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Abstract— A coded modulation system is considered in which a ring with ¢ elements, by0 its additive identity, and let
nonbinary coded symbols are mapped directly to nonbinary - — R\{0}. LetC = {c € R" : cHT = 0} be a linear
modulation signals. It is proved that if the modulator-chamel code defined with respect to the x n parity-check matrixi

combination satisfies a particular symmetry condition, thecode- R D te th t of col indi d th t of
word error rate performance is independent of the transmitted over-h. Denote the set ot column Indices an € set or row

codeword. It is shown that this result holds for both linear- indices of H by 7 = {1,2,--- ,n} andJ = {1,2,--- ,m},
programming decoders and sum-product decoders. In particlar, respectively. Forj ¢ 7, let H§-T) denote thej-th row of

this provides a natural modulation mapping for nonbinary codes . (c) .
mapped to PSK constellations for transmission over memorgss H, and fori € Z, let #; denote thei-th column. Denote

channels such as AWGN channels or flat fading channels with PY Supiic) the support of a vectoe. For eachi € Z, let
AWGN. J; = sup'?) and for eachj € 7, let I, = supr(Hg-T)).
Also let A, ; = Z;\{i} andD; ; = J:\{j}.
Given anyc € R", we say that parity check € 7 is
Low-density parity check (LDPC) codes [1], as well agatisfiedby c if and only if
their nonbinary counterparts [2] have been shown to ex-
hibit excellent error-correcting performance when decbblg Z ¢ Hji =0 1)
the traditionalsum-product(SP) decoding algorithm. In [3], =
Feldmanet al. introduced the idea ofinear-programming For j € 7, define the single parity check code by
(LP) decoding of LDPC codes. This was later generalized to
nonbinary codes in [4]. Cj = {(bi)iez, : Z bi-Hji=0}
For classical coded modulation systergepmetric unifor- =
mity [5] was identified as a symmetry condition which, if satis; ote that while the symbols of the codewordgiare indexed
fied, guarantees codeword error rate performance indepen 7, the symbols of the codewords &) are indexed byZ;.

of the transmitted codeword, where maximum-likelihood (M . o . T i
decoding is assumed. Some recent coded modulation schemgsdeflne the projection mapping for parity check J by
with SP decoding used this symmetry condition for design x;(c) = (¢i)iez;
[6]. An analagous symmetry condition was defined in [7] for _ N _
binary codes ove F'(2) with SP decoding; this was extended_Then’_ given any € R*, we may say that parity chegke J
to nonbinary codes oveEF(q) by invoking the concept of 'S Satisfied bye if and only if
cosetLDPC codes [2]. z;(c) € C, 2)

In this work it is shown that for the cases of LP and SP
decoding of linear codes over rings, there exists a symmegijice (1) and[(2) are equivalent. Also, we say that the vector
condition under which the codeword error rate performangels @ codeword of’, writing ¢ € C, if and only if all parity

is independent of the transmitted codeword (for the case @fecks;j € J are satisfied by.

I. INTRODUCTION

LP decoding this theorem generalizes [3, Theorem 6], andAssume that the codeword = (¢1,¢2,---,¢,) € C has
is stated in [4]). This provides a condition somewhat akiB€en transmitted overgary input memoryless channel, and a
to geometric uniformity for state-of-the-art nonbinaryded corrupted wordy = (y1,y2,- -+ ,y») € £" has been received.
modulation systems. HereX denotes the set of channel output symbols; we assume
that this set either has finite cardinality, or is equalRb
Il. GENERAL FRAMEWORK or C! for some integei > 1. In practice, this channel may

We consider codes over finite rings (this includes codespresent the combination of modulator and physical chHanne
over finite fields, but may be more general). Denotefby It is assumed hereafter that all information words are dgual
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probable, and so all codewords are transmitted with equaid

probability. ) , B
Next we set up some definitions and notation. We define VieJ, Viel; Vae R,
the mapping ;= Dby, bi—a Wib (5)
€ R {01} c R The set of pointg f, w) which satisfy [B){(5) form a polytope
denoted byQ. The cost function to be minimized over this
by ) polytope isF'(f) = AfT, and the minimizer is denoted by
(o) =z =(z7")yen- If fe{0,1}(@=D" the output is the codewo@ ' (f) (it is
such that, for each € R, proved in [4] that this must be the maximum-likelihood code-

1 it~ — o word). Otherwise, the decoder outputs a ‘decoding failure’
) = =
v _{ 0 otherwise. B. Sum-Product Decoder

We note that the mappingyis one-to-one, and its image is the The sum-product (SP) decoder operates as follows. Note
set of binary vectors of lengthh— 1 with Hamming weight 0 that in practice, computations are usually carried out & th

or 1. Building on this, we also define log-domain, but this does not affect our analysis.
Initializing
E: " {0,1}@ D c Rla—n
) mi(a) = p(yila) VieZ, VaeR (6)
according to
_ and
E(e) = (&(cr) [ &(c2) | -+ [ &(cn)) mPa)=1 VjeJ, Viel, YaeR @)

We note thatE is also one-to-one.

] N iterations of fully parallel SP decoding may be represented
Now, for vectorsf € R4~ we adopt the notation

by the following recursive formulas. For eagh=1,2,--- N,

f=0 fal 1) mUF () = mi(a) - mP* () ®)
where €Dy
Vi€ T, fi=(f{")aen- for eachj € 7, i € Z;, « € R, and
In particular, we defin@ € R(¢~1" by setting, for each € Z,
@ &R, p(u:]0) myi(a) = > [T w5, ©
)\,S(!) — 10g (yiz) ZLE.A]' ; dL’Hj,l:—Oij,i lEAj,i
p(yila) '

and p(y;|c;) denotes the channel output probability (densityf)?; eachj € J, i € Z;, a € . Finally, decisions are made
conditioned on the channel input.
Also, we may use this notation to write the inversefs gi(a) = m;(a) - H mf{N(a) Vi eI, Ya € R (10)

E_l(.f) = (Sil(fl)agil(f2)7"' 7571(]071)) g FISVE
I1l. DECODING ALGORITHMS an

A. Linear-Programming Decoder .
The linear-programming (LP) decoder of [4] operates ad'€ output of the decoder is thén= (h1, ha, -+, hn).

follows. The linear program described here is equivalent to IV. MAIN RESULT
that given in [4]; however, some changes of notation have
been made in order to facilitate the proof to come in section
[Vl The variables of the LP are

F) foreachie Z,a € R~

h; = arg max {gi(@)} VieT (11)
ae

Symmetry Condition.
For eachg € R, there exists a bijection

TR I L — X

such that the channel output probability (density) conditd
on the channel input satisfies

p(yle) = p(s(y)la — B) (12)

forall y € ¥, a € R. WhenX is equal toR! or C for [ > 1,
the mappingrs is assumed to be isometric with respect to

and
wjp foreachje J,beC;

and the constraints are

Vi€J, Vo el w20 () Eyclidean distance i, for everyf € .
and In the following, codeword erroris defined as the event
VieJ, Z wijp =1 (4) where the decoder output is not equal to the transmitted
beC; codeword.



Theorem 4.1:Under the stated symmetry condition, th&SinceG is isometric with respect to Euclidean distancelih,
probability of codeword error is independent of the trarigedi it follows that the Jacobian determinant of the transforamat
codeword is equal to unity. Therefore, to complete the proof, we need

(a) under linear-programming decoding only show that
(b) under sum-product decoding. , .
Proof: We shall prove the theorem for the case where y € B(c) if and only if g € B(0)

has infinite Cardinality; the case of discrétanay be handled We prove this Separate|y for the two cases of linear-
S|m|IarIy Fix some codeword € C, ¢ # 0. We wish to prove programming and Sum_product decoding_

that (a) Under linear-programming decoding:
Pr(Err | ¢) = Pr(Err| 0) Here
where P(Err | ¢) denotes the probability of codeword error  B(c) = {y € ¥" : 3(f,w) € Q, f # E(c)
given that the codeword was transmitted. with AfT < AZ(e)T}
Now -
PIr(ErT | ¢) = Pr(y € B(c) | ¢) Recall that here\ is a function ofy via
where B(c) is the set of all receive words which may cause A = 1o <p(yi|0)) (16)
codeword error, given that was transmitted. Also p(yila)
Pr(Err | 0) = Pr(y € B(0) | 0) forieZ, a € ®™. Also
with Af < AE(0)T
PE o= [ pyle)dy ==
yeB(e) Here X is a function ofg via
" Pr(Err| 0) / (9]0)dg (14) MY = log (p @”0)) (17)
(Err| 0) = i = i
ven©) Y p(ilex)

Now, settinga = 3 in the symmetry conditio (12) yields for i € Z, a € ;R~. We begin by relating the elements Af
(defined by [(1B)) to the elements af (defined by [(1I7)). Let

p(ylB3) = p(15(y)|0) 15) ;¢ Z, a € R™. Suppose; = 3 € R. We then have
foranyy € 3, 8 € . (@) p(yil0)
We now definey = G(y) as follows. For eveny € Z, if Ai = log p(yila)
¢ =f & then p(a(0)| = B)
i = 715(yi) = log <—)
o | p(7s (i)l — B)
We note thatG is a bijection from the seE” to itself, and p(@i| — B)
that if y,z € ¥ andc¢; = 5 € R then = 1 <7~ ; >
’ i p(Jilee — B)
lys = 2ill* = 78 (y:) — 75 (23)II” This yields
and so A if 3=0
IG(y) -~ G(2)II” = |y — = Al = _xe) if o=
i.e. G is isometric with respect to Euclidean distanced. Z\EO‘* ) Z\E*ﬁ) otherwise.

We prove that the integrdl (IL3) may be transformedid (14)

via the substitutiony = G(y). First, we have Next, for any point(f,w) € Q we define a new point

(f,w) as follows. For alli € Z, a € |, if ¢; = 8 € % then

plyle) = [[pile) @

eT f-(a) _ 1-— nye%* f; if o =—-3 (18)
H H i f_(a+/3) otherwise

= p(vilB) v ’
PER €T c;i=p Forallj € J, r € C; we define

= H H p(78(y:)[0) D — s
BER i€, c;= Wj,r = Wjb

_ H H p(5:]0) where
BERIEL,c;=0 b=r+ L (C)

= Hp(gm()) _Next we prove that for everyf, w) € Q, the new point
i€Z (f,w) lies in Q and thus is a feasible solution for the LP.

= p(g]0) Constraints[(8) and{4) obviously hold from the definition of



w. To verify (8), we letj € 7, i € Z; anda € :3~. We also

let ¢; = B € R. We now check two cases:
. |f o = —ﬁ,
O = 1o Y g
YER—
dowis= DL D Wi
beC; yER— bEC, bi=
= > w
beCj, b;=0
= D W
'I‘GC]', Ti=Q
o If & 7é —ﬁ,
f(a) f(oz-i-,@) _ Z W

beCy, b; =a+f

= E Wi,

reCj, ri=a

e If B#£0,
f —\ € Cz Z )\(’Y)f v iB
YER
_ E: (;@—m__%—m)fm>_;&ﬁ{ﬂm_%%—m
YERT
v#B
:Z/\a)fa+ﬁ)+/\ ( Zf’Y))
aER™ YER™
ar—8
Y A
aER~
= Aifi — Ag(O)7

where we have made use of the substitutioa: v — 3 in the
third line. Therefore[{21) holds, proving_(20).

Finally, we note that it is easy to show, using](18) and (19),

that f = Z(c) if and only if f = Z(0).

Putting together these results, we may make the following

statement. Suppose we are givery € X" with § = G(y).
Therefore(f, @) € Q, i.e. (f,@) is a feasible solution for Then the point(f, w) € Q satisfiesf #

E(c) and A f! <

the LP. We write(f,w) = L(f,w). We also note that the A\2(c)” if and only if the point(f, @) = L(f,w) € Q

mappingL is a bijection fromQ to itself; this is easily shown satisfiesf # B
with the fact that bothG and L are bijective, proves that

by verifying the inverse

_ #(7) ; _
I A (19)
f; otherwise
forallieZ, a € R, and
Wb = Wi,y
where
r=b—x;(c)
forall j € 7, beC;.
We now prove that for everff,w) € Q, (f,w) =
L(f,w) satisfies
AT - AZ(e)T = AF — AZ(0)T (20)
We achieve this by proving
Xif! = Xikle)" = S\ifiT - Xi€(0)" (21)

=(0 )and)\f < AE(0)T. This statement, along

y € B(e) if and only if g € B(0)

This completes the proof of the theorem for the case of LP
decoding.
(b) Under Sum-Product Decoding:

Recall that all decoder variables appearing in equatidps (6

(LT) are functions ofy via (@). For any such variable, let &
denote the corresponding variable wighas input. Then we
have, for alli € Z, o € R, wherec; = £,

mi(a) = p(yile) = p(rs(yi)la = B)

= p(Filo — ¢i) = Mmi(a —¢;)

Next we prove by induction that for al = 0,1,--- N,

ka(Q) = ﬁ’),D?k(a — Ci) (22)

Jst 5t

forall j € J, i € Z;, o € R. This result holds for the base
casek = 0 because fron{7)

D,0 _ ~DoO _
m;; (o) = m;; () =1

VieJ,Viel;, Vac R

for everyi € Z. We may then obtaif (20) by summing{21)Assuming that[(22) holds for somle=r—1¢€ {0,1,--- N —

overi € Z. Let ¢; = 8 € R. We consider two cases:

o If 3=0, (21) becomes
NPT = NF

which holds since in this cast® = A*) and f{* =

£ for all o € R~

1} (and for allj € 7, i € Z;, a € ), we obtain by[(B)

U, D,r—1
mj,ir(a) = mi(a)- H ml,ir ()
1€Dy,;
= mila—¢)- H Thll?i’rfl(a —¢)

€Dy,

- U,
= (e )



forall j € 7,i€Z;, a € R. So, by [9),

D, U,
m;"(a) = Z H m; ;" (dr)
zheALim}QJ:_QHLi leA; ;
-y e

leA;;

I =5 @)

IEA; ;

Yiea;; dHji=—aM;

Yiea;; bitji=—(a—c)Hj

~ D,r
My

(o — &)

forall j € J,i € Z;, « € R, where we have made the

Next, we also impose the condition th8& under addition

is a cyclic group. To see why we impose this condition, let
a=a € R andf = q; € R. By the symmetry condition we
must have

p(yila+ B) = p(Tat5(y:)|0)
and also
p(yila + B) = p(18(yi)la) = p(7a(75(yi))[0)

In order to equate these two expressions, we impose the
condition 744 (z) = To(75(x)) for all z € C, o, 8 € R.
Letting o + 3 = a, € R, and using[(24) yields

<—227T/€) <—z27rl> (—127Tp>
exp - eXp = exp
q q q

substitutionb; = d; — ¢; for eachl € Z;, and used the fact and thusp = £+ mod q.

that ZleAj caHji = —ciH;; sincec € C. It follows by the
principle of induction that{22) holds for eveky=0,1,--- N,
j€J,i€Z;, ac R Therefore by[(10)

mia) - [] m3;™ ()

gi(a)

e

= mi(a—¢)- H rhfi’N(a —¢)
JE€ET:

= gilo—ci)

for all i € Z, o € R, and so by[[A)s; = h; — ¢; for all
i € Z. Thereforeh # ¢ if and only if A # 0. We conclude
that

y € B(c) if and only if gy € B(0)

Therefore, we must have

ak + a1 = Q(k+1 mod q) (25)

for all ax,a; € R. This implies that’, under addition, is a
cyclic group.

It is easy to check that the condition tH&tunder addition
is cyclic, encapsulated by (P5), along with the modulation
mapping [(2B), satisfies the symmetry condition, where the
appropriate mappingss are given by[(2¥). This means that
codeword-independent performance is guaranteed for such
systems using nonbinary codes with PSK modulation. This
applies to AWGN, flat fading wireless channels, and OFDM
systems transmitting over frequency selective channells wi
sufficiently long cyclic prefix.

This completes the proof of the theorem for the case of SP

decoding. It is trivial to see that this proof generalizeshe
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