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Abstract

This work studies the capacity of multipath fading channels. A noncoherent channel
model is considered, where neither the transmitter nor the receiver is cognizant of the
realization of the path gains, but both are cognizant of their statistics. It is shown that if
the delay spread is large in the sense that the variances of the path gains decay exponentially
or slower, then capacity is bounded in the signal-to-noise ratio (SNR). For such channels,
capacity does not tend to infinity as the SNR tends to infinity. In contrast, if the variances
of the path gains decay faster than exponentially, then capacity is unbounded in the SNR.
It is further demonstrated that if the number of paths is finite, then at high SNR capacity
grows double-logarithmically with the SNR, and the capacity pre-loglog, defined as the
limiting ratio of capacity to log log SNR as SNR tends to infinity, is 1 irrespective of the
number of paths.

1 Introduction

We study the capacity of discrete-time multipath fading channels. In multipath fading channels,
the transmitted signal propagates along a multitude of paths, and the gains and delays of these
paths vary over time. In general, the path delays differ from each other, and the receiver thus
observes a weighted sum of delayed replicas of the transmitted signal, where the weights are
random. We shall slightly abuse nomenclature and refer to each summand in the received signal
as a path, and to the corresponding weight as its path gain, even if it is in fact composed of a
multitude of paths. We consider a noncoherent channel model, where transmitter and receiver
are cognizant of the statistics of the path gains, but are ignorant of their realization.

Multipath fading channels arise in wireless communications, where obstacles in the surround-
ings reflect the transmitted signal and force it to propagate along multiple paths, and where
relative movements of transmitter, receiver, and obstacles lead to time-variations of the path
gains and delays. Examples of wireless communication scenarios where the receiver observes typ-
ically more than one path include radio communications (particularly if the transmitted signal
is of large bandwidth as, for example, in Ultra-Wideband or in CDMA) and underwater acoustic
communications.

The capacity of noncoherent multipath fading channels has been investigated extensively in
the wideband regime, where the signal-to-noise ratio (SNR) is typically small. It was shown by
Kennedy that, in the limit as the available bandwidth tends to infinity, the capacity of the fading
channel is the same as the capacity of the additive white Gaussian noise (AWGN) channel of
equal received power; see [1, Sec. 8.6] and references therein.

To the best of our knowledge, not much is known about the capacity of noncoherent multipath
fading channels at high SNR. For the special case of noncoherent frequency-flat fading channels
(where we only have one path), it was shown by Lapidoth & Moser [2] that if the fading process
is of finite entropy rate, then at high SNR capacity grows double-logarithmically in the SNR.
This is much slower than the logarithmic growth of the AWGN capacity [3].

The material in this paper was presented in part at the 2008 IEEE Information Theory Workshop (ITW)
Porto, Portugal, at the 2008 IEEE International Symposium on Information Theory (ISIT), Toronto, Canada,
and at the 2008 IEEE 25-th Convention of Electrical and Electronics Engineers in Israel.
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In this work, we study the high-SNR behavior of the capacity of noncoherentmultipath fading
channels (where the number of paths is typically greater than one). We demonstrate that the
capacity of such channels does not merely grow slower with the SNR than the capacity of the
AWGN channel, but may be even bounded in the SNR. In other words, for such channels the
capacity does not necessarily tend to infinity as the SNR tends to infinity.

We derive a necessary and a sufficient condition for the capacity to be bounded in the
SNR. We show that if the variances of the path gains decay exponentially or slower, then
capacity is bounded in the SNR. In contrast, if the variances of the path gains decay faster than
exponentially, then capacity is unbounded in the SNR. We further show that if the number of
paths is finite, then at high SNR capacity increases double-logarithmically with the SNR, and
the capacity pre-loglog, defined as the limiting ratio of the capacity to log log SNR as SNR tends
to infinity, is 1 irrespective of the number of paths.

The rest of this paper is organized as follows. We begin with a mathematical description
of the considered channel model in Section 2. Section 3 is devoted to channel capacity. Our
main results are summarized in Section 4. They follow from upper bounds and lower bounds on
channel capacity, which are derived in Sections 5 and 6, respectively. Section 7 concludes the
paper with a brief summary and a discussion of our results.

2 Channel Model

Let C and N denote the set of complex numbers and the set of positive integers, respectively. We
consider a discrete-time multipath fading channel whose channel output Yk ∈ C at time k ∈ N

corresponding to the time-1 through time-k channel inputs x1, . . . , xk ∈ C is given by

Yk =
k−1∑

ℓ=0

H
(ℓ)
k xk−ℓ + Zk, k ∈ N. (1)

Here {Zk} models additive noise, and H
(ℓ)
k denotes the time-k gain of the ℓ-th path. We assume

that {Zk} is a sequence of independent and identically distributed (IID), zero-mean, variance-
σ2, circularly-symmetric, complex Gaussian random variables. For each path ℓ ∈ N0 (where N0

denotes the set of nonnegative integers), we assume that
{
H

(ℓ)
k , k ∈ N

}
is a zero-mean, complex

stationary process. We denote its variance and its differential entropy rate by

αℓ , E

[∣
∣H

(ℓ)
k

∣
∣
2
]

, ℓ ∈ N0 (2)

and

hℓ , lim
n→∞

1

n
h
(
H

(ℓ)
1 , . . . , H(ℓ)

n

)
, ℓ ∈ N0. (3)

We shall say that the channel has a finite number of paths, if for some finite integer L ∈ N0

H
(ℓ)
k = 0, ℓ > L, k ∈ N. (4)

We assume that α0 > 0. We further assume

sup
ℓ∈N0

αℓ < ∞ (5)

and
inf
ℓ∈L

hℓ > −∞, (6)

where the set L is defined as L , {ℓ ∈ N0 : αℓ > 0}. (When the path gains are Gaussian,
then the latter condition (6) is equivalent to saying that the mean-square error in predicting the
present path gain from its past is strictly positive, i.e., that the present path gain cannot be
predicted perfectly from its past.) We finally assume that the processes

{
H

(0)
k , k ∈ N

}
,
{
H

(1)
k , k ∈ N

}
, . . .
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are independent (“uncorrelated scattering”); that they are jointly independent of {Zk}; and that
the joint law of

(

{Zk},
{
H

(0)
k , k ∈ N

}
,
{
H

(1)
k , k ∈ N

}
, . . .

)

does not depend on the input sequence {xk}. We consider a noncoherent channel model where

neither transmitter nor receiver is cognizant of the realization of
{
H

(ℓ)
k , k ∈ N

}
, ℓ ∈ N0, but

both are aware of their law. We do not assume that the path gains are Gaussian.

3 Channel Capacity

Let An
m denote the sequence Am, . . . , An. We define the capacity (in nats per channel use) as

C(SNR) , lim
n→∞

1

n
sup I

(
Xn

1 ;Y
n
1

)
, (7)

where the supremum is over all joint distributions on X1, . . . , Xn satisfying the power constraint

1

n

n∑

k=1

E
[
|Xk|2

]
≤ P, (8)

and where SNR is defined as

SNR ,
P

σ2
. (9)

By Fano’s inequality, no rate above C(SNR) is achievable. (See [4] for a definition of an
achievable rate.) We do not claim that there is a coding theorem associated with (7), i.e., that
C(SNR) is achievable. A coding theorem will hold, for example, if the number of paths is finite,

and if the processes corresponding to these paths
{
H

(0)
k , k ∈ N

}
, . . . ,

{
H

(L)
k , k ∈ N

}
are jointly

ergodic, see [5, Thm. 2].
The special case of noncoherent frequency-flat fading channels (where we have only one path)

was studied by Lapidoth and Moser [2]. They showed that if the fading process
{
H

(0)
k , k ∈ N

}

is ergodic, then the capacity satisfies

lim
SNR→∞

{
C(SNR)− log log SNR

}
= log π + E

[

log
∣
∣H

(0)
1

∣
∣
2
]

− h0 (10)

(see [2, Thm. 4.41]), where log(·) denotes the natural logarithm function. Thus, at high SNR,
the capacity of noncoherent frequency-flat fading channels grows double-logarithmically with
the SNR. Lapidoth and Moser concluded that communicating over noncoherent frequency-flat
fading channels at high SNR is extremely power-inefficient, as one should expect to square the
SNR for every additional bit per channel use.1

In this paper, we show inter alia that communicating over noncoherent multipath fading
channels at high SNR is not merely power-inefficient, but may be even worse: if the delay
spread is large in the sense that the sequence {αℓ} (which describes the variances of the path
gains) decays exponentially or slower, then capacity is bounded in the SNR. For such channels,
capacity does not tend to infinity as the SNR tends to infinity. The main results of this paper
are presented in the following section.

4 Main Results

Our main results are a sufficient and a necessary condition on {αℓ} for C(SNR) to be bounded
in SNR, as well as a characterization of the capacity pre-loglog when the number of paths is
finite.

1Note that the capacity of coherent fading channels (where the fading realization is known to the receiver)
behaves logarithmically with the SNR [6]. Thus in the coherent case it suffices to double the SNR for every
additional bit per channel use.
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Theorem 1. Consider the above channel model. Then

(i)

(

lim
ℓ→∞

αℓ+1

αℓ
> 0

)

=⇒
(

sup
SNR>0

C(SNR) < ∞
)

(11)

(ii)

(

lim
ℓ→∞

1

ℓ
log

1

αℓ
= ∞

)

=⇒
(

sup
SNR>0

C(SNR) = ∞
)

, (12)

where we define a/0 , ∞ for every a > 0 and 0/0 , 0.

Proof. Part (i) is proven in Section 5.1, and Part (ii) is proven in Sections 6.1 & 6.2.

By noting that
(

lim
ℓ→∞

αℓ+1

αℓ
= 0

)

=⇒
(

lim
ℓ→∞

1

ℓ
log

1

αℓ
= 0

)

we obtain from Theorem 1 the immediate corollary:

Corollary 2. Consider the above channel model. Then

(i)

(

lim
ℓ→∞

αℓ+1

αℓ
> 0

)

=⇒
(

sup
SNR>0

C(SNR) < ∞
)

(13)

(ii)

(

lim
ℓ→∞

αℓ+1

αℓ
= 0

)

=⇒
(

sup
SNR>0

C(SNR) = ∞
)

, (14)

where we define a/0 , ∞ for every a > 0 and 0/0 , 0.

For example, if
αℓ = e−ℓ, ℓ ∈ N0, (15)

then

lim
ℓ→∞

αℓ+1

αℓ
=

1

e
> 0 (16)

and it follows from Part (i) of Corollary 2 that the capacity is bounded in the SNR. On the
other hand, if

αℓ = exp
(
−ℓκ

)
, ℓ ∈ N0 (17)

for some κ > 1, then

lim
ℓ→∞

αℓ+1

αℓ
= lim

ℓ→∞
exp
(
ℓκ − (ℓ+ 1)κ

)
= 0 (18)

and it follows from Part (ii) of Corollary 2 that the capacity is unbounded in the SNR. Roughly
speaking, we can say that when {αℓ} decays exponentially or slower, then C(SNR) is bounded
in SNR, and when {αℓ} decays faster than exponentially, then C(SNR) is unbounded in SNR.

The condition on the left-hand side (LHS) of (14) is surely satisfied if the channel has a finite
number of paths, as in this case

H
(ℓ)
k = 0, ℓ > L, k ∈ N,

which implies

αℓ = 0, ℓ > L and
αℓ+1

αℓ
=

0

0
, 0, ℓ > L.

Consequently, it follows from Corollary 2 that if the number of paths is finite, then C(SNR)
is unbounded in SNR. However, for this case the high-SNR behavior of the capacity can be
characterized more accurately: Theorem 3 ahead shows that if the number of paths is finite,
then the capacity pre-loglog, defined as

Λ , lim
SNR→∞

C(SNR)

log log SNR
, (19)

is 1 irrespective of the number of paths. The pre-loglog in this case is thus the same as for
frequency-flat fading.
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Theorem 3. Consider the above channel model. Further assume that the number of paths is
finite. Then, irrespective of the number of paths, the capacity pre-loglog is given by

Λ = lim
SNR→∞

C(SNR)

log log SNR
= 1. (20)

Proof. See Section 5.2 for the converse and Sections 6.1 & 6.3 for the direct part.

When studying multipath fading channels at low or at moderate SNR, it is often assumed
that the channel has a finite number of paths, even if the number of paths is in reality infinite.
This assumption is commonly justified by saying that only the first (L + 1) paths are relevant,
since the variances of the remaining paths are typically small and hence the influence of these
paths on the capacity is marginal. As we see from Theorems 1 & 3, this argument is not valid
anymore when studying multipath fading channels at high SNR. In fact, when for example the
sequence of variances {αℓ} decays exponentially, then according to Part (i) of Theorem 1 the
capacity is bounded in the SNR. However, if we consider only the first (L+1) paths and set the
other paths to zero, then it follows from Theorem 3 that, irrespective of L, the capacity increases
double-logarithmically with the SNR. Thus, even though the variances of the remaining paths
αℓ, ℓ > L can be made arbitrarily small by choosing L sufficiently large, these paths may have a
significant influence on the capacity behavior at high SNR.

The reason why paths with a small variance can affect the capacity behavior is that the
capacity depends on the variance of the product between the path gains and the transmitted
signal and not on the variance of the path gains only. Since at high SNR the variance of
∑∞

ℓ=L+1 H
(ℓ)
k Xk−ℓ might be huge even if the variance of

∑∞

ℓ=L+1 H
(ℓ)
k is small, the relevance

of a path is determined not only by its own variance but also by the power available at the
transmitter. The number of paths that are needed to approximate a multipath channel typically
depends on the SNR and may grow to infinity as the SNR tends to infinity.

In order to prove the above results, we derive upper and lower bounds on the capacity.
Since these bounds may also be of independent interest, we summarize them in the following
propositions.

Proposition 4 (Upper Bounds).

(i) Consider the above channel model. Further assume that for some 0 < ρ < 1 and some
ℓ0 ∈ N

αℓ0 > 0 and
αℓ+1

αℓ
≥ ρ, ℓ ≥ ℓ0.

Then the capacity C(SNR) is upper bounded by

C(SNR) ≤ log
2π2

√
ρ̃
− inf

ℓ∈L
(hℓ − logαℓ), SNR ≥ 0, (21)

where
ρ̃ = min

{

ρℓ0−1 αℓ0

max0≤ℓ′<ℓ0 αℓ′
, ρℓ0

}

. (22)

(ii) Consider the above channel model. Further assume that

∞∑

ℓ=0

αℓ , α < ∞. (23)

Then
lim

SNR→∞

{
C(SNR)− log log SNR

}
≤ 1 + log π − inf

ℓ∈L
(hℓ − logαℓ). (24)

Proof. Part (i) is proven in Section 5.1, and Part (ii) in Section 5.2.
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For example, if {αℓ} is a geometric sequence, i.e.,

αℓ = ρℓ, ℓ ∈ N0

for some 0 < ρ < 1, and if the path gains are Gaussian and memoryless so

hℓ = log(πeαℓ), ℓ ∈ N0,

then Part (i) of Proposition 4 yields

C(SNR) ≤ log
2π√
ρ
− 1, SNR ≥ 0. (25)

Part (ii) of Proposition 4 combines with (10) to show that the pre-loglog of a multipath fading
channel can never be larger than the pre-loglog of a frequency-flat fading channel. This result
is consistent with the intuition that at high SNR the multipath behavior is detrimental.

Our last result is a lower bound on the capacity. This bound is the basis for the proof of
Part (ii) of Theorem 1 and for the direct part of Theorem 3.

Proposition 5 (Lower Bound). Consider the above channel model. Further assume that

∞∑

ℓ=0

αℓ , α < ∞. (26)

Let L(P) ∈ N be some positive integer that satisfies

∞∑

ℓ=L(P)+1

αℓ P ≤ σ2 (27)

(typically L(P) depends on P), and let τ ∈ N be some arbitrary positive integer that is allowed to
depend on L(P). Then the capacity C(SNR) is lower bounded by

C(SNR) ≥ τ

L(P) + τ
log log P1/τ +

τ

L(P) + τ

(

E

[

log
∣
∣H

(0)
1

∣
∣
2
]

− 1− 2 log
(√

α0 +
√

α+ 2σ2
))

,

P > 1. (28)

Proof. See Section 6.1.

5 Proofs of the Upper Bounds

In this section, we establish a proof of Proposition 4, which in turn will be used to prove Part (i)
of Theorem 1 and the converse to Theorem 3.

Part (i) of Proposition 4 is proven in Section 5.1, and it is demonstrated that Part (i) of
Theorem 1 follows immediately from this result. Section 5.2 proves Part (ii) of Proposition 4.
This part provides an upper bound on the capacity pre-loglog and will be used later, together
with a capacity lower bound that is derived in Section 6, to establish Theorem 3.

5.1 Bounded Capacity

We provide a proof of Part (i) of Proposition 4 by deriving an upper bound on channel capacity
that holds under the assumption that for some 0 < ρ < 1 and some ℓ0 ∈ N0

αℓ0 > 0 and
αℓ+1

αℓ
≥ ρ, ℓ ≥ ℓ0. (29)

As this bound is finite for SNR ≥ 0, Part (i) of Theorem 1 follows immediately from Part (i) of
Proposition 4 by noting that if

lim
ℓ→∞

αℓ+1

αℓ
> 0,

6



then we can find a 0 < ρ < 1 and an ℓ0 ∈ N satisfying (29).
The proof of the desired upper bound is akin to the proof of an upper bound that was derived

in [7, Sec. 6.1]. (However, [7] studies a channel whose inputs & outputs take value in the set of
real numbers rather than in C.) It is based on (7) and on an upper bound on 1

nI(X
n
1 ;Y

n
1 ). To

this end, we begin with the chain rule for mutual information [4, Thm. 2.5.2]

1

n
I(Xn

1 ;Y
n
1 ) =

1

n

ℓ0∑

k=1

I
(
Xn

1 ;Yk

∣
∣Y k−1

1

)
+

1

n

n∑

k=ℓ0+1

I
(
Xn

1 ;Yk

∣
∣Y k−1

1

)
. (30)

Each term in the first sum on the right-hand side (RHS) of (30) is upper bounded by

I
(
Xn

1 ;Yk

∣
∣Y k−1

1

)
≤ h(Yk)− h

(

Yk

∣
∣
∣Y k−1

1 , Xn
1 , H

(0)
k , H

(1)
k , . . . , H

(k−1)
k

)

≤ log

(

πe

(

σ2 +
k−1∑

ℓ=0

αℓE
[
|Xk−ℓ|2

]

))

− log
(
πeσ2

)

≤ log

(

1 + sup
ℓ∈N0

αℓ n SNR

)

, (31)

where the first inequality follows because conditioning cannot increase differential entropy [4,
Thm. 9.6.1]; the second inequality follows from the entropy maximizing property of Gaussian
random variables [4, Thm. 9.6.5]; and the last inequality follows by upper bounding αℓ ≤
supℓ′∈N0

αℓ′ , ℓ = 0, 1, . . . , k − 1 and from the power constraint (8).

For k = ℓ0+1, ℓ0+2, . . . , n, we upper bound I
(
Xn

1 ;Yk

∣
∣Y k−1

1

)
using the general upper bound

for mutual information [2, Thm. 5.1]

I(X ;Y ) ≤
∫

D
(
W (·|x)

∥
∥R(·)

)
Q. (x), (32)

where D(·‖·) denotes relative entropy, i.e.,

D(P1‖P0) =







∫

log
P. 1
P. 0

P. 1 if P1 ≪ P0

+∞ otherwise,

W (·|·) is the channel law, Q(·) denotes the distribution on the channel input X , and R(·) is
any distribution on the output alphabet.2 Thus any choice of output distribution R(·) yields an
upper bound on the mutual information.

For any given Y k−1
1 = yk−1

1 , we choose the output distribution R(·) to be of density
√
β

π2|yk|
1

1 + β|yk|2
, yk ∈ C, (33)

with β = 1/(ρ̃|yk−ℓ0 |2) and

ρ̃ = min

{

ρℓ0−1 αℓ0

max0≤ℓ′<ℓ0 αℓ′
, ρℓ0

}

. (34)

(If yk−ℓ0 = 0, then the density (33) is undefined. However, this event is of zero probability and
has therefore no impact on the mutual information I

(
Xn

1 ;Yk

∣
∣Y k−1

1

)
.) With this choice

0 < ρ̃ < 1 and ρ̃ αℓ ≤ αℓ+ℓ0 , ℓ ∈ N0. (35)

Using (33) in (32), and averaging over Y k−1
1 , we obtain

I
(
Xn

1 ;Yk

∣
∣Y k−1

1

)
≤ 1

2
E
[
log |Yk|2

]
+

1

2
E
[
log
(
ρ̃|Yk−ℓ0 |2

)]
+ E

[

log

(

1 +
|Yk|2

ρ̃|Yk−ℓ0 |2
)]

− h
(
Yk

∣
∣Xn

1 , Y
k−1
1

)
+ log π2

=
1

2
E
[
log |Yk|2

]
− 1

2
E
[
log |Yk−ℓ0 |2

]
+ E

[
log
(
ρ̃|Yk−ℓ0 |2 + |Yk|2

)]

− h
(
Yk

∣
∣Xn

1 , Y
k−1
1

)
+ log

π2

√
ρ̃
. (36)

2For channels with finite input and output alphabets this inequality follows by Topsøe’s identity [8]; see also
[9, Thm. 3.4].
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We bound the third and the fourth term in (36) separately. We begin with

E
[
log
(
ρ̃|Yk−ℓ0 |2 + |Yk|2

)]
= E

[
E
[
log
(
ρ̃|Yk−ℓ0 |2 + |Yk|2

) ∣
∣ Xk

1

]]

≤ E

[

log
(

ρ̃E
[
|Yk−ℓ0 |2

∣
∣ Xk

1

]
+ E

[
|Yk|2

∣
∣ Xk

1

])]

= E

[

log

(

(1 + ρ̃)σ2 +

k−ℓ0−1∑

ℓ=0

ρ̃ αℓ|Xk−ℓ0−ℓ|2 +
k−1∑

ℓ=0

αℓ|Xk−ℓ|2
)]

≤ E

[

log

(

2σ2 +

k−ℓ0−1∑

ℓ=0

αℓ+ℓ0 |Xk−ℓ0−ℓ|2 +
k−1∑

ℓ=0

αℓ|Xk−ℓ|2
)]

= E

[

log

(

2σ2 +

k−1∑

ℓ′=ℓ0

αℓ′ |Xk−ℓ′ |2 +
k−1∑

ℓ=0

αℓ|Xk−ℓ|2
)]

≤ log 2 + E

[

log

(

σ2 +

k−1∑

ℓ=0

αℓ|Xk−ℓ|2
)]

, (37)

where the first inequality follows by Jensen’s inequality; the subsequent equality follows by
evaluating the expectations; the next inequality by (35); the following equality by substituting
ℓ′ = ℓ+ ℓ0; and the last inequality follows because

k−1∑

ℓ=ℓ0

αℓ|Xk−ℓ|2 ≤
k−1∑

ℓ=0

αℓ|Xk−ℓ|2.

Next we derive a lower bound on h
(
Yk

∣
∣Xn

1 , Y
k−1
1

)
. Let

{

H
(ℓ)
k′

}k−1

k′=1
=
(

H
(ℓ)
1 , H

(ℓ)
2 , . . . , H

(ℓ)
k−1

)

, ℓ ∈ N0, (38)

and let

Hk−1
1 =

({

H
(0)
k′

}k−1

k′=1
,
{

H
(1)
k′

}k−1

k′=1
, . . . ,

{

H
(k−1)
k′

}k−1

k′=1

)

. (39)

We have

h
(
Yk

∣
∣Xn

1 , Y
k−1
1

)
≥ h

(
Yk

∣
∣Xn

1 , Y
k−1
1 ,Hk−1

1

)

= h
(
Yk

∣
∣
∣Xn

1 ,H
k−1
1

)
, (40)

where the inequality follows because conditioning cannot increase differential entropy; and where
the equality follows because, conditional on

(
Xn

1 ,H
k−1
1

)
, Yk is independent of Y k−1

1 . Let Sk be
defined as

Sk , {ℓ = 0, 1, . . . , k − 1 : |xk−ℓ|2 αℓ > 0}. (41)

Using the entropy power inequality [4, Thm. 16.6.3], and using that the processes

{
H

(0)
k , k ∈ N

}
,
{
H

(1)
k , k ∈ N

}
, . . .

are independent and jointly independent of Xn
1 , it is shown in Appendix A that for any given

Xn
1 = xn

1

h

(
k−1∑

ℓ=0

H
(ℓ)
k Xk−ℓ + Zk

∣
∣
∣
∣
∣
Xn

1 = xn
1 ,H

k−1
1

)

≥ log

(
∑

ℓ∈Sk

e
h

(

H
(ℓ)
k

Xk−ℓ

∣
∣
∣Xk−ℓ=xk−ℓ,

{
H

(ℓ)

k′

}
k−1

k′=1

)

+ eh(Zk)

)

. (42)
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We lower bound the differential entropies on the RHS of (42) as follows. The differential entropies
in the sum are lower bounded by

h

(

H
(ℓ)
k Xk−ℓ

∣
∣
∣
∣
Xk−ℓ = xk−ℓ,

{

H
(ℓ)
k′

}k−1

k′=1

)

= log
(
αℓ|xk−ℓ|2

)
+ h

(

H
(ℓ)
k

∣
∣
∣
∣

{

H
(ℓ)
k′

}k−1

k′=1

)

− logαℓ

≥ log
(
αℓ|xk−ℓ|2

)
+ inf

ℓ∈L
(hℓ − logαℓ) , ℓ ∈ Sk, (43)

where the equality follows from the behavior of differential entropy under scaling [4, Thm. 9.6.4];

and where the inequality follows by the stationarity of the process
{
H

(ℓ)
k , k ∈ N

}
, which implies

that the differential entropy

h

(

H
(ℓ)
k

∣
∣
∣
∣

{

H
(ℓ)
k′

}k−1

k′=1

)

, ℓ ∈ Sk

cannot be smaller than the differential entropy rate hℓ [4, Thms. 4.2.1 & 4.2.2], and by lower
bounding (hℓ− logαℓ) by infℓ∈L(hℓ− logαℓ) (which holds for each ℓ ∈ Sk because Sk ⊆ L). The
last differential entropy on the RHS of (42) is lower bounded by

h(Zk) = log(πeσ2) ≥ inf
ℓ∈L

(hℓ − logαℓ) + log σ2, (44)

which follows because conditioning cannot increase differential entropy, and because Gaussian
random variables maximize differential entropy:

inf
ℓ∈L

(hℓ − logαℓ) ≤ inf
ℓ∈L

(

h
(

H
(ℓ)
k

)

− logαℓ

)

≤ inf
ℓ∈L

(
log(πeαℓ)− logαℓ

)

= log(πe). (45)

Applying (43) & (44) to (42), and averaging over Xn
1 , yields then

h
(
Yk

∣
∣Xn

1 , Y
k−1
1

)
≥ E

[

log

(
∑

ℓ∈Sk

αℓ|Xk−ℓ|2einfℓ∈L(hℓ−logαℓ) + σ2einfℓ∈L(hℓ−logαℓ)

)]

= E

[

log

(

σ2 +
k−1∑

ℓ=0

αℓ|Xk−ℓ|2
)]

+ inf
ℓ∈L

(hℓ − logαℓ) . (46)

Returning to the analysis of (36), we obtain from (37) and (46)

I
(
Xn

1 ;Yk

∣
∣Y k−1

1

)
≤ 1

2
E
[
log |Yk|2

]
− 1

2
E
[
log |Yk−ℓ0 |2

]
+ log 2 + E

[

log

(

σ2 +

k−1∑

ℓ=0

αℓ|Xk−ℓ|2
)]

− E

[

log

(

σ2 +

k−1∑

ℓ=0

αℓ|Xk−ℓ|2
)]

− inf
ℓ∈L

(hℓ − logαℓ) + log
π2

√
ρ̃

=
1

2
E
[
log |Yk|2

]
− 1

2
E
[
log |Yk−ℓ0 |2

]
+ K, (47)

where K is defined as

K , log
2π2

√
ρ̃
− inf

ℓ∈L
(hℓ − logαℓ) . (48)

Applying (47) and (31) to (30), we have

1

n
I(Xn

1 ;Y
n
1 )

≤ 1

n

ℓ0∑

k=1

log

(

1 + sup
ℓ∈N0

αℓ n SNR

)

+
1

n

n∑

k=ℓ0+1

(
1

2
E
[
log |Yk|2

]
− 1

2
E
[
log |Yk−ℓ0 |2

]
+ K

)

=
ℓ0
n

log

(

1 + sup
ℓ∈N

αℓ n SNR

)

+
n− ℓ0

n
K+

1

2n

n∑

k=ℓ0+1

(

E
[
log |Yk|2

]
− E

[
log |Yk−ℓ0 |2

]
)

. (49)
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To show that the RHS of (49) is bounded in the SNR, we use that, for any sequences {ak}
and {bk},

n∑

k=ℓ0+1

(ak − bk) =

n∑

k=n−ℓ0+1

(ak − bk−n+2ℓ0) +

n−ℓ0∑

k=ℓ0+1

(ak − bk+ℓ0). (50)

Defining
ak , E

[
log |Yk|2

]
(51)

and
bk , E

[
log |Yk−ℓ0 |2

]
(52)

we have for the first sum on the RHS of (50)
n∑

k=n−ℓ0+1

(ak − bk−n+2ℓ0) =

n∑

k=n−ℓ0+1

(

E
[
log |Yk|2

]
− E

[
log |Yk−n+ℓ0 |2

]
)

≤
n∑

k=n−ℓ0+1

(

logE
[
|Yk|2

]
− E

[
log |Yk−n+ℓ0 |2

]
)

≤
n∑

k=n−ℓ0+1

(

log

(

σ2 + sup
ℓ∈N0

αℓ nP

)

− E
[
log |Yk−n+ℓ0 |2

]

)

≤
n∑

k=n−ℓ0+1

(

log

(

σ2 + sup
ℓ∈N0

αℓ nP

)

− E
[
log |Zk−n+ℓ0 |2

]

)

= ℓ0 log

(

1 + sup
ℓ∈N0

αℓ n SNR

)

+ ℓ0γ, (53)

where γ ≈ 0.577 denotes Euler’s constant. Here the first inequality follows by Jensen’s inequality;
the following inequality follows by upper bounding

E
[
|Yk|2

]
= σ2 +

k−1∑

ℓ=0

αℓE
[
|Xk−ℓ|2

]
≤ σ2 + sup

ℓ∈N0

αℓ nP;

the subsequent inequality follows by noting that, conditional on
∑k−n+ℓ0−1

ℓ=0 H
(ℓ)
k−n+ℓ0

Xk−n+ℓ0−ℓ,
we have that |Yk−n+ℓ0 |2 is stochastically larger than |Zk−n+ℓ0 |2, so

E

[

log |Yk−n+ℓ0 |2
∣
∣
∣
∣
∣

k−n+ℓ0−1∑

ℓ=0

H
(ℓ)
k−n+ℓ0

Xk−n+ℓ0−ℓ

]

≥ E

[

log |Zk−n+ℓ0 |2
∣
∣
∣
∣
∣

k−n+ℓ0−1∑

ℓ=0

H
(ℓ)
k−n+ℓ0

Xk−n+ℓ0−ℓ

]

from which we obtain the lower bound E
[
log |Yk−n+ℓ0 |2

]
≥ E

[
log |Zk−n+ℓ0 |2

]
upon averaging

over
∑k−n+ℓ0−1

ℓ=0 H
(ℓ)
k−n+ℓ0

Xk−n+ℓ0−ℓ (see [2, Sec. VI–B] and in particular [2, Lemma 6.2 b)]); and
the last equality follows by evaluating the expected logarithm of an exponentially distributed
random variable of mean σ2, i.e., E

[
log |Zk−n+ℓ0 |2

]
= log σ2 − γ.

For the second sum on the RHS of (50) we have

n−ℓ0∑

k=ℓ0+1

(ak − bk+ℓ0) =

n−ℓ0∑

k=ℓ0+1

(

E
[
log |Yk|2

]
− E

[
log |Yk|2

]
)

= 0. (54)

Thus applying (50)–(54) to (49) yields

1

n
I(Xn

1 ;Y
n
1 ) ≤ 2ℓ0

n
log

(

1 + sup
ℓ∈N0

αℓ n SNR

)

+
n− ℓ0

n
K+

ℓ0
n
γ, (55)

which tends to

K = log
2π2

√
ρ̃
− inf

ℓ∈L
(hℓ − logαℓ)

as n tends to infinity. This proves Part (i) of Proposition 4.
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5.2 Unbounded Capacity

We prove Part (ii) of Proposition 4 by deriving an upper bound on capacity that holds under
the assumption (26), namely,

∞∑

ℓ=0

αℓ < ∞.

From this upper bound follows that

lim
SNR→∞

{
C(SNR)− log log SNR

}
< ∞, (56)

which in turn shows that the capacity pre-loglog is upper bounded by

Λ , lim
SNR→∞

C(SNR)

log log SNR
≤ 1. (57)

This yields the converse to Theorem 3.
As in Section 5.1, the desired upper bound follows by (7) and by deriving an upper bound

on 1
nI(X

n
1 ;Y

n
1 ). To this end, we begin with the chain rule for mutual information

I
(
Xn

1 ;Y
n
1

)
=

n∑

k=1

I
(
Xn

1 ;Yk

∣
∣Y k−1

1

)
(58)

and upper bound each summand on the RHS of (58) using [2, Eq. (27)]

I
(
Xn

1 ;Yk

∣
∣Y k−1

1

)
≤ E

[
log |Yk|2

]
− h
(
Yk

∣
∣Xn

1 , Y
k−1
1

)
+ ξ
(
1 + logE

[
|Yk|2

]
− E

[
log |Yk|2

])

+ log Γ(ξ)− ξ log ξ + log π

= (1 − ξ)E
[
log |Yk|2

]
− h
(
Yk

∣
∣Xn

1 , Y
k−1
1

)
+ ξ
(
1 + logE

[
|Yk|2

])

+ log Γ(ξ)− ξ log ξ + log π, (59)

for any ξ > 0. Here Γ(·) denotes the Gamma function.
We evaluate the terms on the RHS of (59) individually. We upper bound the first term using

Jensen’s inequality

E
[
log |Yk|2

]
= E

[
E
[
log |Yk|2

∣
∣ Xk

1

]]

≤ E
[
log E

[
|Yk|2

∣
∣ Xk

1

]]

= E

[

log

(

σ2 +

k−1∑

ℓ=0

αℓ|Xk−ℓ|2
)]

. (60)

The second term was already evaluated in (46)

h
(
Yk

∣
∣Xn

1 , Y
k−1
1

)
≥ E

[

log

(

σ2 +

k−1∑

ℓ=0

αℓ|Xk−ℓ|2
)]

+ inf
ℓ∈L

(hℓ − αℓ) , (61)

and the next term is readily evaluated as

logE
[
|Yk|2

]
= log

(

σ2 +

k−1∑

ℓ=0

αℓE
[
|Xk−ℓ|2

]

)

. (62)

Our choice of ξ will satisfy ξ < 1 (see (64) ahead). We therefore obtain, upon substituting
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(60)–(62) in (59),

I
(
Xn

1 ;Yk

∣
∣Y k−1

1

)
≤ (1− ξ)E

[

log

(

σ2 +

k−1∑

ℓ=0

αℓ|Xk−ℓ|2
)]

− E

[

log

(

σ2 +

k−1∑

ℓ=0

αℓ|Xk−ℓ|2
)]

− inf
ℓ∈L

(hℓ − αℓ) + ξ

(

1 + log

(

σ2 +

k−1∑

ℓ=0

αℓE
[
|Xk−ℓ|2

]

))

+ log Γ(ξ)− ξ log ξ + log π

= − inf
ℓ∈L

(hℓ − αℓ)

+ ξ

(

1 + log

(

σ2 +

k−1∑

ℓ=0

αℓE
[
|Xk−ℓ|2

]

)

− E

[

log

(

σ2 +

k−1∑

ℓ=0

αℓ|Xk−ℓ|2
)])

+ log Γ(ξ)− ξ log ξ + log π

≤ − inf
ℓ∈L

(hℓ − αℓ) + log Γ(ξ)− ξ log ξ + log π

+ ξ

(

1 + log

(

1 +

k−1∑

ℓ=0

αℓE
[
|Xk−ℓ|2

]
/σ2

))

, (63)

where the last inequality follows by lower bounding E

[

log
(

σ2 +
∑k−1

ℓ=0 αℓ|Xk−ℓ|2
)]

≥ log σ2.

We choose

ξ =
1

1 + log
(
1 + α SNR

) (64)

(where α was defined in (26)). Defining

Ψ(SNR) ,

[

log Γ(ξ) − log
1

ξ
− ξ log ξ

∣
∣
∣
∣
ξ=
(
1+log(1+αSNR)

)
−1

, (65)

we obtain

I
(
Xn

1 ;Yk

∣
∣Y k−1

1

)
≤ − inf

ℓ∈L
(hℓ − αℓ) + log

(
1 + log(1 + α SNR)

)
+Ψ(SNR) + log π

+
1 + log

(

1 +
∑k−1

ℓ=0 αℓE
[
|Xk−ℓ|2

]
/σ2
)

1 + log (1 + α SNR)
. (66)

Using (66) in (58) yields then

1

n
I
(
Xn

1 ;Y
n
1

)
≤ − inf

ℓ∈L
(hℓ − αℓ) + log

(
1 + log(1 + α SNR)

)
+Ψ(SNR) + log π

+
1 + 1

n

∑n
k=1 log

(

1 +
∑k−1

ℓ=0 αℓE
[
|Xk−ℓ|2

]
/σ2
)

1 + log (1 + α SNR)
. (67)

By Jensen’s inequality we have

1

n

n∑

k=1

log

(

1 +

k−1∑

ℓ=0

αℓE
[
|Xk−ℓ|2

]
/σ2

)

≤ log

(

1 +
1

n

n∑

k=1

k−1∑

ℓ=0

αℓE
[
|Xk−ℓ|2

]
/σ2

)

≤ log (1 + α SNR) , (68)

where the last inequality follows by rewriting the double sum as

1

n

n∑

k=1

E
[
|Xk|2

]
/σ2

n−k∑

ℓ=0

αℓ,

and by upper bounding then
∑k−n

ℓ=0 αℓ ≤ α and using the power constraint (8).
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Combining (68) and (67) with (7), we obtain the upper bound

C(SNR) ≤ − inf
ℓ∈L

(hℓ − αℓ) + log
(
1 + log(1 + α SNR)

)
+Ψ(SNR) + log π + 1. (69)

It follows by [2, Eq. (337)] that

lim
SNR→∞

Ψ(SNR) = lim
ξ↓0

{

log Γ(ξ)− log
1

ξ
− ξ log ξ

}

= 0. (70)

Noting that

lim
SNR→∞

{

log
(
1 + log(1 + α SNR)

)
− log log SNR

}

= 0,

we obtain from (69) and (70) the desired result

lim
SNR→∞

{
C(SNR)− log log SNR

}
≤ 1 + log π − inf

ℓ∈L
(hℓ − αℓ) . (71)

6 Proofs of the Achievability Results

In Section 6.1, we derive the lower bound on channel capacity that is presented in Proposition 5.
This lower bound will be used in Sections 6.2 & 6.3 to prove Part (ii) of Theorem 1 and to prove
the direct part of Theorem 3, respectively.

6.1 Lower Bound

To derive the desired lower bound on capacity, we evaluate 1
nI(X

n
1 ;Y

n
1 ) for the following distri-

bution on the inputs {Xk}.
Let L(P) be such that

∞∑

ℓ=L(P)+1

αℓ P ≤ σ2. (72)

To shorten notation, we shall write in the following L instead of L(P). Let τ ∈ N be some positive
integer that possibly depends on L, and let Xb = (Xb(L+τ)+1, . . . , X(b+1)(L+τ)). We choose {Xb}
to be IID with

Xb =
(
0, . . . , 0
︸ ︷︷ ︸

L

, X̃bτ+1, . . . , X̃(b+1)τ

)
,

where X̃bτ+1, . . . , X̃(b+1)τ is a sequence of independent, zero-mean, circularly-symmetric,

complex random variables with log |X̃bτ+ν |2 being uniformly distributed over the interval
[
log P(ν−1)/τ , log Pν/τ

]
, i.e., for each ν = 1, . . . , τ

log |X̃bτ+ν |2 ∼ U
([

log P(ν−1)/τ , log Pν/τ
])

.

(Here and throughout this proof we assume that P > 1.)
Let κ , ⌊ n

L+τ ⌋ (where ⌊a⌋ denotes the largest integer that is less than or equal to a), and let
Yb denote the vector (Yb(L+τ)+1, . . . , Y(b+1)(L+τ)). By the chain rule for mutual information we
have

I
(
Xn

1 ;Y
n
1

)
≥ I
(
Xκ−1

0 ;Yκ−1
0

)

=
κ−1∑

b=0

I
(
Xb;Y

κ−1
0

∣
∣ Xb−1

0

)

≥
κ−1∑

b=0

I(Xb;Yb), (73)

where the first inequality follows by restricting the number of observables; and where the last
inequality follows by restricting the number of observables and by noting that {Xb} is IID.
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We continue by lower bounding each summand on the RHS of (73). We use again the chain
rule and that reducing observations cannot increase mutual information to obtain

I(Xb;Yb) =

τ∑

ν=1

I
(
X̃bτ+ν;Yb

∣
∣ X̃bτ+ν−1

bτ+1

)

≥
τ∑

ν=1

I
(
X̃bτ+ν;Yb(L+τ)+L+ν

∣
∣ X̃bτ+ν−1

bτ+1

)

≥
τ∑

ν=1

I
(
X̃bτ+ν;Yb(L+τ)+L+ν

)
, (74)

where we have additionally used in the last inequality that X̃bτ+1, . . . , X̃(b+1)τ are independent.
Defining

Wbτ+ν ,

b(L+τ)+L+ν−1
∑

ℓ=1

H
(ℓ)
b(L+τ)+L+νXb(L+τ)+L+ν−ℓ + Zb(L+τ)+L+ν , (75)

each summand on the RHS of (74) can be written as

I
(
X̃bτ+ν;Yb(L+τ)+L+ν

)
= I
(
X̃bτ+ν ;H

(0)
b(L+τ)+L+νX̃bτ+ν +Wbτ+ν

)
. (76)

A lower bound on (76) follows from the following lemma.

Lemma 6. Let the random variables X, H, and W have finite second moments. Assume that
both X and H are of finite differential entropy. Finally, assume that X is independent of H;
that X is independent of W ; and that X⊸−−H⊸−−W forms a Markov chain. Then

I(X ;HX +W ) ≥ h(X)− E
[
log |X |2

]
+ E

[
log |H |2

]
− E

[

log

(

πe

(

σH +
σW

|X |

)2)
]

, (77)

where σ2
H ≥ 0 and σ2

H > 0 denote the variances of W and H. (Note that the assumptions
that X and H have finite second moments and are of finite differential entropy guarantee that
E
[
log |X |2

]
and E

[
log |H |2

]
are finite, see [2, Lemma 6.7e].)

Proof. See [10, Lemma 4].

It can be easily verified that for the channel model given in Section 2 and for the above
coding scheme the lemma’s conditions are satisfied. We therefore obtain from Lemma 6

I
(
X̃bτ+ν ;H

(0)
b(L+τ)+L+νX̃bτ+ν +Wbτ+ν

)
≥ h

(
X̃bτ+ν

)
− E

[

log |X̃bτ+ν|2
]

+ E

[

log
∣
∣H

(0)
b(L+τ)+L+ν

∣
∣
2
]

− E

[

log

(

πe

(√
α0 +

√

E[|Wbτ+ν |2]
|X̃bτ+ν|

)2)
]

. (78)

Using that the differential entropy of a circularly-symmetric random variable is given by (see [2,
Eqs. (320) & (316)])

h
(
X̃bτ+ν

)
= E

[

log |X̃bτ+ν |2
]

+ h
(
log |X̃bτ+ν|2

)
+ log π, (79)

and evaluating h(log |X̃bτ+ν |2) for our choice of X̃bτ+ν , yields for the first two terms on the RHS
of (78)

h
(
X̃bτ+ν

)
− E

[

log |X̃bτ+ν|2
]

= log log P1/τ + log π. (80)

We next upper bound

E
[
|Wbτ+ν |2

]

|X̃bτ+ν|2
=

L∑

ℓ=1

αℓ

E
[
|Xb(L+τ)+L+ν−ℓ|2

]

|X̃bτ+ν|2
+

b(L+τ)+L+ν−1
∑

ℓ=L+1

αℓ

E
[
|Xb(L+τ)+L+ν−ℓ|2

]

|X̃bτ+ν |2

+
σ2

|X̃bτ+ν |2
. (81)
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To this end, we note that for our choice of {Xk} and by the assumption that P > 1, we have

E
[
|Xℓ|2

]
≤ P, ℓ ∈ N, (82)

E
[
|Xb(L+τ)+L+ν−ℓ|2

]
≤ P

(ν−ℓ)/τ , ℓ = 1, . . . , L, (83)

and
|X̃bτ+ν|2 ≥ P

(ν−1)/τ ≥ 1, (84)

from which we obtain

E
[
|Xb(L+τ)+L+ν−ℓ|2

]

|X̃bτ+ν |2
≤ P

(ν−ℓ)/τ

P
(ν−1)/τ

≤ 1, ℓ = 1, . . . , L (85)

and
E
[
|Xb(L+τ)+L+ν−ℓ|2

]

|X̃bτ+ν|2
≤ P, ℓ = L+ 1, . . . , b(L+ τ) + L+ ν − 1. (86)

Applying (84)–(86) to (81) yields

E
[
|Wbτ+ν |2

]

|X̃bτ+ν |2
≤

L∑

ℓ=1

αℓ +

b(L+τ)+L+ν−1
∑

ℓ=L+1

αℓ P+ σ2

≤ α+
∞∑

ℓ=L+1

αℓ P+ σ2

≤ α+ 2σ2, (87)

with α being defined in (26). Here the second inequality follows because αℓ, ℓ ∈ N0 and P are
nonnegative, and the last inequality follows from (72).

By combining (78) with (80) & (87), and by noting that by the stationarity of
{
H

(0)
k , k ∈ N

}

E

[

log
∣
∣H

(0)
b(L+τ)+L+ν

∣
∣
2
]

= E

[

log
∣
∣H

(0)
1

∣
∣
2
]

,

we obtain the lower bound

I
(
X̃bτ+ν;H

(0)
b(L+τ)+L+νX̃bτ+ν +Wbτ+ν

)
≥ log log P1/τ + E

[

log
∣
∣H

(0)
1

∣
∣
2
]

− 1

− 2 log
(√

α0 +
√

α+ 2σ2
)
. (88)

Note that the RHS of (88) neither depends on ν nor on b. We therefore have from (88), (74),
and (73)

I
(
Xn

1 ;Y
n
1

)
≥ κτ log log P1/τ + κτΥ, (89)

where we define Υ as

Υ , E

[

log
∣
∣H

(0)
1

∣
∣
2
]

− 1− 2 log
(√

α0 +
√

α+ 2σ2
)
. (90)

Dividing the RHS of (89) by n, and computing the limit as n tends to infinity, yields the lower
bound

C(SNR) ≥ τ

L+ τ
log log P1/τ +

τ

L+ τ
Υ, P > 1, (91)

where we have used that limn→∞ κ/n = 1/(L+ τ). This proves Proposition 5.

6.2 Condition for Unbounded Capacity

We use Proposition 5 to prove Part (ii) of Theorem 1. In particular, we show that if

lim
ℓ→∞

1

ℓ
log

1

αℓ
= ∞, (92)
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then, by cleverly choosing L(P) and τ , the lower bound (28), namely,

C(SNR) ≥ τ

L(P) + τ
log log P1/τ +

τ

L(P) + τ
Υ, P > 1

(where Υ is defined in (90)), can be made arbitrarily large as SNR tends to infinity. To this end,
we first note that (92) implies that for every 0 < ̺ < 1 we can find an ℓ0 ∈ N such that

αℓ < ̺ℓ, ℓ ≥ ℓ0. (93)

By choosing

L(P) =

⌈

log
(
P/σ2 ̺/(1− ̺)

)

log(1/̺)

⌉

(94)

(where ⌈a⌉ denotes the smallest integer that is greater than or equal to a) and τ = L(P), we
obtain from (28) the lower bound

C(SNR) ≥ 1

2
log

log P
⌈
log
(
P/σ2 ̺/(1−̺)

)

log(1/̺)

⌉ +
1

2
Υ, P > 1. (95)

Taking the limit as SNR (and hence also P = σ2SNR) tends to infinity, yields

lim
SNR→∞

C(SNR) ≥ 1

2
log log

1

̺
+

1

2
Υ. (96)

Since this holds for every 0 < ̺ < 1

sup
SNR>0

C(SNR) = ∞. (97)

It remains to show that {αℓ} and our choice of L(P) (94) satisfy the conditions (26) & (27)
of Proposition 5, namely,

∞∑

ℓ=0

αℓ < ∞ and

∞∑

ℓ=L(P)+1

αℓ P ≤ σ2.

It follows immediately from (5) and (93) that {αℓ} satisfies the first condition (26):

∞∑

ℓ=0

αℓ =

ℓ0−1∑

ℓ=0

αℓ +
∞∑

ℓ=ℓ0

αℓ < ℓ0 sup
ℓ∈N0

αℓ +
∞∑

ℓ=ℓ0

̺ℓ = ℓ0 sup
ℓ∈N0

αℓ +
̺ℓ0

1− ̺
< ∞. (98)

In order to show that L(P) satisfies the second condition (27), we first note that by (93)

∞∑

ℓ=ℓ′+1

αℓ <
∞∑

ℓ=ℓ′+1

̺ℓ = ̺ℓ
′ ̺

1− ̺
, ℓ′ ≥ ℓ0 − 1. (99)

Since L(P) tends to infinity as P → ∞, it follows that L(P) is greater than (ℓ0−1) for sufficiently
large P. Furthermore, (94) implies

̺L(P)
̺

1− ̺
P ≤ σ2. (100)

We therefore obtain from (99) and (100)

∞∑

ℓ=L(P)+1

αℓ P < ̺L(P)
̺

1− ̺
P ≤ σ2, (101)

thus demonstrating that L(P) satisfies (27).
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6.3 The Pre-LogLog

We use Proposition 5 to prove Theorem 3. To this end, we first note that because the number
of paths is finite, we have for some L ∈ N0

αℓ = 0, ℓ > L, (102)

which implies that
∞∑

ℓ=0

αℓ =
L∑

ℓ=0

αℓ ≤ (L+ 1) sup
ℓ∈N0

αℓ < ∞ (103)

and
∞∑

ℓ=L+1

αℓP = 0 ≤ σ2. (104)

Consequently, it follows from (28) of Proposition 5 that the capacity is lower bounded by

C(SNR) ≥ τ

L+ τ
log log P1/τ +

τ

L+ τ
Υ, P > 1. (105)

Dividing by log log SNR, and computing the limit as SNR → ∞, yields

lim
SNR→∞

C(SNR)

log log SNR
≥ τ

L+ τ
, (106)

where we have used that for any fixed τ

lim
SNR→∞

log log P1/τ

log log SNR
= 1.

The lower bound on the capacity pre-loglog

Λ , lim
SNR→∞

C(SNR)

log log SNR
≥ lim

SNR→∞

C(SNR)

log log SNR
≥ 1 (107)

follows then by letting τ tend to infinity. Together with the upper bound Λ ≤ 1, which was
derived in Section 5.2, this proves Theorem 3.

7 Conclusion

We studied the high-SNR behavior of the capacity of noncoherent multipath fading channels. We
demonstrated that, depending on the decay rate of the sequence {αℓ}, capacity may be bounded
or unbounded in the SNR. We further showed that if the number of paths is finite, then at
high SNR capacity grows double-logarithmically with the SNR, and the capacity pre-loglog is
irrespective of the number of paths. The picture that emerges is as follows:

• If the sequence of variances {αℓ} decays exponentially or slower, then capacity is bounded
in the SNR.

• If the sequence of variances {αℓ} decays faster than exponentially, then capacity is un-
bounded in the SNR.

• If the number of paths is finite, then the capacity pre-loglog is equal to 1, irrespective of
the number of paths.

The conclusions that can be drawn from these results are twofold. First, multipath channels
with an infinite number of paths and multipath channels with a finite number of paths have
in general completely different capacity behaviors at high SNR. Indeed, at high SNR, if the
number of paths is finite, then capacity grows double-logarithmically with the SNR, whereas
if the number of paths is infinite, then capacity may even be bounded in the SNR. Thus,
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while for low or for moderate SNR it might be reasonable to approximate a multipath channel
with infinitely many paths by a multipath channel with only a finite number paths, this is not
reasonable when the SNR tends to infinity. The number of paths that are needed to approximate
a multipath channel typically depends on the SNR and may grow to infinity as the SNR tends
to infinity.

Second, the above results indicate that the high-SNR behavior of the capacity of multipath
fading channels depends critically on the assumed channel model. Thus when studying such
channels at high SNR, the channel modeling is crucial, as slight changes in the channel model
might lead to completely different capacity results.
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A Appendix to Section 5.1

To prove (42), we lower bound

h

(
k−1∑

ℓ=0

H
(ℓ)
k Xk−ℓ + Zk

∣
∣
∣
∣
∣
Xn

1 = xn
1 ,H

k−1
1 = hk−1

1

)

(108)

for a given hk−1
1 , and average then the result over Hk−1

1 . Let Hk denote the set

Hk ,
{
H

(ℓ)
k , ℓ = 0, . . . , k − 1 : αℓ = 0

}
. (109)

We have

h

(
k−1∑

ℓ=0

H
(ℓ)
k Xk−ℓ + Zk

∣
∣
∣
∣
∣
Xn

1 = xn
1 ,H

k−1
1 = hk−1

1

)

≥ h

(
k−1∑

ℓ=0

H
(ℓ)
k Xk−ℓ + Zk

∣
∣
∣
∣
∣
Xn

1 = xn
1 ,H

k−1
1 = hk−1

1 ,Hk

)

= h

(
∑

ℓ∈Sk

H
(ℓ)
k Xk−ℓ + Zk

∣
∣
∣
∣
∣
Xn

1 = xn
1 ,H

k−1
1 = hk−1

1 ,Hk

)

≥ log

(
∑

ℓ∈Sk

e
h

(

H
(ℓ)
k

Xk−ℓ

∣
∣
∣Xn

1 =xn

1 ,
{
H

(ℓ)

k′

}
k−1

k′=1
=
{
h
(ℓ)

k′

}
k−1

k′=1

)

+ eh(Zk)

)

, (110)

where Sk is defined in (41). Here the first inequality follows because conditioning cannot increase
differential entropy; the following equality follows because differential entropy is invariant under
deterministic translation [4, Thm. 9.6.3], and because the terms where xk−ℓ = 0 do not contribute
to the sum; and the last inequality follows by the entropy power inequality [4, Thm. 16.6.3], and
because the processes

{
H

(0)
k , k ∈ N

}
,
{
H

(1)
k , k ∈ N

}
, . . .

are independent. (Note that, for a given Hk−1
1 = hk−1

1 , the conditional entropies on the RHS
of (110) are possibly infinite. However, by (6) this event is of zero probability and is therefore
immaterial to (110) when averaged over Hk−1

1 .)
Since the processes of the path gains are independent and jointly independent of Xn

1 , we

can compute the expectation of (110) over Hk−1
1 by averaging (110) first over (H

(0)
1 , . . . , H

(0)
k−1),

then averaging the result over (H
(1)
1 , . . . , H

(1)
k−1), and so on. To lower bound the individual

expectations, we note that the function

f(x) = log
(
ex + ζ

)
, x ∈ R (111)
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is convex for all ζ > 0. Thus, by setting for each ℓ′ = 0, . . . , k − 1

ζℓ′ =
∑

ℓ∈Sk,
ℓ<ℓ′

e
h

(

H
(ℓ)
k

Xk−ℓ

∣
∣
∣X

n

1 =xn

1 ,
{
H

(ℓ)

k′

}
k−1

k′=1

)

+
∑

ℓ∈Sk,
ℓ>ℓ′

e
h

(

H
(ℓ)
k

Xk−ℓ

∣
∣
∣Xn

1 =xn

1 ,
{
H

(ℓ)

k′

}
k−1

k′=1
=
{
h
(ℓ)

k′

}
k−1

k′=1

)

+ eh(Zk), (112)

it follows from Jensen’s inequality

E{
H

(ℓ′)

k′

}
k−1

k′=1

[

log

(

I {ℓ′ ∈ Sk} e
h

(

H
(ℓ′)
k

X
k−ℓ′

∣
∣
∣Xn

1 =xn

1 ,
{
H

(ℓ′)

k′

}
k−1

k′=1
=
{
h
(ℓ)

k′

}
k−1

k′=1

)

+ ζℓ′

)]

≥ log

(

I {ℓ′ ∈ Sk} e
h

(

H
(ℓ′)
k

X
k−ℓ′

∣
∣
∣Xn

1 =xn

1 ,
{
H

(ℓ′)

k′

}
k−1

k′=1

)

+ ζℓ′

)

, ℓ′ = 0, . . . , k − 1, (113)

where I {·} denotes the indicator function, i.e.,

I {statement} =

{
1 if statement is true
0 if statement is false.

(114)

Averaging (110) over Hk−1
1 , and employing (113) to compute this average, yields thus

h

(
k−1∑

ℓ=0

H
(ℓ)
k Xk−ℓ + Zk

∣
∣
∣
∣
∣
Xn

1 = xn
1 ,H

k−1
1

)

≥ log

(
∑

ℓ∈Sk

e
h

(

H
(ℓ)
k

Xk−ℓ

∣
∣
∣Xn

1 =xn

1 ,
{
H

(ℓ)

k′

}
k−1

k′=1

)

+ eh(Zk)

)

. (115)

This proves the lower bound (42).
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