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Abstract— Repeat Accumulate Accumulate (RAA) codes are
turbo-like codes where the message is first repeatedk ≥ 2 times,
passed through a first permutation (called interleaver), then an
accumulator, then a second permutation, and finally a second
accumulator. Bazzi, Mahdian, and Spielman (2003) prove that
RAA codes are asymptotically good with high probability when
the two permutations are chosen at random. RAA codes admit
linear-time encoding algorithms, and are perhaps the simplest
known family of linear-time encodable asymptotically goodcodes.
An explicit construction of an asymptotically good RAA codeis
thus a very interesting goal. We focus on the case whenk = 2
and we consider a variation of RAA codes where the inner repeat
accumulate code is systematic. We give an explicit construction of
the first permutation for which we show that the resulting code
is asymptotically good with high probability when the second
permutation is chosen at random. The explicit constructionuses
a cubic Hamiltonian graph with logarithmic girth.

I. I NTRODUCTION

Repeat Accumulate (RA) codes [DJM98] are turbo-like codes
with the following encoding: the message is repeatedk times,
wherek is called therepetition factorof the code, then the
repeated message is passed through a first permutationπ1 and
fed to an accumulator. An accumulator takes a binary string
a1, a2, . . . , am and outputs the binary stringb1, b2, . . . , bm

where bi =
⊕i

j=1 aj . In [BMS03], Bazzi, Mahdian and
Spielman show that such a code is asymptotically bad, i.e.
the minimum distance doesn’t grow linearly with the bock
length. Repeat Accumulate Accumulate (RAA) are extensions
of RA codes studied, for example, in [BDMP98], [DJM98],
[PS99], [BMS03]. To get RAA codes, the output bits from
the RA code are passed through a second permutationπ2 and
then fed to a second accumulator.
Definition 1: [BMS03] Let k ≥ 2 andn > 0 be two integers
and letm = kn. Let rk : {0, 1}n → {0, 1}kn be the encoder
of the repetition code with repetition factor k and letA :
{0, 1}m → {0, 1}m be the encoder of the accumulator (code)
given by: A(a) = (

⊕i
j=1 aj)

m
i=1 where a = a1a2 . . . am ∈

{0, 1}m. Then the RAA code with repetition factork and
permutationsπ1 andπ2 is the code whose encoder is

Ck,π1,π2
: {0, 1}n → {0, 1}m

x 7→ A(π2(A(π1(rk(x)))))
In [BMS03], the authors prove that whenπ1 andπ2 are chosen
uniformly at random,Ck,π1,π2

has, with high probability, a

kn
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Fig. 1. Encoding scheme ofCk,π1,π2

minimum distance linear in the block length.

Theorem 1 ([BMS03]):Let k ≥ 2 andn be integers, and let
π1 andπ2 be two permutations of lengthkn chosen uniformly
at random. Then for each constantδ > 0, there exists a
constantε > 0, such that the RAA code encoded byCk,π1,π2

has minimum distance at leastεn with probability at least1−δ

for large enoughn.

Extensions of RAA codes are studied also in [CKZ07] where
the authors prove that the gap to Gilbert-Varshamov bound
can be made arbitrarily small by serially concatenating RAA
codes with multiple accumulators and random permutations.
In this paper, we will consider a different version of these RAA
codes. We use the inner-systematic RAA code,Cs

k,π1,π2
, given

by the following map:

Cs
k,π1,π2

: {0, 1}n → {0, 1}(k+1)n

x 7→ A(π2(x, A(π1(rk(x)))))

Note that, although the repetition factor is stillk, the block
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Fig. 2. Encoding scheme ofCs
k,π1,π2

length and the length ofπ2 are (k + 1)n. We use systematic
RA codes for technical convenience.

A. Problem motivation and context

RA codes have the advantage of a simple structure and ex-
tremely simple linear time encoding algorithm. However, itis
known that their structure is too simple to yield asymptotically
good codes. Indeed, a direct application of Theorem 2 in
[BMS03] on RA codes (the convolutional encoder described
in the theorem is now an accumulator) with repetition factor
k and message lengthn gives a minimum distanced =



O(n1−2/k log n), which is not linear in the block lengthkn.
Namely, fork = 2, the distance is bounded byd = O(log n).
One of the motivations behind studying RAA codes was
to determine whether, unlike RA codes, they could include
asymptotically good codes, i.e., whether their minimum dis-
tance could grow linearly with the block length for a suitable
choice of the interleavers. By Theorem 1, RAA codes can
be asymptotically good, which raise the following interesting
question problem that was the motivation for our work:

Can one find twoexplicit permutationsπ1 and π2

such that the resulting codeCk,π1,π2
has a minimum

distance linear in the block length?

Finding such permutations would give us an explicit asymp-
totically good code with linear time encoding. So far, the
construction of Spielman [Spi96] (based on a cascade of
expander graphs) is the only known explicit construction of
linear-time encodable codes that are asymptotically good.Our
hope is to investigate if RAA codes, which have admit linear
time encoding by design, can be made explicit, while also
being asymptotically good.

B. Summary of results

We focus on the casek = 2. We construct an explicit
permutationπ1 for which we show that a random permutation
π2 gives, with high probability, a linear minimum distance for
the inner-systematic RAA codeCs

2,π1,π2
. We divide the result

into two main parts. In the first part, we derive properties
of a binary linear codeC such that the codeC′ that maps
x ∈ {0, 1}n to A(π2(C(x))) has, with high probability, a
good minimum distance. Specifically, we prove:

Lemma 1:Let n be a positive integer andc > 1, d and l be
positive constants. Letπ2 be a permutation chosen uniformly
at random andA the encoder of the accumulator code. Let
C be a binary linear code with message lengthn and block
length cn. Let C′ be the code with the following encoder:
C′ : {0, 1}n → {0, 1}cn, x 7→ A(π2(C(x))).
If C satisfies the following properties:

1) minimum distance property:C has minimum distance
at leastlog dn

2) exponential weight distribution property: The number of
codewords inC of weight w is at mostlw

Then, for every constantδ > 0, there exists a constantε > 0
dependent only onδ, c, d and l, such that for all large
enoughn, the codeC′ has minimum distance at leastεn

with probability 1 − δ, where the probability is taken over
the uniform random choice ofπ2.

The next result gives an explicit construction of a codeC

satisfying both properties. We use an RA code with repetition
factor 2, where the permutationπ1 is constructed from a cubic
Hamiltonian graph with logarithmic girthg. Proving that such
systematic RA codes satisfy the conditions relies on the fact
that k = 2. We setC to be the systematic version ofC2,π1

,
where we append the original message to the output of the
code. We prove that the number of codewords of weightw

is at most exponential inw. Moreover, using techniques from
[BMS03] and [FK04], we prove that the minimum distance of
the systematic version isg. In particular, we show that:

Lemma 2: let n be a positive integer and letC2,π1
be an RA

code with permutationπ1. Let C be the block length-3n code
whose encoder mapsx ∈ {0, 1}n to (C2,π1

(x), x). Then, for
infinitely many values ofn, there exist an explicit construction
of π1 from a cubic Hamiltonian graph with logarithmic girth
such that:

1) C has minimum distance at leastlog 2n

2) The number of codewords inC of weight w is at most
16w

Combining the two lemmas above and settingc to 3, d to 2
and l to 16 in Lemma 1, we get the main theorem of this
work:

Theorem 2:Let n be a positive integer andπ2 a permutation
on 3n elements chosen uniformly at random. LetCs

2,π1,π2
be

the inner-systematic RAA code withk = 2, first permutation
π1 constructed from a cubic Hamiltonian graph with logarith-
mic girth, as explained in Section III, and second permutation
π2 . Then for every constantδ > 0, there exists a constant
ε > 0, such that, for infinitely manyn, Cs

2,π1,π2
has minimum

distance at leastεn with probability1−δ, where the probability
is taken over the random choice ofπ2.

C. Organization of rest of the paper

In Section II, we prove Lemma 1 using the probabilistic
method and properties of the accumulator code. In Section III,
we give an explicit description of the codeC by constructing
the permutationπ1 of the RA code from a cubic Hamiltonian
graph with logarithmic girth.

II. SERIALLY CONCATENATING A WEAK CODE WITH AN

ACCUMULATOR

In this section, we prove Lemma 1. We assume the existence
of the codeC with the required properties. Now, we will
permute the bits of the codewords ofC and feed them to
an accumulator. We want to find a permutationπ2 so that the
minimum distance at the output of the accumulator, i.e. the
minimum distance ofC′, is linear in the block length. We
will show that such permutation exists by the probabilistic
method. We follow the same technique used in [BMS03] to
prove that RAA codes have good minimum distance when
both permutations are chosen at random.
Let C′ be the code described in Lemma 1:

C′ : {0, 1}n → {0, 1}cn, x 7→ A(π2(C(x)))

We will calculate the probability thatC′ has minimum distance
less thanεn. By Markov’s inequality, the probability that there
exists a nonzero codeword of weight less thanεn is bounded
from above by the expected number of codewords of weight
less thanεn. We will denote this latter expectation byEεn.
Let αw,h denote the probability that a randomcn bit input
string of weightw leads to Hamming weight weighth at the



accumulator’s output. By linearity of expectation, we clearly
have

Eεn =

εn
∑

h=1

2εn
∑

w=log dn

Xwαw,h .

whereXw denotes the number of codewords with input weight
w. Note that the upper bound ofw is set to2εn: for a binary
stringx of weightw at the input of an accumulator, the output
A(x) will have weight at least⌈w

2 ⌉. Hence we get a codeword
of weighth ≤ εn only if the input weight of the codeword is
at most2εn.

In [DJM98], the authors calculate the number of codewords
of an accumulator code of input weightw and output weight
h, denotedAw,h. If N is the block length of the accumulator,
thenA

(N)
w,h =

(

N−h
⌊w

2
⌋
) (

h−1
⌈w

2
⌉−1

)

.
Back toαw,h , we get:

αw,h =
A

(cn)
w,h
(

cn
w

) =

(

cn−h
⌊w

2
⌋
)(

h−1
⌈w

2
⌉−1

)

(

cn
w

) <

(

cn
⌊w

2
⌋
)(

h
⌈w

2
⌉−1

)

(

cn
w

)

Using
(

x
⌊ y

2
⌋
)

≤
(

4ex
y

)y/2

,
(

x
⌈ y

2
⌉−1

)

≤
(

4ex
y

)y/2

and
(

x
y

)

≥
(

x
y

)y

, we get

αw,h <

(

4cen
w

)w/2 ( 4eh
w

)w/2

(

cn
w

)w =

(

4e
√

h√
cn

)w

Then

Eεn <

εn
∑

h=1

2εn
∑

w=log dn

Xw

(

4e
√

h√
cn

)w

=

2εn
∑

w=log dn

Xw

(

4e√
cn

)w εn
∑

h=1

hw/2

≤
2εn
∑

w=log dn

Xw

(

4e√
cn

)w

εn (εn)w/2

= εn

2εn
∑

w=log dn

Xw

(

4e
√

ε√
c

)w

.

Using the exponential weight property of the codeC: Xw ≤
lw, we get

Eεn < εn

2εn
∑

w=log dn

(

4le
√

ε√
c

)w

.

For 4le
√

ε√
c

< 1
2 , i.e. ε < c

43e2l2 , we get

Eεn < εn

2εn
∑

w=log dn

2−w < εn2− log dn+4 =
16ε

d
.

To sum up, forε < c
43e2l2 , we have shown that the probability

that the minimum distance ofC′ ≥ εn is at least1− 16ε
d . Thus

by pickingε < min{ c
43e2l2 , δd

16}, we can conclude thatC′ has
minimum distance at leastεn with probability at least1 − δ,
as desired. �

In the above proof, we assumed the existence of the code
C with the minimum distance and the exponential weight
distribution properties. In the following section, we construct
such codes from systematic RA codes with repetition factor 2,
and Lemma 1 will apply by settingc = 3, d = 2 and l = 16.

III. SYSTEMATIC RA CODES FROM CUBICHAMILTONIAN

GRAPHS

In this section, we construct codes satisfying the properties
needed in the serial concatenation scheme used in section 2.
These codes are systematic RA codes whose permutationπ1 is
constructed from cubic Hamiltonian graphs with logarithmic
girth. The repetition factork is set to 2. The construction and
proof heavily use the fact thatk = 2. We will show that
the systematic RA code,Cs

2,π1
, has the requisite minimum

distance and exponential weight distribution properties:
1) Cs

2,π1
has minimum distance at leastlog 2n.

2) Let Xw is the number of codewords inCs
2,π1

of weightw.
ThenXw ≤ 16w, for all w.

If n is the message length of the systematic RA code, the block
length is3n: 2n from the output of the accumulator andn from
the appended message. The construction of the permutationπ1

is based on the construction presented in [BMS03] and adapted
in [FK04] for RA codes.

A. Construction

The construction uses a cubic Hamiltonian (undirected) graph
G = (V, E) with logarithmic girth. Constructions of such
graphs were proposed by Erdös and Sächs [Big98] based on
a greedy algorithm.
For a message lengthn, G has2n vertices and3n edges.
We remove the edge(v1, v2n) for technical convenience that
we explain later. The nodes represent the bits of the message
after repetition. Letv1, . . . , v2n be the nodes ofG and let
x = x1, . . . , x2n be the repeated permuted version of a
messagem ∈ {0, 1}n, then vi is associated with the bitxi.

Let y be the output of the accumulator when applied tox, i.e
y = C2,π1

(m) = A(x).
All the edges along the broken Hamiltonian cycle will be
referred to asline edges. The remaining edges are referred to
asmatching edges. The nodes at the endpoints of a matching
edge are repeated nodes, so if(vi, vj) is a matching edge, then
xi = xj . The matching edges are ordered from1 to n so that
each matching edge corresponds to one of then bits of the
original messagem. To encode, we set to 1 the nodes of each
matching edge corresponding to 1 in the input message and to
0 the remaining nodes in the graph. The bits are then entered
in the nodes’ order to the accumulator.
Figure 3 shows the graphG and how the nodes and edges
correspond to the bits of the message and the codeword. To
summarize, we have the following:

• m ∈ {0, 1}n is the original message,x = π1(r2(m)) ∈
{0, 1}2n, y = A(x) ∈ {0, 1}2n andCs

2,π1
(m) = (y, m) ∈

{0, 1}3n.

• G = (V, E) is the graph where|V | = 2n and |E| = 3n.
If vi, vi+1, vj ∈ V (i < j) and (vi, vi+1), (vi, vj) ∈ E,



to the bits ofy

matching edges corresponding to the bits ofm

vj

v2n

v2n−1

m1
m2

mi

v1
v2

(v2, vj) is a matching
edge thenx2 = xj

line edges corresponding

Fig. 3. GraphG

then vi is associated withxi, the (line) edge(vi, vi+1)
is associated withyi and the (matching) edge(vi, vj) is
associated withml, for somel ∈ {1, · · · , n}.

B. Minimum Distance

To calculate the minimum distance ofCs
2,π1

, we will show
the equivalence between a codeword and a union of disjoint
simple cycles: the weight of a codeword corresponds to the
total length of the cycles. This correspondence is a variation
of that in [BMS03] and [FK04] adapted to RA codes.
For each nonzero codeword(y, m), construct the graphGy as
follows: If mi = 1, add the matching edge corresponding to
mi to Gy. If yj = 1, add the line edge(vj , vj+1) to Gy.
Note that the line edge(v1, v2n) is never picked sincey2n =
x1 ⊕ x2 ⊕ . . . ⊕ x2n = 0.

m1

v1 v2 v3 v4 v5 v6

v2 v3 v4 v5 v6

m3

m2

m3

m2

Fig. 4. An example showing how to constructGy for (y, m) =
(010110, 011). The top graph isG and the bottom oneGy .

We will prove that Gy is a union of disjoint cycles and
then deduce the minimum distance from the equivalence of
codewords and unions of disjoint cycles.

Lemma 3:Let (y, m) be a codeword inCs
2,π1

and letGy be
the subgraph ofG corresponding to(y, m) as explained above.
Then
1) Gy is a union of disjoint cycles of length equal to the
Hamming weight of(y, m), denotedwt((y, m)).
2) Each union of disjoint cycles inG correspond to a codeword
of Cs

2,π1
.

Proof:
1) By the construction ofGy, the number of edges inGy

equalswt(y) + wt(m) = wt((y, m)).
Let vi ∈ Gy. vi is connected to 3 edges inG: the two line
edges(vi−1, vi) and(vi, vi+1) and the matching edge(vi, vj).

Let ml be the bit inm corresponding to the matching edge
(vi, vj). Note thatxi = xj = ml.

We have two cases forml:

• If ml = 1, thenxi = 1 and the matching edge(vi, vj)
is in Gy. Note thatyi−1 6= yi sinceyi = yi−1 ⊕ xi =
yi−1⊕1. Hence only one of the two line edges(vi−1, vi)
and (vi, vi+1) appears inGy . Thereforevi is connected
to exactly two edges inGy .

• If ml = 0, thenxi = 0 and the matching edge(vi, vj) is
not in Gy. yi−1 = yi sinceyi = yi−1 ⊕ xi = yi−1 ⊕ 0.
Hence both edges(vi−1, vi) and(vi, vi+1) appear inGy

sincevi ∈ Gy. Thereforevi is only connected to the two
line edges inGy.

Thus all nodes inGy have degree 2. This implies thatGy has
is a disjoint union of cycles.

2) Each cycle in the union should have at least one matching
edge since the line edge(v1, v2n) is removed. Setting to 1
the bits corresponding to the endpoints of each matching
edge and to 0 the remaining bits gives us a binary stringx,
wherex = π1(r2(m)) for some codeword(y, m) in Cs

2,π1
:

the matching edges correspond to the 1-bits in the message
m and the endpoints of the matching edges will correspond
to the 1-bits inx. These bits come in pair (repetition factor
2) since both bits corresponding to the endpoints are set
simultaneously. Hence, the codeword(y, m) will correspond
to the union of cycles considered by the construction ofGy

explained above.
Note that if we did not remove the edge(v1, v2n) from
G, a cycle may contain(v1, v2n). This would imply that
y2n = 1, which is not true, and hence the equivalence between
codewords and union of disjoint simple cycles breaks. �

Combining all the above, we get the following variation of
the codewords-cycles correspondence in [BMS03], [FK04],
adapted to systematic RA codes:

Corollary 1: Let G be a cubic Hamiltonian graph with girth
g and letCs

2,π1
be the systematic RA code whose permutation

π1 is constructed fromG as explained above. ThenCs
2,π1

has
minimum distance equal to the girthg of G.

C. Number of codewords of each weight

We now show thatCs
2,π1

has the exponential weight distribu-
tion property. By the equivalence of codewords and cycles, we
prove that the number of unions of disjoint cycles in the cubic
Hamiltonian graph is at most exponential in the total length
of these cycles. In particular, we show that:

Lemma 4:Xw ≤ 16w, for all w, whereXw is the number of
codewords inCs

2,π1
of weight w.

Proof: Let G be the cubic Hamiltonian graph used as the
permutationπ1. G has 2n vertices and a girthg = log 2n.
Our goal is to boundXw. SinceCs

2,π1
has minimum distance

log 2n, Xw = 0 for all w < log 2n. Recall from Lemma 3 that
Xw is equal to the number of unions of disjoint simple cycles
of total lengthw. To simplify counting, we will consider cycles



with ordered nodes and not necessarily simple and disjoint
cycles.
For w ≥ log 2n, let Zw be the number of unions of ordered
cycles (not necessarily simple and disjoint) with ordered nodes
of total lengthw. Thus,Xw ≤ Zw. We will bound Zw by
induction onw. Let Cw be the number of single cycles (not
necessarily simple) with ordered nodes of lengthw. For w =
g = log 2n, Cw = Zw since a union of cycles of length equal
to the girth should contain one cycle only.

1) Bound on Cw: For a cycle of lengthw, we have at most
2n choices for the first vertex, which has 3 choices for its
neighbor. The last vertex has one choice only, the first vertex.
The remainingw − 2 vertices each has 2 choices. We get:

Cw ≤ 2n ·
(

3 · 2w−2
)

= 6n · 2w−2 ≤ 4w

( log 6n−2
w ≤ 1 sincew ≥ g = log 2n)

2) Bound onZw: We will show by induction onw thatZw ≤
42w. The base case is whenw = g andZg = Cg = 4g ≤ 42g.

Assume the hypothesis is true for alll, g ≤ l ≤ i, we will
prove it true fori + 1.

Zi ≤
i
∑

l=g

ClZi−l ≤
i
∑

l=g

4l 42(i−l) = 42i
i
∑

l=g

4−l

≤ 42i 4−g

1 − 1
4

= 42i
1
4

1 − 1
4

× 4−g+1 ≤ 42i

since4−g+1 ≤ 1, ∀g ≥ 1.

Finally, we getXw ≤ Zw ≤ 16w for all w. �

Note that the logarithmic girth becomes an essential
condition in proving the upper bound onCw.

IV. CONCLUSIONS

We gave an explicit construction of a permutationπ1 such
that the inner-systematic RAA code with first permutation
π1 is, with high probability, asymptotically good, where the
probability is taken over the random choice of the second
permutationπ2. This leads to the following questions:

1) Can the properties of the cubic Hamiltonian graph
help construct an explicit permutationπ2, so that the
resulting inner-systematic RAA code has good minimum
distance?

2) Can other constructions of cubic Hamiltonian graphs,
eg., algebraic constructions, give more insight on the
construction ofπ2 to achieve a good minimum distance?
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