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Abstract— In this work, we present a novel construction iterative BP-like detection algorithm for 1-D ISI chann#ist
for solving the linear multiuser detection problem using the yses a parallel message-passing schedule and achieves near
Gaussian Belief Propagation algorithm. Our algorithm yieds optimal performance
an efficient, iterative and distributed implementation of the ’
MMSE detector. Compared to our previous formulation, the For the intermediate regime of non-dense graphs but
new algorithm offers a reduction in memory requirements, thre  with many relatively short loops, extensions of BP to two-

number of computational steps, and the number of messages gimensional ISI channels have been considered by Marrow
passed. We prove that a detection method recently proposedyb

Montanari et al. is an instance of ours, and we provide new and Wolf [10], and recently Shentat al. [11]-[13] have

convergence results applicable to both. demonstrated the near-optimality of a generalized version
of BP for such channels. Recently, BP has been proved
|. INTRODUCTION to asymptotically achieve optimal MAP detection for sparse

Belief propagation (BP), also known as the sum-produbf€ar systems with Gaussian noise [14], [15], for examiple,
algorithm, is a powerful and efficient tool in solving, exgct CDMA with sparse spreading codes.
or approximately, inference problems in probabilisticriaal An important class of practical sub-optimal detectors is
models. The underlying essence of estimation theory is b@ased on linear detection. This class includes, for ingtanc
detect a hidden input to a channel from its observed outptite conventional single-user matched filter (MF), decorre-
The channel can be represented as a certain graphical mol@édr (a.k.a. zero-forcing equalizer), linear minimum mea
while the detection of the channel input is equivalent tequare error (MMSE) detector and many other detectors with
performing inference in the corresponding graph. widespread applicability [16], [17]. In general, linearteleion

The use of BP [1] for detection purposes has been provenc@n be viewed as the solution to a (deterministic) set of
be very beneficial in several applications in communicationliinear equations describing the original (probabilisésjima-
For randomly-spread code-division multiple-access (CDMAion problem. Note that the mathematical operation behind
in the large-system limit, Kabashima has introduced aataet linear detection extends to other tasks in communicagag,
BP-based multiuser detection (MUD) scheme, which exhibighannel precoding at the transmitter [18].
near-optimal error performance for binary-input additiviéite ~ Recently, linear detection has been explicitly linked to
Gaussian noise (BI-AWGN) channels [2]. This messag8P [19], using a Gaussian belief propagation (GaBP) algo-
passing scheme has recently been extended to the case whgte. This allows for a distributed implementation of the
the ambient noise level is unknown [3], [4]. As for sub-omim linear detector [20], circumventing the need of, potehial
detection, the nonlinear soft parallel interference chatten cumbersome, direct matrix inversion (viag., Gaussian elim-
(PIC) detector was reformulated by Tanaka and Okada asiastion). The derived iterative framework was comparedngua
approximate BP solution [5] to the MUD problem. titatively with ‘classical’ iterative methods for solvirgystems

In contrast to the dense, fully-connected nature of thsf linear equations, such as those investigated in the gbnte
graphical model of the non-orthogonal CDMA channel, a onef linear implementation of CDMA demodulation [21]-[23].
dimensional (1-D) intersymbol interference (I1SI) chancah GaBP is shown to yield faster convergence than these sendar
be interpreted as a cycle-free tree graph [6]. Thus, detectimethods. Another important work is the BP-based MUD,
in 1-D ISI channels (termed equalization) can be performedcently derived and analyzed by Montanatial. [24] for
in an optimal maximum a-posteriori (MAP) manner via BR3aussian input symbols.
also known in this context as the forward/backward, or BCIR, There are several drawbacks to the linear detection tech-
algorithm [7]. Also, Kurkoskiet al. [8], [9] have proposed an pique of [19]. First, the input matriR., x,, = ST Skxn (the

. , _ chip correlation matrix) needs to be computed prior to ragni
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not no longer be sparse. Second, GaBP @s&smemory to are characterized by the linear relation
store the messages. For a larg¢his could be prohibitive.

In this paper, we propose a new construction that addresses y = f{x} =Rx+n,
those two drawbacks. In our improved construction, given a

non-rectangular CDMA matri§,, ., we compute the MMSE Wheren is a K x 1 additive noise vector an® = s’s
detectorz = (STS + ¥)~'STy where ¥ is the AWGN IS @ positive-definite symmetric matrix, often known as the

diagonal covariance matrix. We utilize the GaBP algorithiforrelation matrix. TheV x K matrix S describes the physical
which is an efficient iterative distributed algorithm. Thewn Cchannel medium while the vectgr corresponds to the output
construction uses onlgnk memory for storing the messages®f @ bank of filters matched to the physical chanfiel

Whenk < n this represents significant saving relative to the Assuming linear channels with AWGN with varianeé as

2n? in our previously proposed algorithm. Furthermore, we de ambient noise, the general linear detection rule (1) can
not explicitly computeS”'S, saving an extra2k overhead. ~describe known linear detectors. For example [16], [17]:

We show that Montanari’s algorithm [24] is an instance of + The conventional matched filter (MF) detector is obtained
our method. By showing this, we are able to prove new con- py takingA =2 Ix andb = y. This detector is optimal,
vergence results for Montanari’'s algorithm. Montanariva® in the MAP-sense, for the case of zero cross-correlations,
that his method converges on normalized random-spreading j.e., R = I, as happens for orthogonal CDMA or when
CDMA sequences, assuming Gaussian signaling. Using binary there is no 1SI effect.
signaling, he conjectures convergence to the large systeim | . The decorrelator (zero forcing equalizer) is achieved by
Here, we extend Montanari's result, to show that his albarit substitutingA £ R and b = y. It is optimal in the
converges also for non-random CDMA sequences when binary noiseless case.
signaling is used, under weaker conditions. Another adigt  « The linear minimum mean-square error (MMSE) detector
of our work is that we allow different noise levels per bit can also be described by usidg= R + oI This de-
transmitted. tector is known to be optimal when the input distribution

The paper is organized as follows. Secfidn Il formulates the P, is Gaussian.
problem of linear de.tection and presents the distriputeﬂFGa In general, linear detection is suboptimal because of its
based Im_ear detectllo.n scheme. Sgcﬂﬁh lll describes al NOY&terministic underlying mechanismg, solving a given set
construction for efficiently computing the MMSE detector

) L of linear equations), in contrast to other estimation sakgem
The relation to a factor graph construction is explored i d ) o

. . ch as MAP or maximum likelihood, that emerge from an
Section[1V. New convergence results for Montanari's wor timization criterion
are presented in Sectiéd V. We conclude in Sedtidn VI. In the .

Appendix we further explore the relation to Montanari's wor . In [19], Ilnear_ detect|on.,.|n its_general forrﬂ[](l), was
We shall use the following notations. The operafe}” implemented using an efficient message-passing algorithm.

; o The linear detection problem was shifted from an algebraic
stands for a vector or matrix transpose, the malx is a

N x N identity matrix, while the symbol6 }, and{-}, denote to a probabilistic domain. Instead of solving a determiaist

: . . N vector-matrix linear equation, an inference problem ivedl
entries of a vector and matrix, respectiveély(i) is the set of . : o . . L
) in a graphical model describing a certain Gaussian digtabu
graph node connected to nodle

function. Given the overall channel matR and the obser-
1. LINEAR DETECTION VIA BELIEF PROPAGATION vation vectory, one knows how to write explicitly(x) and
the corresponding graghwith edge potentials (‘compatibility
tor x = {z1,...,2x}7 governed by an arbitrary prior functio_ns’)wij and self_-potentials (_‘evidencetﬁ)i. The_se gr_a_ph
distribution, P,, and a corresponding real output vectopotentials are determined according to the following paiew
v ={y1,...,yx}T = F{xT} € RX. Here, the functiory{-} factorization of the Gaussian distributigiix)

denotes the channel transformation. By definition, linear d

Consider a discrete-time channel with a real input ve

K
tection compels the decision rule to be p(x) x H@(Ii) H i (T, 25),
x = A{x*} = A{A7'b}, (1) =1 {i.5}
whereb = y is the K x 1 observation vector and theresulting in Vij(zi, ;) £ exp(—z;iRijx;) and

K x K matrix A is a positive-definite symmetric matrix ¢;(z;) = exp (bixi —Riixf/2). The set of edges{i,j}
approximating the channel transformation. The vectdris corresponds to the set of all non-zero entries Af
the solution (overR) to Ax = b. Estimation is completed for which ¢ > j. Hence, we would like to calculate
by adjusting the (inverse) matrix-vector product to theuinpthe marginal densities, which must also be Gaussian,
alphabet, dictated by, accomplished by using a propem(z;) ~ N(u; = {R'y};, Pt = {R7};), where
clipping functionA{-} (e.g., for binary signalingA{-} is the and P, are the marginal mean and inverse variance (a.k.a.
sign function). precision), respectively. It is shown that the inferred mga
For example, linear channels, which appear extensively isidentical to the desired solution* = R~'y. Table | lists
many applications in communication and data storage systette GaBP algorithm update rules.



TABLE |
COMPUTINGA ~ b viA GABP. ONLINE MATLAB IMPLEMENTATION IS PROVIDED IN [25].

# Stage | Operation

1. | Initialize | ComputeP;; = A;; and uy; = b; /Ay

Set Py; = 0 and ug; = 0, Vk # 1.

2. | lterate | PropagatePy; and ux;, Vk # i such thatd; # 0.

Computel;; = Pii + > pengipj Pri and ppj = P&I(P“u“ + 2 ken(iny Drikthi)-
ComputePZ—j = _AijPi_;Aji and‘LLij = —PZ;IAlj‘LLl\J

3. Check | If P;; andp;; did not converge, return to #2. Else, continue to #4.

Infer P, =P, + ZkeN(i) Pri s i = Piil(Pii,uii + ZkeN(i) Prifti)-

5. | Decide | &; = A{u;}

E

Il1. DISTRIBUTED ITERATIVE COMPUTATION OF THE bi(z;) = exp(—1/2xiRi2ixi — xyi)

MMSE DETECTOR S o . o
] ] o L which is a factorization of the Gaussian system distribbutio
In this section, we efficiently extend the applicability okt

proposed GaBP-based solver for systems with symmetric ma- p(x) o< H bi(zi) H Vij(wi,25) =
trices [19] to systems with any squarieg(, also nonsymmet- i i,J
ric) or rectangular matrix. We first construct a new symneetri _ . . N
data matrixR based on an arbitrary (non-rectangular) matrix - H 9il:) H 9ilz:) Hw” (i, 25) =
S ¢ kaﬂ i<k i>k 1,7
prior on X
R 2 I, ST c R+ % (ktn) 2) —_— Rij
S -v 1, Ly 2 <
= H exp(—ixi) H exp(—illlia:i —x;Y;) H exp(—z; Sij x;)

Additionally, we define a new vector of variables £ i<k i>k i,J

{ﬁTa?T}T € Rlk+n)x1, wherex € Rkx1 is the (to be shown)  Next, we show the relation of our construction to a factor
solution vector andz € R"*! is an auxiliary hidden vector, graph. We will use a factor graph withnodes to the left (the

and a new observation vectgr2 {07, y?}7 € REHm*1 phits transmitted) and nodes to the right (the signal received),
Now, we would like to show that solving the symmetrighown in Fig.1. Using the definitionx £ (%7277 ¢

linear systemRx = y and taking the first: entries of the R(k+n)x1 the vectork represents the: input bits and the
corresponding solution vectot is equivalent to solving the vectorz represents the signal received. Now we can write the
original (not necessarily symmetric) systeRx = y. Note system probability as:

that in the new construction the matik is sparse again, and

has only2nk off-diagonal nonzero elements. When running p(X) o /N(&;O,I)N(Z;Sfc, U)dx
the GaBP algorithm we have onBnk messages, instead of x
n? in the previous construction. It is known that the marginal distribution overis:
We\Ngrg;ng explicitly the symmetric linear system’s equatin — N(20,87S + )
x+8Tz=0, Sx—VUz-=y. This distribution is Gaussian, with the following paramste

Thus, E(z[x) = (S"S + ¥)~'STy

s —1aT _ ~

X =V"S (y - Sx), Cov(z[%) = (STS + W) !

and extractingc we have It is interesting to note that a similar construction wasduse

x=(STs+w)'sTy. by Frey [26] in his seminal 1999 work when discussing the
) ) factor analysis learning problem. While his work is beyond
Note, that when the noise level is zem,= 0., xm, We get the scope of this paper, it can be shown that his algorithm can

the Moore-Penrose pseudoinverse solution be modelled using the GaBP algorithm.
x = (8"s)"'s"y =sTy. V. NEW CONVERGENCE RESULTS
IV. RELATION TO FACTOR GRAPH One of the benefits of using our new construction is that

In this section we give an alternate proof of the correctne$§ Propose a new me_chamsm to provide future_,convergence
of our construction. Given the inverse covariance maRix resulis. In the Appendix we prove that Montanari's algorith
defined in [2), and the shift vectag we can derive the is an instance of our algorithm, thus our convergence result
matching self :;md edge potentials apply to Montanari’s algorithm as well.
We know that if the matrixR. is strictly diagonally domi-
Vi (zi,25) 2 exp(—z; Rijz;) nant, then GaBP converges and the marginal means converge



CDMA channel linear transformation unlike his work which uses a single fixed noise for the whole
N\ system. In practice, the bits are transmitted using differe
frequencies, thus suffering from different noise leveksc@d,

the update rules in his paper are fitted only to the randoml-
spreading CDMA codes, where the mattk contains only
values which are drawn uniformly froM—1,1}. Assuming
binary signalling, he conjectures convergence to the large
system limit. Our new convergence proof holds for any CDMA
matrices provided that the absolute sum of the chip seqgence
is one, under weaker conditions on the noise level. Third,
we propose in [19] an efficient broadcast version for saving
messages in a broadcast supporting network.

e

K bits sent
AL
N
n bits received

- / The probability distribution of the factor graph used by
Fig. 1. Factor graph describing the linear channel Montanari is:
R 1 s 1
d,ugj,v’K = W H eXP(—502W2 + JYaWa) HGXP(—?C?)
Yy a=1 =1

to the true means [27, Claim 4]. Noting that the mafRxis
symmetric, we can determine the applicability of this cdiodi

by examining its columns. Referring to (4) we see that in
the first £ columns, we have th& CDMA sequences. We
assume random-spreading binary CDMA sequences which ar Y HIE S
normalized to one. In other words, the absolute sum of eakfpbability distribution:
column is+/n. In that case, the matriR is not diagonally N 1

dominant (\I/DTD). We can add a regularization term\af + ¢ Yii(%i) = eXp(_EX?) o N (x;0,1)

to force the matrixR. to be DD, but we pay in changing the 1

problem. In the next columns of the matrixR, we have the Vaa(wa) £ eXp(—§02w2 + ¥awa) < N(Wa; j¥a, 0°)
diagonal covariance matrik with different noise levels per bit .

in the main diago_nal, and zero elsewhere. T_he absolute sum Ofwm(xi,wa) vy exp(_LSm,waxi) x N(x; J
each column of5 is k/4/n, thus when the noise level of each VN VN

bit satisfies¥; > k/\/n, we have a convergence guarantee. gor convenience, Table Il provides a translation between th

Note, that the convergence condition iswficient condition notations used in this paper (taken from [19]) and that used
Based on Montanari's work, we also know that in the larggy montanariet al.in [24]:

system limit, the algorithm converges for binary signaling
even in the absence of noise.

An area of future work is to utilize this observation to
identify CDMA schemes with matrices that when fitted into

Extracting the self and edge potentials from the above

Sai 0)

TABLE Il
SUMMARY OF NOTATIONS

. = . . [ This work [19] | Montanariel al. [24 Description
the matrixR are either DD, or comply to the spectral radiu & 3] 4] — P , |
diti f 128 P A precision msg from left to rlght]
convergence condition o [ ] Xéfj? precision msg from right to left]
VI. CONCLUSION Hij -yz.'jal) mean msg from left to right
' Afliil) mean msg from right to left
We presented a novel distributed algorithm for comput-  pi Yi prior mean of left node
ing the MMSE detector for the CDMA multiuser detection 0 prior mean of right node
9 . . . . P;; 1 prior precision of left node
problem. Our work utilizes the Gaussian Belief Propagation W, o2 prior precision of right node
algorithm while improving two existing constructions [19] i S posterior mean of node
[24] in this field. Although we described our algorithm irj P; Li posterior precision of node
the context of multiuser detection, it has wider applidabil Aij T covariance
For example, it provides an efficient iterative method far Aji N covariance
computing the Moore-Penrose pseudoinverse, and it can alsa J J=v-1

be applied to the factor analysis learning problem [26].

APPENDIX: MONTANARI’S ALGORITHM IS AN INSTANCE Now we derive Montanari’s update rules. We start with the

OF OUR ALGORITHM precision message from left to right:
In this section we show that Montanari’'s algorithm is an i )
instance of our algorithm. Our algorithm is more general. AFD g izb;ﬁa Sib
First, we allow different noise level for each received bit, e N A®

b—i



Py

Pi; —_—N— [7]
TS S
= b#a 7
N A, )
—Ay (Ppa)™' Ay

Pi; —N A [9]

/1\ s IS 1 —Jsa

= — Zib#a .
VN D, VN 110}

By looking at Tablel, it is easy to verify that this precision
update rule is equivalent to that in #2 of Table I. (11]

Using the same logic we get the precision message from
right to left:

2 p—1 [12]
Pj; P _Aijpj\i
k22
500 T iE  Sia [13]
i—a N k#i /\(t)
k—a
The mean message from left to right is given by 14
vy _ 1 Sib (1) _
ia = yEbta gy Tboi =
/\b%i
. [15]
—Ay Py M
Hii —N A~ _A
e oy —Jsib 1 ") (18]
- - AT R b
\/N /\b—n' 17]
The same calculation is done for the mean from right to Ie}t:
(18]
A1) 1 Ska ()
isa — Ya — Nzkii)\(t—)/yk%a
k—a [19]

Finally, the left nodes calculated the precision and mean by

1 ib . _
G = =Bl =G o
b—i
1 2 [21]
Lq(;t+1) =1+ sz )\S(zg) y M = L’LG;I
b—1i [22]

The key difference between the two constructions is that
Montanari uses a directed factor graph while we use an ungjs
rected graphical model. As a consequence, our construction
provides additional convergence results and simpler md?zt4
rules.
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