappingτβ is assumed to be isometric with respect to
Euclidean distance inΣ, for everyβ ∈ R.

In the following, codeword error is defined as the event
where the decoder output is not equal to the transmitted
codeword.
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Theorem 4.1:Under the stated symmetry condition, the
probability of codeword error is independent of the transmitted
codeword

(a) under linear-programming decoding
(b) under sum-product decoding.

Proof: We shall prove the theorem for the case whereΣ
has infinite cardinality; the case of discreteΣ may be handled
similarly. Fix some codewordc ∈ C, c 6= 0. We wish to prove
that

Pr(Err | c) = Pr(Err | 0)
where Pr(Err | c) denotes the probability of codeword error
given that the codewordc was transmitted.

Now
Pr(Err | c) = Pr(y ∈ B(c) | c)

whereB(c) is the set of all receive words which may cause
codeword error, given thatc was transmitted. Also

Pr(Err | 0) = Pr(y ∈ B(0) | 0)
So we write

Pr(Err | c) =
∫

y∈B(c)

p( y | c ) dy (13)

and
Pr(Err | 0) =

∫

ỹ∈B(0)

p( ỹ | 0 ) dỹ (14)

Now, settingα = β in the symmetry condition (12) yields

p(y|β) = p(τβ(y)|0) (15)

for any y ∈ Σ, β ∈ R.
We now defineỹ = G(y) as follows. For everyi ∈ I, if

ci = β ∈ R then
ỹi = τβ(yi)

We note thatG is a bijection from the setΣn to itself, and
that if y, z ∈ Σn andci = β ∈ R then

‖yi − zi‖2 = ‖τβ(yi)− τβ(zi)‖2

and so
‖G(y)−G(z)‖2 = ‖y − z‖2

i.e. G is isometric with respect to Euclidean distance inΣn.
We prove that the integral (13) may be transformed to (14)

via the substitutioñy = G(y). First, we have

p( y | c ) =
∏

i∈I

p(yi|ci)

=
∏

β∈R

∏

i∈I,ci=β

p(yi|β)

=
∏

β∈R

∏

i∈I,ci=β

p(τβ(yi)|0)

=
∏

β∈R

∏

i∈I,ci=β

p(ỹi|0)

=
∏

i∈I

p(ỹi|0)

= p( ỹ | 0 )

SinceG is isometric with respect to Euclidean distance inΣn,
it follows that the Jacobian determinant of the transformation
is equal to unity. Therefore, to complete the proof, we need
only show that

y ∈ B(c) if and only if ỹ ∈ B(0)

We prove this separately for the two cases of linear-
programming and sum-product decoding.

(a) Under linear-programming decoding:
Here

B(c) = {y ∈ Σn : ∃(f ,w) ∈ Q,f 6= Ξ(c)

with λfT ≤ λΞ(c)T }
Recall that hereλ is a function ofy via

λ
(α)
i = log

(

p(yi|0)
p(yi|α)

)

(16)

for i ∈ I, α ∈ R
−. Also

B(0) = {ỹ ∈ Σn : ∃(f̃ , w̃) ∈ Q, f̃ 6= Ξ(0)

with λ̃f̃
T ≤ λ̃Ξ(0)T }

Here λ̃ is a function ofỹ via

λ̃
(α)
i = log

(

p(ỹi|0)
p(ỹi|α)

)

(17)

for i ∈ I, α ∈ R
−. We begin by relating the elements ofλ

(defined by (16)) to the elements ofλ̃ (defined by (17)). Let
i ∈ I, α ∈ R

−. Supposeci = β ∈ R. We then have

λ
(α)
i = log

(

p(yi|0)
p(yi|α)

)

= log

(

p(τβ(yi)| − β)

p(τβ(yi)|α− β)

)

= log

(

p(ỹi| − β)

p(ỹi|α− β)

)

This yields

λ
(α)
i =











λ̃
(α)
i if β = 0

−λ̃
(−α)
i if α = β

λ̃
(α−β)
i − λ̃

(−β)
i otherwise.

Next, for any point(f ,w) ∈ Q we define a new point
(f̃ , w̃) as follows. For alli ∈ I, α ∈ R

−, if ci = β ∈ R then

f̃
(α)
i =

{

1−∑

γ∈R− f
(γ)
i if α = −β

f
(α+β)
i otherwise.

(18)

For all j ∈ J , r ∈ Cj we define

w̃j,r = wj,b

where
b = r + xj(c)

Next we prove that for every(f ,w) ∈ Q, the new point
(f̃ , w̃) lies in Q and thus is a feasible solution for the LP.
Constraints (3) and (4) obviously hold from the definition of
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w̃. To verify (5), we letj ∈ J , i ∈ Ij andα ∈ R
−. We also

let ci = β ∈ R. We now check two cases:

• If α = −β,

f̃
(α)
i = 1−

∑

γ∈R−

f
(γ)
i

=
∑

b∈Cj

wj,b −
∑

γ∈R−

∑

b∈Cj , bi=γ

wj,b

=
∑

b∈Cj, bi=0

wj,b

=
∑

r∈Cj , ri=α

w̃j,r

• If α 6= −β,

f̃
(α)
i = f

(α+β)
i =

∑

b∈Cj , bi=α+β

wj,b

=
∑

r∈Cj , ri=α

w̃j,r

Therefore(f̃ , w̃) ∈ Q, i.e. (f̃ , w̃) is a feasible solution for
the LP. We write(f̃ , w̃) = L(f ,w). We also note that the
mappingL is a bijection fromQ to itself; this is easily shown
by verifying the inverse

f
(α)
i =

{

1−∑

γ∈R− f̃
(γ)
i if α = β

f̃
(α−β)
i otherwise

(19)

for all i ∈ I, α ∈ R
−, and

wj,b = w̃j,r

where

r = b− xj(c)

for all j ∈ J , b ∈ Cj .
We now prove that for every(f ,w) ∈ Q, (f̃ , w̃) =

L(f ,w) satisfies

λfT − λΞ(c)T = λ̃f̃
T − λ̃Ξ(0)T (20)

We achieve this by proving

λif
T
i − λiξ(ci)

T = λ̃if̃
T

i − λ̃iξ(0)
T (21)

for every i ∈ I. We may then obtain (20) by summing (21)
over i ∈ I. Let ci = β ∈ R. We consider two cases:

• If β = 0, (21) becomes

λif
T
i = λ̃if̃

T

i

which holds since in this casẽλ(α)
i = λ

(α)
i and f̃

(α)
i =

f
(α)
i for all α ∈ R

−.

• If β 6= 0,

λif
T
i − λiξ(ci)

T =
∑

γ∈R−

λ
(γ)
i f

(γ)
i − λ

(β)
i

=
∑

γ∈R
−

γ 6=β

(

λ̃
(γ−β)
i − λ̃

(−β)
i

)

f
(γ)
i − λ̃

(−β)
i f

(β)
i + λ̃

(−β)
i

=
∑

α∈R
−

α6=−β

λ̃
(α)
i f

(α+β)
i + λ̃

(−β)
i



1−
∑

γ∈R−

f
(γ)
i





=
∑

α∈R−

λ̃
(α)
i f̃

(α)
i

= λ̃if̃
T

i − λ̃iξ(0)
T

where we have made use of the substitutionα = γ− β in the
third line. Therefore (21) holds, proving (20).

Finally, we note that it is easy to show, using (18) and (19),
thatf = Ξ(c) if and only if f̃ = Ξ(0).

Putting together these results, we may make the following
statement. Suppose we are giveny, ỹ ∈ Σn with ỹ = G(y).
Then the point(f ,w) ∈ Q satisfiesf 6= Ξ(c) andλfT ≤
λΞ(c)T if and only if the point (f̃ , w̃) = L(f ,w) ∈ Q
satisfies̃f 6= Ξ(0) andλ̃f̃

T ≤ λ̃Ξ(0)T . This statement, along
with the fact that bothG andL are bijective, proves that

y ∈ B(c) if and only if ỹ ∈ B(0)

This completes the proof of the theorem for the case of LP
decoding.

(b) Under Sum-Product Decoding:
Recall that all decoder variables appearing in equations (6)-

(11) are functions ofy via (6). For any such variablex, let x̃
denote the corresponding variable withỹ as input. Then we
have, for alli ∈ I, α ∈ R, whereci = β,

mi(α) = p(yi|α) = p(τβ(yi)|α − β)

= p(ỹi|α− ci) = m̃i(α− ci)

Next we prove by induction that for allk = 0, 1, · · ·N ,

m
D,k
j,i (α) = m̃

D,k
j,i (α− ci) (22)

for all j ∈ J , i ∈ Ij , α ∈ R. This result holds for the base
casek = 0 because from (7)

m
D,0
j,i (α) = m̃

D,0
j,i (α) = 1 ∀j ∈ J , ∀i ∈ Ij , ∀α ∈ R

Assuming that (22) holds for somek = r− 1 ∈ {0, 1, · · ·N −
1} (and for allj ∈ J , i ∈ Ij , α ∈ R), we obtain by (8)

m
U,r
j,i (α) = mi(α) ·

∏

l∈Dj,i

m
D,r−1
l,i (α)

= m̃i(α− ci) ·
∏

l∈Dj,i

m̃
D,r−1
l,i (α− ci)

= m̃
U,r
j,i (α− ci)
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for all j ∈ J , i ∈ Ij , α ∈ R. So, by (9),

m
D,r
j,i (α) =

∑

P

l∈Aj,i
dlHj,l=−αHj,i







∏

l∈Aj,i

m
U,r
j,l (dl)







=
∑

P

l∈Aj,i
dlHj,l=−αHj,i







∏

l∈Aj,i

m̃
U,r
j,l (dl − cl)







=
∑

P

l∈Aj,i
blHj,l=−(α−ci)Hj,i







∏

l∈Aj,i

m̃
U,r
j,l (bl)







= m̃
D,r
j,i (α − ci)

for all j ∈ J , i ∈ Ij , α ∈ R, where we have made the
substitutionbl = dl − cl for eachl ∈ Ij , and used the fact
that

∑

l∈Aj,i
clHj,l = −ciHj,i sincec ∈ C. It follows by the

principle of induction that (22) holds for everyk = 0, 1, · · ·N ,
j ∈ J , i ∈ Ij , α ∈ R. Therefore by (10)

gi(α) = mi(α) ·
∏

j∈Ji

m
D,N
j,i (α)

= m̃i(α− ci) ·
∏

j∈Ji

m̃
D,N
j,i (α− ci)

= g̃i(α− ci)

for all i ∈ I, α ∈ R, and so by (11),̃hi = hi − ci for all
i ∈ I. Thereforeh 6= c if and only if h̃ 6= 0. We conclude
that

y ∈ B(c) if and only if ỹ ∈ B(0)

This completes the proof of the theorem for the case of SP
decoding. It is trivial to see that this proof generalizes tothe
case of optional early exit of the iterative loop on successful
completion of a syndrome check.

V. A PPLICATION: NONBINARY CODESMAPPED TOPSK
MODULATION

While this theorem may be shown to apply to other
coded modulation systems such as nonbinary coded orthogonal
modulation over memoryless channels and nonbinary coding
over the discrete memorylessq-ary symmetric channel, we
focus in this paper on the practical application of nonbinary
codes mapped directly to PSK symbols and transmitted over
a memoryless channel. HereΣ = C, and denoting the ring
elements byR = {a0, a1, · · · , aq−1}, the modulation mapping
may be written without loss of generality as

M : R 7→ C

such that

M(ak) = exp

(

ı2πk

q

)

(23)

for k = 0, 1, · · · , q − 1 (hereı =
√
−1). Here (15), together

with the rotational symmetry of theq-ary PSK constellation,
motivates us to define, for everyβ = ak ∈ R,

τβ(x) = exp

(−ı2πk

q

)

· x ∀x ∈ C (24)

Next, we also impose the condition thatR under addition
is a cyclic group. To see why we impose this condition, let
α = ak ∈ R andβ = al ∈ R. By the symmetry condition we
must have

p(yi|α+ β) = p(τα+β(yi)|0)

and also

p(yi|α+ β) = p(τβ(yi)|α) = p(τα(τβ(yi))|0)

In order to equate these two expressions, we impose the
condition τα+β(x) = τα(τβ(x)) for all x ∈ C, α, β ∈ R.
Letting α+ β = ap ∈ R, and using (24) yields

exp

(−ı2πk

q

)

· exp
(−ı2πl

q

)

= exp

(−ı2πp

q

)

and thusp ≡ k + l mod q.
Therefore, we must have

ak + al = a(k+l mod q) (25)

for all ak, al ∈ R. This implies thatR, under addition, is a
cyclic group.

It is easy to check that the condition thatR under addition
is cyclic, encapsulated by (25), along with the modulation
mapping (23), satisfies the symmetry condition, where the
appropriate mappingsτβ are given by (24). This means that
codeword-independent performance is guaranteed for such
systems using nonbinary codes with PSK modulation. This
applies to AWGN, flat fading wireless channels, and OFDM
systems transmitting over frequency selective channels with
sufficiently long cyclic prefix.
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