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Abstract— If β and γ are nonnegative integers and F is
a field, then a polynomial collection
{p1, . . . , pβ} ⊆ Z[α1, . . . , αγ ] is said to be solvable over F
if there exist ω1, . . . , ωγ ∈ F such that for all i = 1, . . . , β
we have pi(ω1, . . . , ωγ) = 0. We say that a network and a
polynomial collection are solvably equivalent if for each field
F the network has a scalar-linear solution over F if and
only if the polynomial collection is solvable over F . Koetter
and Médard’s work implies that for any directed acyclic
network, there exists a solvably equivalent polynomial
collection. We provide the converse result, namely that
for any polynomial collection there exists a solvably equiv-
alent directed acyclic network. (Hence, the problems of
network scalar-linear solvability and polynomial collection
solvability have the same complexity.) The construction of
the network is modeled on a matroid construction using
finite projective planes, due to MacLane in 1936.

A set Ψ of prime numbers is a set of characteristics of
a network if for every q ∈ Ψ, the network has a scalar-
linear solution over some finite field with characteristic q
and does not have a scalar-linear solution over any finite
field whose characteristic lies outside of Ψ. We show that
a collection of primes is a set of characteristics of some
network if and only if the collection is finite or co-finite.

Two networks N and N ′ are ls-equivalent if for any finite
field F , N is scalar-linearly solvable over F if and only
if N ′ is scalar-linearly solvable over F . We further show
that every network is ls-equivalent to a multiple-unicast
matroidal network.

I. INTRODUCTION

We first demonstrate a certain equivalence between
networks and collections of polynomials. Specifically,
we show that associated with every finite collection of
polynomials with integer coefficients is a corresponding
network which is scalar-linearly solvable precisely over
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those finite fields where the polynomials have a common
root. A consequence is that the complexity of determin-
ing whether networks are scalar-linearly solvable over
particular finite fields is equivalent to the complexity
of determining whether collections of polynomial have
common roots over the corresponding fields. Secondly,
we show that the collections of prime numbers corre-
sponding to the field characteristics of scalar-linearly
solvable network alphabets are precisely those which
are finite or co-finite. Finally, we show that for every
network, there exists a multiple-unicast network which
is matroidal (i.e. obtained from a certain matroid-to-
network construction), such that the two networks are
scalar-linearly solvable over the same finite fields.

There has been interest in determining the solvability,
scalar linear solvability, and vector linear solvability of
an arbitrary network with respect to a chosen alphabet
(e.g. [4]–[7], [9]–[11], [13], [15], [17], [18]).

For a given finite alphabet, to determine if a network
is solvable or scalar-linearly solvable, one can perform
a finite exhaustive search of all possible codes for the
network. If a vector dimension is also fixed, a finite
search can also establish if a network is vector-linearly
solvable over that dimension. There is presently no
known algorithm for determining the general solvabil-
ity or vector-linear solvability of an arbitrary network.
The existence of an algorithm (which is apparently
not computationally efficient) to determine scalar-linear
solvability of an arbitrary network follows from work in
[12]. Their technique was to construct a finite collection
of polynomials from an arbitrary network, such that for
each finite field, the polynomials have a common root
over the field if and only if the network has a scalar-
linear solution over the field.

Throughout, polynomials will have integer coefficients
and will use the variables α1, α2, . . . . For nonnegative
integers β and γ, any finite set P = {p1, . . . , pβ} ⊆
Z[α1, . . . , αγ ] will be called a polynomial collection. If
F is a field, then a polynomial collection is said to be
solvable over F if there exist ω1, . . . , ωγ ∈ F such that
for all i = 1, . . . , β we have pi(ω1, . . . , ωγ) = 0. We say
that a network and a polynomial collection are solvably
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equivalent if for each field F the network has a scalar-
linear solution over F if and only if the polynomial
collection is solvable over F .

We present an algorithm in Section II for constructing
a network from any polynomial system. Our main results
are that: the network is scalar-linearly solvable over the
same fields as those for which the polynomials have
common roots (Theorem I.2), the constructed network
is always matroidal (Theorem I.3), every network is
scalar-linearly solvable on the same set of fields as a
multiple-unicast matroidal network (Corollary I.8), and
the collections of prime numbers corresponding to the
field characteristics of scalar-linearly solvable network
alphabets are characterized as either finite or co-finite
(in Theorem I.9).

Let Ψ be an arbitrary collection of integers of the form
qi, where q is prime and i ≥ 1. We say that Ψ is the
solvability set for a network (respectively, polynomial
collection) if for every finite field F , the network is
scalar-linearly solvable (respectively, polynomial collec-
tion is solvable) if and only if |F | ∈ Ψ. The set of
primes q, such that qi lies in the solvability set for some
i ≥ 1, is called the set of characteristics1 for a network
(respectively, polynomial collection).

The following theorem leads to an algorithm (via
Gröbner bases [2]) for determining whether a net-
work has a scalar-linear solution. No such algorithm is
presently known for determining whether a network has
a general nonlinear solution.

Theorem I.1. (follows from Koetter-Médard [12])
Every directed acyclic network has a solvably equivalent
polynomial collection.

In this paper, we provide the following converse result.

Theorem I.2. (Converse to Theorem I.1)
Any polynomial collection has a solvably equivalent
directed acyclic network.

Furthermore, the solvably equivalent network in Theo-
rem I.2 is given constructively and is matroidal, as stated
in the next theorem.

Theorem I.3. If a polynomial collection P is solvable
over some finite field, then any network constructed, as
in Section II, from P is matroidal.

The next definition is taken from [8] (“CSLS” stands
for “coding solvability, linear solvability”).

Definition I.4. Two networks N and N′ are CSLS-
equivalent if the following two conditions hold:

1This terminology is taken from [1].

1) For any finite alphabet A, N is solvable over A if
and only if N ′ is solvable over A.

2) For any finite field F and any positive integer k,
N is vector-linearly solvable over F in dimension
k if and only if N ′ is vector-linearly solvable over
F in dimension k.

The following definition gives a type of equivalence
that is weaker than CSLS (the acronym “ls” stands for
“(scalar) linear solvability”).

Definition I.5. Two networks N and N′ are ls-
equivalent if for any finite field F , N is scalar-linearly
solvable over F if and only if N ′ is scalar-linearly
solvable over F .

Theorem I.6. (see [8, Theorem II.1])
Any network is CSLS-equivalent to a multiple-unicast
network.

The next theorem shows that if Theorem I.6 is applied
to a matroidal network, then the resulting multiple-
unicast network can also be taken to be matroidal.

Theorem I.7. (see [7, Corollary VII.8])
Any matroidal network is CSLS-equivalent to a multiple-
unicast matroidal network.

The next corollary follows from our main result in
Theorem I.2 together with several previous results. It
demonstrates that, when considering which finite fields
arbitrary networks are scalar-linearly solvable over, it
suffices to consider to the subclass of networks which
are simultaneously multiple-unicast and matroidal.

Corollary I.8.
Any network is ls-equivalent to a multiple-unicast ma-
troidal network.

Theorem I.9. A set of prime numbers is the set of
characteristics of some network if and only if the set
is finite or co-finite.

Theorem I.1 and our Theorem I.2 together indicate
that determining the scalar-linear solvability of a directed
acyclic network over a field F is computationally equiva-
lent to determining whether a collection of polynomials
has a common root over F . Given any algorithm for
determining scalar-linear network solvability, our result
gives an algorithm for determining polynomial solvabil-
ity. This is a “many-to-one reduction” (i.e., it converts a
single instance of the polynomial solvability problem to
a single instance of the network scalar-linear solvability
problem with the same answer). The reduction causes
at most a linear blowup in input size, in the following
sense: the number of nodes and edges in the resulting
network is at most a linear function of the number
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of steps (variable retrievals and arithmetic operations)
needed to compute the values of the polynomials in the
collection. In terms of bit representations, it is at most an
O(n ln n) blowup. This many-to-one reduction has the
additional property that, given a scalar-linear solution to
the network, we can directly reconstruct a solution to the
polynomial collection.

It can be shown (via Gröbner bases) that the sets of
characteristics of polynomial collections are precisely the
sets of primes which are finite or co-finite. In contrast,
there has been no known characterization of the sets of
characteristics or the solvability sets of networks. If Ψ is
the solvability set of a network and n ∈ Ψ, then ni ∈ Ψ
for all positive integers i While there are an uncountable
number of sets of powers of primes closed under expo-
nentiation, there are only a countably infinite number of
solvability sets since there are only a countable number
of networks and polynomial collections.

A fundamental problem is to determine which sets
of integers can be solvability sets and which can be
sets of characteristics for networks. Theorem I.1 shows
that every network solvability set is also a polynomial
collection solvability set. Our Theorem I.2 shows that
every polynomial collection solvability set is also a
network solvability set. Thus, the network solvability sets
are the same as the polynomial collection solvability sets.
Our Theorem I.9 shows that a set of primes is the set
of characteristics of a network if and only if the set of
primes is finite or co-finite.

II. NETWORK CONSTRUCTION FROM POLYNOMIAL
SYSTEM

In this section we present an algorithm for construct-
ing a directed acyclic network N from a finite poly-
nomial collection P = {p1, . . . , pβ} ⊆ Z[α1, . . . , αγ ],
for i = 1, . . . , β. The network will be built piece by
piece from eight building block components, C0, . . . , C7,
which are shown in Figures 1 and 2 (using Table I). The
messages will be a, b, and c. Certain nodes of the net-
work will be labeled by xq , yq, uq, or zq, where for each
such node, q is some polynomial in Z[α1, . . . , αγ ]. For
example, the sources for a, b, c will be nodes x0, x1, y1,
respectively. During the construction, we will label vari-
ous nodes with polynomials and will later demonstrate a
connection between these polynomials and the alphabet
symbols carried by these nodes. It will be demonstrated
that this construction algorithm produces a network such
that for any field F , the network has a scalar-linear
solution over F if and only if the polynomial collection
P has a solution over F .

The network construction process consists of the steps:

Step (1): Start with component C0 which creates
nodes x0, x1, y1, z0, and z∞. (See Figure 1)
Step (2): If γ > 0, then add components
C1(1), . . . , C1(γ), creating nodes xα1

, . . . xαγ
. Each

of these components is adjoined to the network
at the nodes x0, x1, z∞, which have already been
created at Step (1). (See Figure 2 and Table I)
Step (3): Repeatedly add components C2, . . . , C7

to create nodes xp1(α1,...,αγ), . . . , xpβ(α1,...,αγ).
Steps (3a)-(3d) describe the creation of
xp1(α1,...,αγ), . . . , xpβ(α1,...,αγ) as well as many
intermediate nodes. (See Figure 2 and Table I)

Step (3a): For any positive integer n, to create
a node labeled xn: First, add component C4(1)
to create node u1. Then, for i = 1, . . . , n − 1,
add component C2(i) to create node zi and add
component C6(i, 1) to create node xi+1. This
is possible since x1, z0, z∞ have already been
created.
Step (3b): For any positive integer n, to create
a node labeled x−n: First, add component
C2(1) to create node z1, and add component
C5(1) to create node u−1. Then, for i =
0, . . . , n − 1, add component C6(−i,−1) to
create node x−i−1 and add component C2(−i−
1) to create node z−i−1.
Step (3c): For any positive integer n and any
α ∈ {α1, . . . , αγ} to create a node labeled
xαn : First, add component C3(α) to create node
yα. Then, for j = 1, . . . , n−1, add component
C2(α

j) to create node zαj and add component
C7(α

j , α) to create node xαj+1 .
Step (3d): To create nodes labeled by an arbi-
trary polynomial in Z[α1, . . . , αγ ]: Add var-
ious instances of components C6 and C7 to
create nodes labeled by sums and products of
labels of existing nodes created above. (Some
instances of components C2, C3, and C4 may
also have to be added in order to use C6 and
C7.)

Step (4): Force each of the nodes
xp1(α1,...,αγ), . . . , xpβ(α1,...,αγ) to demand message
a.

To construct nodes labeled by arbitrary polynomials
in Z[α1, . . . , αγ ] in Step (3) of the algorithm, one can
use Step (3a) to create all positive integer coefficients
of the polynomials, use Step (3b) to create all negative
integer coefficients of the polynomials, use Step (3c) to
create all variable powers occurring in the polynomials,
and finally use Step (3d) to combine the existing network
nodes to create the desired polynomials.

This algorithm converts a single instance of the poly-

Page 3 of 5



December 30, 2007 Dougherty-Freiling-Zeger Submitted to ISIT08

nomial solvability problem to a single instance of the
network scalar-linear solvability problem with the same
answer. The procedure above is not the most efficient
method to create the network N from the polynomial
collection P . A smaller network can in general be
constructed whose size is linear in the size of the
representation of the polynomial collection.
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Fig. 1. Network component C0. The leftmost three nodes are sources,
generating messages c, a, and b from top to bottom, respectively. The
rightmost four nodes are receivers and demand messages a, c, b, and
a, respectively. Five of the nodes are labeled by x0, x1, y1, z0, or
z∞.
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Fig. 2. A generic network component Ci for 1 ≤ i ≤ 7. Input
1

,
Input

2
, and Input

3
are existing nodes in the network and the remaining

nodes and edges in component Ci are new. The rightmost node,
“New receiver”, demands one message. Table I lists seven different
instantiations of this generic network component that are used in a
network construction.

III. MATROIDALITY OF CONSTRUCTED NETWORKS

First we review the concepts of matroids, matroidal
networks, and the finite projective plane, each of which

New New
Comp. Input1 Input2 Input3 node demand
C1(i) x0 x1 z∞ xαi

a
C2(q) z0 z∞ xq zq c
C3(q) xq z1 z0 yq a
C4(q) xq z0 z∞ uq c
C5(q) x0 zq z∞ u−q c
C6(q, r) zq ur z∞ xq+r a
C7(q, r) zq yr z∞ xqr a

TABLE I
INSTANTIATIONS OF THE GENERIC NETWORK COMPONENT SHOWN

IN FIGURE 2. EACH LINE IN THE TABLE GIVES THE FIVE VALUES

THAT ARE USED TO FORM A SPECIFIED COMPONENT.

will be used in what follows.
A matroid M (e.g. see [16]) is an ordered pair (S, I),

where S is a finite set and I is a set of subsets of S
satisfying the following three conditions:
(I1) ∅ ∈ I.
(I2) If I ∈ I and J ⊆ I , then J ∈ I.
(I3) If I, J ∈ I and |J | < |I |, then ∃e ∈ I − J

such that J ∪ {e} ∈ I.
The set S is called the ground set, the members of I

are called independent sets, and any subset of S not in I
is called a dependent set. For any matroid M = (S, I)
and any X ⊆ S, let I|X = {I ⊆ X : I ∈ I}, and let
M|X = (X, I|X). Then M|X is a matroid and the rank
of X , denoted ρ(X), is the (unique) size of a maximal
independent set of M|X . The rank of the matroid M is
defined to be ρ(S).

Let N be a network with message set µ, node set
ν, and edge set ε. Let M = (S, I) be a matroid with
rank function ρ. The network N is a matroidal network
(see [7]) associated with M if there exists a function
f : µ ∪ ε → S such that the following conditions hold:
(M1) f is one-to-one on µ.
(M2) f(µ) ∈ I.
(M3) ρ(f(In(x))) = ρ(f(In(x) ∪ Out(x))), ∀x ∈ ν.

It was shown in [7] that many interesting networks are
matroidal, including all networks that are scalar-linearly
solvable over a finite field (e.g. solvable multicast net-
works). The matroid used is a vector space over the
finite field (with dimension the number of messages);
the function f maps the messages to elementary vectors
(vectors which are all 0 except for a single 1) and maps
the edges to the corresponding “global coding vectors”
(see, e.g., [11]) for the given scalar-linear code.

In [7], a method was presented for constructing, from
given matroids, (matroidal) networks which reflect some
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of the matroids’ properties. This construction was used
to obtain networks used to prove various results in the
literature [5], [6], [8]. For example, in [7], a network was
constructed from the Vámos matroid that demonstrates
the insufficiency of using Shannon-type information in-
equalities to compute network coding capacity. In what
follows, we will prove that if a network is constructed
from a solvable polynomial collection as in Section II,
then the network is matroidal.

The network construction algorithm given in Sec-
tion II was inspired by the 1936 work of Saunders
MacLane in [14].

For any positive integer n, a projective plane (e.g. see
[3]) comprises a set of points, a set of lines, and an
incidence relation between points and lines satisfying:
(P1) Any two points are incident to exactly one line.
(P2) Any two lines are incident to exactly one point.
(P3) There exist 4 points, no 3 of which are incident to
the same line.

Every finite projective plane induces a rank-three
matroid as follows. Let S be the set of all points in
the projective plane, let I be the collection of subsets of
S of cardinality at most 3 that do not contain 3 collinear
points, and let M = (S, I). It is easy to see that M
satisfies (I1) and (I2). Suppose I, J ∈ I where |I | > |J |.
Then |J | ∈ {0, 1, 2}. If |J | < 2, then for any v ∈ I − J ,
we trivially have J ∪ {v} ∈ I. If |J | = 2 and if for
each v ∈ I − J we have J ∪ {v} 6∈ I, then the 3 points
in I are collinear, contradicting I ∈ I. Thus, M also
satisfies (I3), and therefore M is a rank-3 matroid.

For any field F , one can construct a projective plane
ΠF (of order |F | if F is finite) as follows. Let ΠF =
(F × F ) ∪ F ∪ {∞} where two points (a, b) and (c, d)
in F × F are said to have slope s ∈ F if a 6= c and
s = (d− b)(c− a)−1, and slope s = ∞ if a = c. A line
in ΠF consists of an element s of F∪{∞} (called a point
at infinity) together with a maximal set of points in F×F
such that every two of them have slope −1/s (where we
make the convention that v/0 = ∞ and v/∞ = 0, for
all nonzero v ∈ F ). The set of all points at infinity is
also considered a line and its point at infinity is ∞. It
can be verified that axioms (P1)–(P3) hold for ΠF .

MacLane [14] (see also [19, pp. 18–21]) used this
construction as follows. Let P be a polynomial collection
and let K be a finite field such that P has a solution
over K. Then MacLane constructs a matroid M that is
representable over K and such that, for any finite field
F , if M is representable over F , then P has a solution
over F . However, it is not necessarily true that, if P
has a solution over F , then M is representable over F .
Such an if-and-only-if result is not attainable in general
for matroids; for instance, it is known that, if a matroid is

representable over the 2-element field and the 3-element
field, then it is representable over all finite fields [16,
Theorem 6.6.3]. The extra flexibility of networks allows
us to construct a network solvably equivalent to any
given polynomial collection.
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