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INFORMATION, ENERGY AND DENSITY FOR AD HOC SENSOR NETWORKS OVER
CORRELATED RANDOM FIELDS: LARGE DEVIATIONS ANALYSIS

Youngchul SunigH. Vincent Poor and Heejung Yu

ABSTRACT properties, we investigate the behavior of sensor networks
Using large deviations results that characterize the amoundeployed over correlated random fields for statisticalrinfe
of information per node on a two-dimensional (2-D) lattice, ence.
asymptotic behavior of a sensor network deployed over a
correlated random field for statistical inference is inivest 1.1. Related Work
gated. Under a 2-D hidden Gauss-Markov random field Large deviations analysis of Gauss-Markov processes is-Gau
model with symmetric first order conditional autoregres- sian noise has been considered previously. (See [2] and
sion, the behavior of the total information [nats] and egyerg references therein.) However, most work in this area con-
efficiency [nats/J] defined as the ratio of total gathered in- siders only one-dimensional (1-D) signals or time series.
formation to the required energy is obtained as the coverageA closed-form expression for the asymptotic KLI rate was

area, node density and energy vary. obtained and its properties were investigated for 1-D hid-
den Gauss-Markov random proces$és [2]. Large deviations
1. INTRODUCTION analyses were used to examine the issues of optimal sensor

density and optimal sampling in a 1-D signal modelfih [3]

and [4]. For a 2-D setting, an error exponent was obtained
for the detection of 2-D GMRFs in[5], where the sensors

are located randomly and the Markov graph is based on the
nearest neighbor dependency enabling a loop-free graph. In
this work, however, measurement noise was not considered.
Our work here focuses on the analysis of the fundamental

In this paper, we investigate the fundamental behavior of a
flat multi-hopad hocsensor network deployed over a cor-
related two-dimensional (2-D) random field for statistical
inference. In particular, we examine the amount of informa-
tion obtainable from a sensor network distributed over a 2-D
Gauss-Markov random field (GMRF) and related trade-offs

in various asymptotic settings. We consider the Kullback- . i N
Leibler information (KLI) and mutual information (MIJT1] behavior of 2-D sensor networks deployed for statistical in

: : . _ference via new large deviations results for 2iBdenGM-
as our information measures. Our approach to calculating

. . o ~“RFs, which enable us to investigate the impact of field corre-
the total obtainable information is based on the large devi- _.. . . .
lation and measurement signal-to-noise ratio (SNR) on the

ations principle. That is, for large networks the total info . .
o n . . information.

mation is approximately given by the product of the number
of sensors and the asymptotic per-sensor information. How- 2. BACKGROUND AND SIGNAL MODEL
ever, a closed-form expression for the asymptotic peresens
information (or asymptotic information rate in 2-D) is not To simplify the problem and gain insights into behavior in
available for general 2-D signals. To address this problem,2-D, we assume that sensors are located on a 2-D lattice
we adopt theconditional autoregression (CAR) modaid Z, = [0:1:n—1]? as shown in Fig[J1. We assume
corresponding correlation model for the signal, and dexive that the signal samples of sensors form a (discrete-index) 2
closed-form expression for the asymptotic informatioerat D GMRF and that each sensor has Gaussian measurement
in 2-D. We do so by exploiting the spectral structure of the noise. The (noisy) measuremeéfj of Sensoti;j on the 2-D
CAR signal and the relationship between the eigenvalues oflattice Z,, is given by
the block circulant approximation to a block Toeplitz matri .
describing the 2-D correlation structure. Based on the de- Yij = Xij + Wiy, 4j € In, @
rived expressions for asymptotic information rate andrthei where {IW;;} represents independent and identically dis-
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Definition 1 (GMRF [6]) A random vectoX = (X7, Xs, It is shown that the GMRF defined by the CAR modg! (4) -
-, X,) € R" is a Gauss-Markov random field with re- () is a zero-mean stationary Gaussian process.,omith

spect to (w.r.t.) a labelled grapg = (v, &) with meanu the power spectral densitvl[6
and precision matri>xQ > 0,g|f its probability density func- P P (6]

tion Is given by 1 1
flwr,we) = —5 . . (6)
pX) = () QI e (K- wTRX - ), @ 4% Y ijer., O exp(—eliwn + jwa))
and Qi # 0 <= {l,m} € & forall [ # m. Here,v is if {01 # 0} < 00, 055 =0_i_j, o0 >0, %)
the set c_>f all n_ode$1, 2, ,n}_ and¢ is the set of edggs {61, } is S0 thatf (w1, w2) > 0, V(wi,ws) € (—, ]2 (8)
connecting pairs of nodes, which represent the conditional
dependence structure. Henceforth, we assume that the 2-D stochastic sigia/}

in (@) is given by a stationary GMRF defined by the CAR
model [@) - [5) and(7) {{8).

3. ASYMPTOTIC INFORMATION RATES AND
THEIR PROPERTIES

In this section, we derive a closed-form expression for the
asymptotic KLI rate and Ml rate in the mod€l (1), defined
Fig. 1. Sensors on a 2-D Latticg,: Hidden Markov Struc-  as

ture

K= lim 1 log @({Yij,ij € 7,}) a.s. undepy, and
The 2-D indexing schemsg in (@) can be appropriately n=oo [T 7 pr
converted to an 1-D scheme to apply Definitidn 1. From
here on, we use the 2-D indexing scheme for convenience. | = li_)m |I_1|I({Xij’ ij € I, }; {Yij,i5 € T, }),
Definition 2 (Stationarity) A GMRF{.X;;} ona2-Ddou-  respectively. For the MI, the signal model (1) is directly ap
bly infinite latticeZ, is said to be stationary if the mean plicable, whereas for the KLI the probability density func-
vector is constantan@ov (X, X/ ;/) = E{(X;;—-E{X;;}) tions of the null (noise-only) and alternative (signalslu
(Xvjy —E{Xvj})} =c(i —4',j5 —j') for some function  noise) distributions are given by
().
pO(}/i') : }/ij = Wij, ij € Tn,

For a 2-D stationary GMREX;;, }, the covariancé~y;; } m(Yi;) : Yij =X+ Wy, ij € L. 9)
is defined asy;; = E{Xi; Xiyiji;} = E{XooXi;},
which does not depend ah or ;' due to the stationarity.  The following closed-form expressions for the asymptotic
The spectral density function of a zero-mean and stationaryjnformation rates in the spectral domain have been obtained
GMRF onZ. with covariancey;; is defined as in [7] by exploiting the spectral structure of the CAR sig-

nal and the relationship between the eigenvalues of block
flwr,wy) = 4_12 Z yij exp(—t(iwy + jwa)),  (3) circulant and block Toeplitz matrices representing 2-D cor
T ieTa relation structure.

where: = /—1and(wy,ws) € (—, 7]?. Note thatthisisa ~ Theorem 1 For the model[(B) with the signal given iy (4) -
2-D extension of the conventional 1-D discrete-time Faurie (), assuming that conditionsl(7)[(8) hold, the asymptotic

transform (DTFT). KLl rate is given by
1 7’ T /1 o? 4+ ar? f(w ,w
Definition 3 (The Conditional Autoregression) AGMRF X = — [ [ (5 log % (10)
{X;;} is said to be a conditional autoregression (CAR) if it T , .
is specified using a set of full conditional normal distribu- + Em - §>dW1dw27

tions with mean and precision: L e
- //D(N(o,sg(wl,wz))n/\/(o,s;J(wl.,m))dwldwz,

1 4n?
B{X:;|X_s} = o S 0y Xy, @) 4
i'j' €Too #00 . .
N ’ whereD(-||-) denotes the Kullback-Leibler divergence.
PI’EC{XZ']“X,Z']‘} = 6oo >0, 5)

whereX_;; denotes the set of all variables excefy;. Proof: In [8].



As a by-product of the proof of the above theorem, we Corollary 1 The asymptotic KLI and MI rates for the SF-

have the asymptotic Ml rate given by CAR 2D signal model are given by
SNR
_ 1 T 110 o’ +47T2f(“1’w2)dw duws. ez 4#2/ A ( ( (2/m) K (1) (1 — 2€ cos w1 —2<cosw2>)
12 g o2 10W2 L1 1 - i)dw do )
(11) 21 RO ey 2

Theorent ] is a 2-D extension of the asymptotic KLI rate of
1-D hidden Gauss-Markov model obtainedin [2], and the and
asymptotic KLI rate[(1I0) can be explained using a frequency ,__ / I _1 . (1 N SNR ) dordn.
binning argument. Specifically, for each 2-D frequency bin an? G/mREQQ = 2ccoswy = 2ccoswa) J

dwidws, the spectra are flat, i.e., the signals are independentrespectively.
and Stein’s lemma can be applied for the bin. The overall
KLI is the sum of contributions from each segment. Note that the SNR and correlation are separatedin (14)-

(@3), which enables us to investigate the effects of each ter
3.1. Symmetric First Order Conditional Autoregression separately.

To investigate the properties of the asymptotic KLI and MI

rates as functions of field correlation and SNR, we further 3.2. Properties of the asymptotic KL and Ml rates (X,

consider the symmetric first order conditional autoregres- and )
sion (SFCAR), defined by the conditions First, it is readily seen from Corollafyl 1 th&€, and I,
are continuously differentiablé* functions of the edge de-
E{X|X_ i} = é(XiJfl,j + X1, + Xij41+ Xi;—1), Ppendence factog (0 < ¢ < 1/4) for a given SNR since
k f @ — K(z)is acontinuously differentiabl@> function
Pred X;;|X i} = k>0, for0 < z < 1[10]. The values ok, at the extreme correla-

tions are given by noting that' (0) = 7 and K (1) = oc.

where0 < A < Z. (This is a sufficient condition to sat-  Therefore, in the i.i.d. cas€ (= 0), the corollary reduces

isfy (@) - (8).) Here,fopo = v andfy1 o = 6_10 = 6p1 = to Stein’s lemma as expected, &Kd is given by

6o.—1 = —A. In the SFCAR model, the correlation is sym- .

metric for each set of four neighboring sensor nodes. TheX.|c=o = 5 log(1+SNR)+

SFCAR model is a simple but meaningful extension of the

1-D autoregression (AR) model which has the conditional Inthei.i.d. case, the asymptotic Ml rate is given by the well

causal dependency only on the previous sample. Here inknown formula/s|¢—o = 4 log(1-+SNR). For the perfectly

the 2-D case we have conditional dependence on four neighcorrelated case((= 1/4), on the other handi(, = 0 and

boring nodes in the four (planar) directions, capturing 2-D I, = 0. (In this case as well as in the i.i.d. case, the two-

correlation structure. The spectrum of the SFCAR signal is dimensionality is irrelevant.) The limiting behavior ofeth

given by asymptotic information rates is given by Taylor’s theorem.
Due to the continuous differentiability, we have

Ko@) = - (1/4=Q) +o(]1/4=(]), (16)

I, = - (1/4- 1/4 —(J), 17
where theedge dependence factQis defined as © - (1/4=¢)+oll/4=< 7
AN for some constants, andc;, as¢ — 1/4. Similarly, we

1 1
20+S\R 2 D(N(0,1)]|N(0,14SNR)).

1
4A72k(1 — 2 coswy — 2 coswa)’

flwi,wa) = (12)

(= P 0<¢<1/4. (13) also have the linear limiting behavior f6€; and I, in a
neighborhood of = 0 with non-zero limit values, a$ —
Here,( = 0 corresponds to the i.i.d. case wheréas 1/4 0. Thatis,
corresponds to the perfectly correlated case. Therefoee, t
correlation strength can be captured in this single quantit Ks(¢) = Ks(0)+ cal + 0(0), (18)
¢ for SFCAR signals. The power of the SFCAR is obtained L) = I,0) 4 ¢ 4 o(0), (19)

using the inverse Fourier transform via the relationshjp (3
and is given byP, = v = %(:0, (0 <(¢< %) where for somecy andc), as¢ — 0. For intermediate values of

K(-) is the complete elliptic integral of the first kindI[9]. ~correlation, it is seen that at high SNIR, is monotonically
The SNR is given by SNR- P _ 2K(4C . Using [10) and decreasing a¢g increases. At low SNR, on the other hand,

the SNR, we obtain the asymptotlc KLl and M rates for the Correlation is beneficial to the performance.

SFCAR signal, given in the following corollary to Theorem  With regard toX; and/; as functions of SNR, the be-
1, also from[[7]. havior of X is given by the following theorem.



Theorem 2 The asymptotic KLI rat&, for the hidden SF-

The correlation functiorl(21) can be regarded as the repre-

CAR model is continuous and monotonically increasing as sentative correlation in 2-D, similar to the exponentiat-co

SNR increases for a given edge dependence fattet
¢ < 1/4. Moreover, X, increases linearly with respect to
%log SNR as SNR~ oo. As SNR decreases to zero, on

relation functione=44» in 1-D. Both functions decrease
monotonically w.r.td,,. However, the 2-D correlation func-
tion is flat atd,, = 0 [11]. Further, we have a continuous

the other handX, converges to zero with the convergence and differentiable mapping : p — ¢ from the edge cor-

rate Ks(SNR = c; - SNR + o(SNR) for some constant
cs as SNR— 0. The asymptotic Ml ratd, has similar

properties as a function of SNR, i.e., it is a continuous and
monotonically-increasing function of SNR. At high SNR, it

increases with rat% log SNR, whereas it decreases to zero
with rate of convergenck (SNR = ¢ - SNR+ o(SNR for
some constant; as SNR— 0.

Proof: In [8].

Note that the limiting behavior as SNR 0 is different
for X and I,; X, decays to zero quadratically whilg
diminishes linearly.

4. SCALING LAWS IN AD HOC SENSOR
NETWORKS OVER CORRELATED RANDOM
FIELD

relation factorp to the edge dependence factorgiven by
[¢]
2/m)K(4¢) — 1
- GmREO -1 g,
4(2/m)CK(4¢)

which maps zero and one to zero and 1/4, respectively. Thus,
we have( = ¢(f(d,)), and for given physical parameters
(with a slight abuse of notation),

Ks(SNR ¢) = X (SNR g(f(dn))) = Ks(SNR ).

(And, similarly forZ,.) We will use the arguments SNR and
¢ for X, andI, properly if necessary.

(23)

4.2. Asymptotic behavior

In the following, we summarize the assumptions for the pla-
narad hocsensor network that we consider.

Based on the results in the previous sections, we are nowA-1) n* sensorsare located onthe gfid= [0 : 1 : n—1]*

ready to answer some fundamental questions in the design

of sensor networks for statistical inference about the tnde
lying stochastic field.

4.1. Physical correlation model
The actual

stochastic differential equation (the stochastic Lap&pea-

tion)J [L1]

(@) G o=t

whereu(z, y) is the 2-D white zero-mean Gaussian pertur-

bation andx > 0 is the diffusion rate. By solving the SDE,
the edge correlation factop is given, as a function of the

sensor spacing,,, by [17]
Y10

Yoo

A 7o1

= f(dn) = adnKl (Oédn),
7Yoo

(21)

p =

where K (+) is the modified Bessel function of the second
kind whose asymptotic behavior is given by

{Kl(x) — \/aze " asz — oo,

Ki(z) — 1/z asz — 0. (22)

INote that the solution of {20) is circularly symmetric, j.i¢.depends
only onr = /22 + y2, and samples of the solutiak (x, v) of (20) on
lattice Z,, do not necessarily form a discrete-index SFCAR GMRF. How-
ever, [20) is still the continuous-index counterpart of 8 CAR model,
and we use its correlation function for the SFCAR model.

hysical correlation for the SFCAR model is
given by solving the corresponding continuous-index 2-D

with spacingd,,, as shown in Fig.[]1, and a fusion
center is located at the centgn /2|, [n/2]).

(A.2) The observationgY;;} at sensor nodes form a 2-D
hidden (discrete-index) SFCAR Gauss-Markov ran-
dom field on the lattice for eaaf), > 0, and the edge
dependence factor is given By (21) ahdl (23).

(A.3) The fusion center gathers the measurement from all
nodes using the minimum hop routing. Note that the
links in Fig. 1 are not only the Markov dependence
edges but also the routing links. The minimum hop
routing requires a hop count ¢f — [n/2]| + |7 —
|n/2]| to deliverY;; to the fusion center.

(A.4) The communication energy per litk.(d,,) = Eyd?,
wherer > 2 is the propagation loss factor in wireless
channel.

(A.5) Sensing requires energy, and the sensing energy per
node is denoted b¥,. Moreover, we assume that the
measuremenBNR increases linearly w.r.tEs, i.e.,
SNR = BE, for some constant.

Henceforth, we consider various asymptotic scenarios and
investigate the fundamental behavior of the hocsensor
network deployed over a correlated random field for statis-
tical inference under assumptio(.1)-(A.5). (Proofs are
omitted due to limited space.)

The sensor density,, onZ, is given by, = m
Assuming that the network is sufficiently large, the total



information about the underlying field obtainable from the no significant gain by increasing the sensor spacing further

network is given by after some value. Hence, it is not effective in terms of en-
) ) ergy efficiency to deploy a very sparse network aiming at
KLIT = n"K, and Ml = n”I5, (24)  less correlated samples at high SNR.
and the total consumed energy in the network is given by
0.8 T T T T T T T T 10
n—1ln—1
E = n’Es+Eq(dn)Y Y (li—[n/2]|+1j - ln/2))), i
i=0 j=0 {8
= n’E,+0(n*)E.(d,). (25)

n
(22}

Note that the knowledge of per-node informati&iy and
I, and their properties w.r.t. SNR and sensor spadinm
(24) is critical for further development, and it is provided
the previous sections.

We begin with the increasing area case.

n
~

Per-sensor information K
Per-link communication energy E

Theorem 3 (Infinite area and fixed density) For anad hoc ,

sensor network with a fixed and finite node density, the to- 0O =22 5 6 7 8 9§ 1

tal amount of information increases linearly as the area in- n

creases, but under both information measures the amount of

harvested information per unit energy decays to zero with Fig. 2. Per-node information and per-link communication

rate energy w.r.t. sensor spacing, (SNR =10 dB,a = 1,
n=0 (area‘l/Q) , (26) ¢y =1)

for any non-trivial diffusion ratev, i.e.,0 < a < oo as we

) The per-link communication energy can be made arbi-
increase the area.

trarily small by decreasing the sensor spacing. To investi-
gate the effect of diminishing communication enefgyas
d, — 0, we now consider the asymptotic case in which

mmﬁsgﬁsﬁ "?'d" _>t EO Jg;;alse Is of palrt|tCl:anr mtelrest "?ltldthe node density goes to infinity for a fixed coverage area.
'9 since at hig €ss correlated samples yield, ) ;g case, the per-node information decays to zero as

larger per-node information. However, the per-sensorinfo d, — 0since¢ — 1/4asd, — 0, andX,(¢) and ,(C)

E“'ﬁ'o'? 'S Upper bl;)u?hde;j ﬁ% - iﬁ and the asymptotic converge to zero as— 1/4, as shown in Sectidn 3.2. The
ehavioris given by the foflowing theorem. asymptotic behavior in this case is given by the following
theorem.

Next, we consider the case in which the node density di-

Theorem 4 Asd,, — oo, the per-node informatiofi, and
I, converge tdK,(0) = D(N(0,1)||N (0,1 + SNR) and o . o
I,(0) = %bg SNR, respectively, and the convergence rate T_heorem 5 (I.nf|n|te. density model) For the infinite de_n—

is given by sity model with a fixed coverage area, the per-node infor-

mation decays to zero with rate

Ke(dn) = Ke(0) — car/dnedn +o< dne*adn) ,(27)
_ -1 -1
Ldn) = 1,(0) ~ dyv/dme 4 4o (Ve ™), (28) Ks = cspiy +o(un'), (29)
for constants:, ¢, > 0 depending on the SNR. for some constant; as the node density,, — co. Hence,

the amount of total information per unit area (nats) con-

Theoren# can be proved usidgI8] 19) dnd [21, 22), verges to the constant as.,, — oo. Furthermore, in the
and explains how much gain is obtained from less corre- case of no sensing energy, a non-zero energy efficigiy
lated observations by increasing the sensor spacing in 2-Dachievable if the propagation loss facter= 3, and even an
Fig. [@ showsK, and E.. as functions ofd,, for o = 1, infinite energy efficiency is achievable/it> 3 asy,, — oo
c4 = 1and 10 dB SNR. The gain in information is given by for fixed are
Vd, e~ for larged,,, whereas the required per-link com-
munication energy increases without bound, i.(d,,) = The finite total information for the infinite density and
Eod” (v > 2). Since the exponential term is dominant in fixed area model follows our intuition. The maximum in-
the gain asi, increases, the information gain obtained by ~ 20¢ course, this depends on the assumptioofdn) = Eod, for
increasingd,, decreases almost exponentially, and there is anyd,, > 0. However, this assumption may not be valid for sraall




formation provided by the samples from the continuous-
index random field does not exceed the information between
X (z,y) andY (x,y) except for the case of spatially white
fields. It is common that the propagation loss factas 3

for near field propagation (i.ed,, — 0). Hence, infinite en-
ergy efficiency is achievable as we increases the node den
sity for a fixed area considering only communication en-
ergy. Note that the total amount of information converges
to a constant as we increases the node density. So, the infis
nite energy efficiency is achieved by diminishing communi-
cation energy ad,, — 0. Considering the sensing energy,
however, infinite energy efficiency is not feasible since we
have in this case

Cs +0(1) 1

E =n’E; ryandn = o
B O AN = e ey

v>2,

(30)
asn — oo for fixed coverage area. In this case the sens-
ing energyn? E, is the dominant factor for low energy effi-
ciency, and the energy efficiency decreases to zero with rate,,
O (pp'). Thus, it is critical for a densely deployed sen-
sor network to minimize the sensing energy or processing
energy for each sensor.

(2]

(4]

In the infinite density model, we have observed that en-
ergy is an important factor in efficiency. Now we investi- 5
gate the change of total information w.r.t. energy. We fix
the node density and consider two scenarios to increase the
required energy: One is to fix the coverage area also and®l
increase the sensing energy, and the other is to fix the sens-
ing energy and increase the coverage area. We assume th&t
the network size is sufficiently large so that our asymptotic
analysis is valid. The energy asymptotic behavior for two

s o : 8
scenarios is summarized in the following theorem. ]

Theorem 6 As we increase the total ener@yconsumed by
a sensor network with a fixed node density and fixed area,
the total information increases with rate

9]

5. CONCLUSIONS

We have analyzed the asymptotic behavior of ad hoc sensor
networks deployed over correlated random field for statisti
cal inference. Using our large deviations results that-char
acterize the asymptotic information rate in 2-D for GMRFs
under the CAR model, we have obtained fundamental scal-
ing laws for total information and energy efficiency as the
node density, coverage area and consumed energy change.
. The results provide guidelines for sensor network design fo
statistical inference about 2-D correlated random field& su
as temperature, humidity, density of a gas on a certain area.
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