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Abstract— Repeat Accumulate Accumulate (RAA) codes are & "y Fdp g R Loy phe

turbo-like codes where the message is first repeatefd > 2 times,
passed through a first permutation (called interleaver), tlen an
accumulator, then a second permutation, and finally a second
accumulator. Bazzi, Mahdian, and Spielman (2003) prove tha
RAA codes are asymptotically good with high probability when
the two permutations are chosen at random. RAA codes admit . . . . .
linear-time encoding algorithms, and are perhaps the simpmst minimum distance linear in the block length.

known family of linear-time encodable asymptotically goodcodes. Theprem 1 ([BMS03]):Let & > 2 andn be integers, and let

An explicit construction of an asymptotically good RAA codeis : :
thus apvery interesting goal. Weny(F:)us on )t/hge case wheh — 2 71 andms be two permutations of lengthn chosen uniformly

and we consider a variation of RAA codes where the inner repga @t fandom. Then for each constafit> 0, there exists a
accumulate code is systematic. We give an explicit constrtien of ~ constant > 0, such that the RAA code encoded bY. », r,
the first permutation for which we show that the resulting code  has minimum distance at least with probability at leasi —§
is asymptotically good with high probability when the secon  for Jarge enough.

permutation is chosen at random. The explicit constructionuses

Fig. 1. Encoding scheme of’; », =,

a cubic Hamiltonian graph with logarithmic girth. Extensions of RAA codes are studied also in [CKZ07] where
the authors prove that the gap to Gilbert-Varshamov bound
|. INTRODUCTION can be made arbitrarily small by serially concatenating RAA

Repeat Accumulate (RA) codes [DIM98] are turbo-like codesdes with multiple accumulators and random permutations.
with the following encoding: the message is repedteines, In this paper, we will consider a different version of thege’R
wherek is called therepetition factorof the code, then the codes. We use the inner-systematic RAA cadg, .., given
repeated message is passed through a first permutatiand by the following map:

fed to an accumulator. An accumulator takes a binary string s " bt 1)n

ai,as,...,an, and outputs the binary string,bs, ..., by, Chmima 013" - {0’1}( o

where b; = @;Zlaj. In [BMSO03], Bazzi, Mahdian and = A(ma(z, A(mi(re()))))
Spielman show that such a code is asymptotically bad, i-ote that, although the repetition factor is stll the block
the minimum distance doesn’t grow linearly with the bock
length. Repeat Accumulate Accumulate (RAA) are extensions \L

of RA codes studied, for example, in [BDMP98], [DIJM98], = ~ PR L R N P L 8 By L
[PS99], [BMSO03]. To get RAA codes, the output bits from kn
the RA code are passed through a second permutati@nd
then fed to a second accumulator.

Definition 1: [BMSO03] Let £ > 2 andn > 0 be two integers
and letm = kn. Letry : {0,1}" — {0,1}*" be the encoder length and the length of, are (k + 1)n. We use systematic
of the repetition code with repetition factor k and ldt : RA codes for technical convenience.

{0,1}™ — {0,1}™ be the encoder of the accumulator (code
given by: A(a) = (B)_, a;)72, wherea = ajas...ay €

K2

{0,1}™. Then the RAA code with repetition factor and RA codes have the advantage of a simple structure and ex-

Fig. 2. Encoding scheme of’; . .,

. Problem motivation and context

permutationst; andm, is the code whose encoder is tremely simple linear time encoding algorithm. Howeveisit
known that their structure is too simple to yield asympialtic

Chmym 2 10,1} — {0, 1} good codes. Indeed, a direct application of Theorem 2 in

x = Alme(A(mi(ri(2))))) [BMSO03] on RA codes (the convolutional encoder described

In [BMS03], the authors prove that when andr, are chosen in the theorem is now an accumulator) with repetition factor
uniformly at random,Cy, , , has, with high probability, a £ and message length gives a minimum distance =



O(n'=2/*logn), which is not linear in the block lengthn. is at most exponential i. Moreover, using techniques from
Namely, fork = 2, the distance is bounded kb= O(logn). [BMSO03] and [FK04], we prove that the minimum distance of
One of the motivations behind studying RAA codes wathe systematic version ig. In particular, we show that:

to determine whether, unlike RA codes, they could incluo|_eemma 2:let n be a positive integer and Iét ., be an RA
. 3T

asymptotically good codes, i.e., whether their minimum di%ode with permutation, . Let C be the block lengtin code
tance could grow linearly with the block length for a suimblwhOse encoder maps e {0,1}" to (Ca.r, (x),z). Then, for

a}Hfiniter many values of,, there exist an explicit construction
of m; from a cubic Hamiltonian graph with logarithmic girth
such that:

be asymptotically good, which raise the following intenegt
guestion problem that was the motivation for our work:

Can one find twoexplicit permutationsr; and 1) C has minimum distance at ledsts 2n

such that the resulting cod, -, -, has a minimum 2) The number of codewords i@ of weightw is at most
distance linear in the block length? 16®

Finding such permutations would give us an explicit asymgzombining the two lemmas above and settintp 3, d to 2

totically good code with linear time encoding. So far, thgnd; to 16 in Lemma 1, we get the main theorem of this
construction of Spielman [Spi96] (based on a cascade \Qhrk:

expander graphs) is the only known explicit construction of

linear-time encodable codes that are asymptotically gGonl. Theorem 2:Let n be a positive integer and, a permutation
hope is to investigate if RAA codes, which have admit linedth 3n elements chosen uniformly at random. ICet . ., be
time encoding by design, can be made explicit, while aldpe inner-systematic RAA code with = 2, first permutation

being asymptotically good. m constructed from a cubic Hamiltonian graph with logarith-
mic girth, as explained in Section Ill, and second permaiati
B. Summary of results mo . Then for every constant > 0, there exists a constant

We focus on the casé& = 2. We construct an explicit € > 0, such that, for infinitely many, C3 | ., has minimum
permutationr; for which we show that a random permutatiorlistance at leastr with probabilityl—4, where the probability
T gives, with high probability, a linear minimum distance fofs taken over the random choice of.

the inner-systematic RAA cod€; ., .. We divide the result
into two main parts. In the first part, we derive properti
of a binary linear code” such that the cod€’ that maps In Section Il, we prove Lemma 1 using the probabilistic
z € {0,1}" to A(m(C(x))) has, with high probability, a method and properties of the accumulator code. In Sectlon II
good minimum distance. Specifically, we prove: we give an explicit description of the code by constructing

Lemma 1:Let n be a positive integer and> 1, d and{ be the permutatlonr_l of _the_RA code from a cubic Hamiltonian
graph with logarithmic girth.

positive constants. Let, be a permutation chosen uniformly

eg' Organization of rest of the paper

C be a binary linear code with message lengtland block ACCUMULATOR
length cn. Let C’ be the code with the following encoder: _ ) .
C":{0,1}" — {0,1}", 2 — A(m(C(2))). In this section, we prove Lemma 1. We assume the existence

of the codeC with the required properties. Now, we will

permute the bits of the codewords 6f and feed them to

an accumulator. We want to find a permutationso that the
; . o inimum distance at the output of the accumulator, i.e. the

2) exponenuallwelghtd|_str|but|pn propert;;: The number O:ﬂinimum distance ofC’, is linear in the block length. We
codewords inC’ of weightw is at most! will show that such permutation exists by the probabilistic
Then, for every constarit > 0, there exists a constaat> 0  method. We follow the same technique used in [BMS03] to

dependent only om, ¢, d and [, such that for all large prove that RAA codes have good minimum distance when
enoughn, the codeC’ has minimum distance at leash poth permutations are chosen at random.

with probability 1 — 6, where the probability is taken over| et ¢ be the code described in Lemma 1
the uniform random choice afs.

If C satisfies the following properties:

1) minimum distance property’ has minimum distance
at leastlog dn

c':{0,1}" — {0,1}°", A(mo(C
The next result gives an explicit construction of a cade {0.1} {0, 1}, @ = Alms(C())

satisfying both properties. We use an RA code with repetitidVe will calculate the probability that” has minimum distance
factor 2, where the permutation is constructed from a cubic less tharen. By Markov’s inequality, the probability that there
Hamiltonian graph with logarithmic girth. Proving that such exists a nonzero codeword of weight less thanis bounded
systematic RA codes satisfy the conditions relies on the fdoom above by the expected number of codewords of weight
that k = 2. We setC to be the systematic version 6f, .,, less thansn. We will denote this latter expectation by.,,.
where we append the original message to the output of thet «,, ;, denote the probability that a randoem bit input
code. We prove that the number of codewords of weight string of weightw leads to Hamming weight weiglit at the



accumulator’s output. By linearity of expectation, we clga In the above proof, we assumed the existence of the code
have C with the minimum distance and the exponential weight
2en . . . . . .
distribution properties. In the following section, we ctrost

Ben = Z Z X, such codes from systematic RA codes with repetition factor 2
and Lemma 1 will apply by setting= 3, d = 2 and! = 16.
whereX,, denotes the number of codewords with input weigh
w. Note that the upper bound af is set to2en: for a binary
stringz of weightw at the input of an accumulator, the output
A(z) will have weight at leasf2]. Hence we get a codewordIn this section, we construct codes satisfying the properti
of weight < en only if the input weight of the codeword is heeded in the serial concatenation scheme used in section 2.
at most2en. These codes are systematic RA codes whose permutatiisn
In [DIM98], the authors calculate the number of codewor@@nstructed from cubic Hamiltonian graphs with logaritbmi
of an accumulator code of input weight and output weight girth. The repetition factok is set to 2. The construction and

h, denotedA,, . If N is the block length of the accumulator,proof heavily use the fact that = 2. We will show that
thenA(N,z _ (N h) ( h—1 ) the systematic RA code(’s ., has the requisite minimum

Back to a1 Lwé ge[ z1-1 distance and exponential weight distribution properties:
1) C5 ., has minimum distance at ledsig 2n.

h=1w=logdn

}II. SYSTEMATIC RA CODES FROM CUBICHAMILTONIAN
GRAPHS

Afj‘j_ﬁ} (CEJ}I)([;;) (@J)((%}{,l) 2) Let X,, is the number of codewords ifi .~ of weightw.
B ) R ) RN G Then X,, < 16", for all w.

/2 /2 If n is the message length of the systematic RA code, the block
Using (LgJ) < (ﬂ) , ((%W{l) < (4%) and (¥) > lengthis3n: 2n from the output of the accumulator androm
2\Y the appended message. The construction of the permutation
(5) » e get is based on the construction presented in [BMS03] and adapte
in [FKO4] for RA codes.

A. Construction
The construction uses a cubic Hamiltonian (undirectedplyra

Then G = (V,E) with logarithmic girth. Constructions of such
2en 4evh v graphs were proposed by Erdds and Sachs [Big98] based on
Een < Z Z Xuw Jon a greedy algorithm.
h=1w=logdn For a message length, G has2n vertices and3n edges.
2en w En We remove the edgév;, ve,,) for technical convenience that
= Z X ( ) Z e/ we explain later. The nodes represent the bits of the message
w=log dn after repetition. Letv,...,vs, be the nodes ofy and let
2en de w)2 r = xz1,...,2T2, be the repeated permuted version of a
< Z Xuw (\/ﬁ) en (en) messagen < {0,1}", thenwv; is associated with the bit;.
w=log dn Let y be the output of the accumulator when applied:ta.e
S dey/z y = Car,(m) = A(2).
= fn Z ( ) All the edges along the broken Hamiltonian cycle will be
w=log dn referred to adine edges The remaining edges are referred to
Using the exponential weight property of the cade X,, < asmatching edgesThe nodes at the endpoints of a matching
v, we get edge are repeated nodes, stuif, v;) is a matching edge, then
oo x; = x;. The matching edges are ordered frano n so that
B <en Z (416\/—> each matching edge corresponds to one ofsthigits of the
en original messagen. To encode, we set to 1 the nodes of each
w=logdn matching edge corresponding to 1 in the input message and to
For 41:‘3[\0/5 <l iee< 5%, we get 0 the remaining nodes in the graph. The bits are then entered
in the nodes’ order to the accumulator.
2en Cw Clogdnga 162 Figure 3 shows the_ grapi and how the nodes and edges
Een <en Z 27 <en27® = a correspond to the bits of the message and the codeword. To
w=logdn summarize, we have the following:
To sum up, fore < 4555z, we have shown that the probability « m € {0,1}" is the original message; = 7 (r2(m)) €
that the minimum dlstance &’ > enis at leastl — 152, Thus {0,1}°",y = A(z) € {0,1}*" andCs3 . (m) = (y,m) €
by pickinge < min{z%, 24}, we can conclude the(t" has {0, 1}

minimum distance at least: with probability at leastl — 4, o G =(V,E) is the graph wher¢l/| = 2n and|E| = 3n.
as desired. [ | If vi,vip1,v; € V (1 < j) and (vi, viy1), (vi,v;) € E,



Let m; be the bit inm corresponding to the matching edge
(vi,vj). Note thatr; = z; = my.
We have two cases fon,:

o If m; =1, thenz; = 1 and the matching edg@;, v;)
is in G,. Note thaty;_1 # y; sincey; = yi—1 ® x; =
yi—1 @ 1. Hence only one of the two line edgés_1, v;)
and (v;, vi+1) appears inG,. Thereforev; is connected
to exactly two edges iir,.

o If my =0, thenz; = 0 and the matching edge;, v;) is
not in Gy. yi—1 = y; sincey; = yi—1 ®x; = yi—1 B 0.

Fig. 3. GraphG Hence both edge&;_1,v;) and (v;, v;11) appear inG,,
sincev; € G. Thereforev; is only connected to the two
line edges inG,,.

Thus all nodes inG,, have degree 2. This implies that, has

is a disjoint union of cycles.

~.line edges corresponding
tothe bits ofy

(v2, v;) is @ matching
edge thene; = z;

matching edges corresponding to the bitsrof

then v, is associated with;, the (line) edge(v;, vit1)
is associated witly; and the (matching) edge;, v;) is

associated withn;, for somel € {1,---,n}. ) . )
! { } 2) Each cycle in the union should have at least one matching

B. Minimum Distance edge since the line edg@,v2,) is removed. Setting to 1
. . . the bits corresponding to the endpoints of each matchin
To calculate the minimum distance ¢f; ., we will show b d P ¢

) . . . edge and to O the remaining bits gives us a binary string
the equivalence between a codeword and a union of dISjOWII]erew — 71(ra(m)) for some codewordy,m) in C5. -

. . . — ) 2,71'1 :
f(')?;?llee ncgtﬂe(ff. tt:ee g/i:ggt '?Liz gg:jri\;vgg?] dceor:gisiz Ogdvsa:]%;n?e matching edges correspond to the 1-bits in the message
of that in [BMS03] and [FK04] adapted to RA codes. m and the endpoints of the matching edges will correspond

F h d truct th & to the 1-bits inxz. These bits come in pair (repetition factor
or each ionzero codewo(g, m), construct e graphry as - 5y since both bits corresponding to the endpoints are set
follows: If m,; = 1, add the matching edge corresponding t

. gimultaneously. Hence, the codewdrgd m) will correspond
m; 10 Gy. If y; =1, add the line edgév;, vj11) 10 G to the union of cycles considered by the constructiorGgf
Note that the line edgév, va,,) is never picked sincgs,, =

~0 explained above.
L1022 0 ... Dagn = 0. Note that if we did not remove the edde,wv,,) from

my G, a cycle may containvy, va,). This would imply that
my Y2, = 1, which is not true, and hence the equivalence between
codewords and union of disjoint simple cycles breaks. ®

vy U2

Combining all the above, we get the following variation of
the codewords-cycles correspondence in [BMS03], [FKO04],
adapted to systematic RA codes:

Fig. 4. An example showing how to construct, for (y,m) = Corollary 1: Let G be a cubic Hamiltonian graph with girth
(010110, 011). The top graph is> and the bottom oné,,. g and letC; | be the systematic RA code whose permutation
7 is constructed fromy' as explained above. Ther . has

We will prove thatG, is a union of disjoint cycles and minimum distance equal to the girthof G.

then deduce the minimum distance from the equivalence ©f Number of codewords of each weight

codewords and unions of disjoint cycles. We now show thaCs ., has the exponential weight distribu-

Lemma 3:Let (y,m) be a codeword irC5 ;. and letG, be tion property. By the equivalence of codewords and cycles, w
the subgraph of? corresponding tdy, m) as explained above. prove that the number of unions of disjoint cycles in the cubi

Then Hamiltonian graph is at most exponential in the total length
1) G, is a union of disjoint cycles of length equal to theof these cycles. In particular, we show that:

Hamming weight of(y,m), denotedwt((y, m)). Lemma 4: X,, < 16%, for all w, whereX,, is the number of

2) Ea;ch union of disjoint cycles i&¥ correspond to a codeword ., qewords inC; ., of weightw.

of C5 - Proof: Let G be the cubic Hamiltonian graph used as the
Proof: permutation7;. G has2n vertices and a girtly = log 2n.

1) By the construction ofG,, the number of edges ig/, Our goal is to boundY,,. SinceCs . has minimum distance
equalswt(y) + wt(m) = wt((y, m)). log 2n, X,, = 0 for all w < log 2n. Recall from Lemma 3 that

Let v; € Gy. v; is connected to 3 edges i@: the two line X, is equal to the number of unions of disjoint simple cycles
edges(v;—1,v;) and(v;, v;41) and the matching edde;,v;). of total lengthw. To simplify counting, we will consider cycles
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prove it true for: + 1.

Z; < i:clzi_l < izﬂ 42070 = ¢ Z 4~
=g l=g l=g

4-9 1 )
_ 421 4 - x 4*g+1 S 421
1— 1-1

S 42’i

el

since4—9t! <1, ¥g > 1.
Finally, we getX,, < Z,, < 16% for all w. [ |

Note that the logarithmic girth becomes an essential
condition in proving the upper bound @r,.

IV. CONCLUSIONS

We gave an explicit construction of a permutation such
that the inner-systematic RAA code with first permutation
m is, with high probability, asymptotically good, where the
probability is taken over the random choice of the second
permutationr,. This leads to the following questions:

1) Can the properties of the cubic Hamiltonian graph
help construct an explicit permutatiary, so that the
resulting inner-systematic RAA code has good minimum
distance?

2) Can other constructions of cubic Hamiltonian graphs,
eg., algebraic constructions, give more insight on the
construction ofry to achieve a good minimum distance?



