
ar
X

iv
:0

90
3.

04
45

v1
 [

cs
.IT

]
3

M
ar

 2
00

9

Raptor Codes Based Distributed Storage Algorithms
for Wireless Sensor Networks

Salah A. Aly
Department of Computer Science

Texas A&M University
College Station, TX 77843, USA

Email: salah@cs.tamu.edu

Zhenning Kong
Department of Electrical Engineering

Yale University
New Haven, CT 06520, USA

Email: zhenning.kong@yale.edu

Emina Soljanin
Bell Laboratories
Alcatel-Lucent

Murray Hill, NJ 07974, USA
Email: emina@lucent.com

Abstract—We consider a distributed storage problem in a
large-scale wireless sensor network withn nodes among which
k acquire (sense) independent data. The goal is to disseminate
the acquired information throughout the network so that each of
the n sensors stores one possibly coded packet and the originalk

data packets can be recovered later in a computationally simple
way from any (1 + ǫ)k of nodes for some smallǫ > 0. We
propose two Raptor codes based distributed storage algorithms
for solving this problem. In the first algorithm, all the sensors
have the knowledge ofn and k. In the second one, we assume
that no sensor has such global information.

I. I NTRODUCTION

We consider a distributed storage problem in a large-scale
wireless sensor network withn nodes among whichk sensor
nodes acquire (sense) independent data. Since sensors are
usually vulnerable due to limited energy and hostile environ-
ment, it is desirable to disseminate the acquired information
throughout the network so that each of then sensors stores
one possibly coded packet and the originalk source packets
can be recovered later in a computationally simple way from
any (1+ ǫ)k of nodes for some smallǫ > 0. No sensor knows
locations of any other sensors except for their own neighbors,
and they do not maintain any routing information (e.g., routing
tables or network topology).

Algorithms that solve such problems using coding in a
centralized way are well known and understood. In a sensor
network, however, this is much more difficult, since we need
to find a strategy to distribute the information from multiple
sources throughout the network so that each sensor admits
desired statistics of data. In [7], Linet al. proposed an
algorithm that uses random walks with traps to disseminate
the source packets in a wireless sensor network. To achieve
desired code degree distribution, they employed the Metropolis
algorithm to specify transition probabilities of the random
walks. While the proposed methods in [7] are promising, the
knowledge of the total number of sensorsn and sourcesk are
required. Another type of global information, the maximum
node degree (i.e., the maximum number of neighbors) of the
graph, is also required to perform the Metropolis algorithm.
Nevertheless, for a large-scale sensor network, these types
of global information may not be easy to obtain by each
individual sensor, especially when there is a possibility of
change of topology.

In [1], [2], we proposed Luby Transform (LT) codes based
distributed storage algorithms for large-scale wireless sensor
networks to overcome these difficulties. In this paper, we
extend this work to Raptor codes and demonstrate their
performance. Particularly, we propose two new decentralized
algorithms, Raptor Code Distributed Storage (RCDS-I) and
(RCDS-II), that distribute information sensed by k source
nodes to n nodes for storage based on Raptor codes. In
RCDS-I, each node has limited global information; while in
RCDS-II, no global information is required. We compute the
computational encoding and decoding complexity of these
algorithms as well as evaluate their performance by simulation.

II. W IRELESSSENSORNETWORKS AND FOUNTAIN CODES

A. Network Model

Suppose that the wireless sensor network consists ofn
nodes that are uniformly distributed at random in a region
A = [L,L]2. Among thesen nodes, there arek source
nodes that have information to be disseminated throughout
the network for storage. Thesek nodes are uniformly and
independently chosen at random among then nodes. Usually,
the fraction of source nodes.

We assume that no node has knowledge about the locations
of other nodes and no routing table is maintained, and thus that
the algorithm proposed in [4] cannot be applied. Moreover,
besides the neighbor nodes, we assume that each node has
limited or no knowledge of global information. The limited
global information refers to the total number of nodesn, and
the total number of sourcesk. Any further global information,
for example, the maximal number of neighbors in the network,
is not available. Hence, the algorithms proposed in [5]–[7]are
not applicable.

Definition 1: (Node Degree) Consider a graphG = (V,E),
whereV andE denote the set of nodes and links, respectively.
Givenu, v ∈ V , we sayu andv areadjacent(or u is adjacent
to v, and vice versa) if there exists a link betweenu and v,
i.e., (u, v) ∈ E. In this case, we also say thatu and v are
neighbors. Denote byN (u) the set of neighbors of a nodeu.
The number of neighbors of a nodeu is called thenode degree
of u, and denoted bydn(u), i.e., |N (u)| = dn(u). The mean
degreeof a graphG is then given byµ = 1

|V |

∑

u∈G dn(u).

http://arxiv.org/abs/0903.0445v1

2

x1 x2 x3 xk

y1 y2 y3 yk yn

Fig. 1. The encoding operations of Fountain codes: each output is obtained
by XORing d source blocks chosen uniformly and independently at random
from k source inputs, whered is drawn according to a probability distribution
Ω(d).

B. Fountain Codes and Raptor Codes

Definition 2: (Code Degree) For Fountain codes, the num-
ber of source blocks used to generate an encoded outputy
is called the code degree ofy, and denoted bydc(y). The
code degree distributionΩ(d) is the probability distribution of
dc(y).

For k source blocks{x1, x2, . . . , xk} and a probability
distribution Ω(d) with 1 ≤ d ≤ k, a Fountain code with
parameters(k,Ω) is a potentially limitless stream of output
blocks{y1, y2, ...}. Each output block is obtained by XORing
d randomly and independently chosen source blocks, whered
is drawn from a degree distributionΩ(d). This is illustrated
in Fig. 1.

Raptor codes are a class of Fountain codes with linear
encoding and decoding complexity [10], [11]. The key idea
of Raptor codes is to relax the condition that all input blocks
need to be recovered. If an LT code needs to recover only a
constant fraction of its input blocks, its decoding complexity
is O(k), i.e., linear time decoding. Then, we can recover all
input blocks by concatenating a traditional erasure correcting
code with an LT code. This is called pre-coding in Raptor
codes, and can be accomplished by a modern block code such
as LDPC codes. This process is illustrated in Fig. 2.

The pre-codeCm used in this paper is the randomized
LDPC (Low-Density Parity-Check) code that is studied as
one type of pre-code in [10]. In this randomized LDPC
code, we havek source blocks andm pre-coding output
blocks. Each source block choosesd pre-coding output blocks
uniformly independently at random, whered is drawn from a
distributionΩL(d). Each pre-coding output blocks combines
the “incoming” source blocks and obtain the encoded output.

The code degree distributionΩr(i) of Raptor codes for LT
coding is a modification of the Ideal Soliton distribution and
given by

Ωr(i) =

ρ

1 + ρ
, i = 1,

1

i(i− 1)(1 + ρ)
, i = 2, ..., D,

1

D(1 + ρ)
, i = D + 1,

(1)

whereD = ⌈4(1 + ǫ)ǫ⌉ andρ = (ǫ/2) + (ǫ/2)2.
The following result provides the performance of the Raptor

codes [10], [11].
Lemma 1 (Shokrollahi [10], [11]):Let R0 = (1 +

ǫ/2)/(1+ ǫ), andCm be the family of codes of rateR0. Then,
the Raptor code with pre-codeCm and LT codes with degree

x1 x2 x3 xk

y1 y2 y3 yk yk+1

z1 z2 z3 zm zn

ym

Redudant Nodes
Pre-coding

LT-coding

Fig. 2. The encoding operations of raptor codes:k source blocks are first
encoded tom pre-coding output blocks by LDPC coding, and then the final
encoded output blocks are obtained by applying LT codes withthesem pre-
coding output blocks with degree distributionΩr(d).

distributionΩr(d) has a linear time encoding algorithm. With
(1+ǫ)k encoded output blocks, the BP decoding algorithm has
a linear time complexity. More precisely, the average number
of operations to produce an output symbol isO(log(1/ǫ)),
and the average number of operations to recover thek source
symbols isO(k log(1/ǫ)).

III. R APTOR CODESBASED DISTRIBUTED STORAGE

(RCDS) ALGORITHMS

As shown in [1], [7], distributed LT codes are relatively
simple to implement. Raptor codes take the advantage of
LT codes to decode a major fraction ofk source packets
within linear complexity, and use another error correctingcode
to decode the remaining minor fraction also within linear
complexity by concatenating such an error correcting code
and LT code together [10].

Nevertheless, it is not trivial to achieve this encoding
mechanism in a distributed manner. In this section, we propose
two algorithms for distributed storage based on Raptor codes.
The first is called RCDS-I, in which each node has knowledge
of limited global information. The second is called RCDS-II,
which is a fully distributed algorithm and does not require any
global information.

A. With Limited Global Information—RCDS-I

In RCDS-I, we assume that each node in the network knows
the value ofk—the number of sources, and the value ofn—
the number of nodes. We use simple random walk [9] for each
source to disseminate its information to the whole network.At
each round, each nodeu that has packets to transmit chooses
one nodev among its neighbors uniformly independently at
random, and sends the packet to the nodev. In order to avoid
local-cluster effect—each source packet is trapped most likely
by its neighbor nodes— at each node, we make acceptance
of any a source packet equiprobable. To achieve this, we also
need each source packet to visit each node in the network at
least once.

Definition 3: (Cover Time) Given a graphG, let Tcover(u)
be the expected length of a random walk that starts at nodeu
and visits every node inG at least once. Thecover timeof G
is defined byTcover(G) = maxu∈G Tcover(u) [9].

Lemma 2 (Avin and Ercal [3]):Given a random geometric
graph with n nodes, if it is a connected graph with high
probability, thenTcover(G) = Θ(n logn).

3

Therefore, we can set a counter for each source packet and
increase the counter by one after each forward transmission
until the counter reaches some thresholdC1n logn to guaran-
tee that the source packet visits each node in the network at
least once.

To perform the LDPC pre-coding mechanism fork sources
in a distributed manner, we again use simple random walks to
disseminate the source packets. Each source node generatesb
copies of its own source packet, whereb follows distribution
for randomized LDPC codesΩL(d). After theseb copies are
sent out and distributed uniformly in the network, each node
amongm nodes chosen as pre-coding output nodes absorbs
one copy of this source packet with some probability. In this
way, we havem pre-coding output nodes, each of which
contains a combined version of a random number of source
packets. Then, the above method can be applied for these
m pre-coding output nodes as new sources to do distributed
Raptor encoding. In this way, we can achieve distributed
storage packets based on Raptor codes. The RCDS-I algorithm
is described in the following steps.

(i) Initialization Phase:
(1) Each nodeu in the network draws a random number
dc(u) according to the distributionΩr(d) given by (1).

(2) Each source nodesi, i = 1, . . . , k draws a random
numberb(si) according to the distribution ofΩL(d)
and generatesb(si) copies of its source packetxsi with
its ID and a counterc(xsi) with initial value zero in
the packet header and sends each of them to one of
si’s neighbors chosen uniformly at random.

(ii) Pre-coding Phase:
(1) Each node of the remainingn − k non-source

nodes chooses to serve as a redundant node with
probability m−k

n−k
. We call these redundant nodes

and the original source nodes as pre-coding out-
put nodes. Each pre-coding output nodewj gen-
erates a random numbera(wj) according to dis-
tribution Ωc(d) given by Ωc(d) = Pr(a(w) =

d) =
(

k
d

)

(

E[b]
m

)d (

1− E[b]
m

)k−d

, where E[b] =
∑

b bΩL(b).
(2) Each node that has packets in its forward queue

before the current round sends the head of line packet
to one of its neighbors chosen uniformly at random.

(3) When a nodeu receives a packetx with counter
c(x) < C1n log(n) (C1 is a system parameter), the
node u puts the packet into its forward queue and
update the counter asc(x) = c(x) + 1.

(4) Each pre-coding output nodew accepts the firsta(w)
copies of differenta(w) source packet with counters
c(x) ≥ C1n log(n), and updatesw’s pre-coding result
each time asy+w = y−w⊕x. If a copy ofxsj is accepted,
the copy will not be forwarded any more, andw will
not accept any other copy ofxsj . When the nodew
finishesa(w) updates,yw is the pre-coding output of
w

(iii) Raptor-coding Phase:

(1) Each pre-coding output nodeoj put its ID and a
counter c(yoj) with initial value zero in the packet
header, and sends out its pre-coding output packetyoj
to one of its neighboru, chosen uniformly at random
among all its neighborsN (oj).

(2) The nodeu accepts this pre-coding output packetyoj
with probability dc(u)

m
and updates its storage asz+u =

z−u ⊕ yoj . No matter the source packet is accepted or
not, the nodeu puts it into its forward queue and set
the counter ofyoj as c(yoj) = 1.

(3) In each round, when a nodeu has at least one pre-
coding output packet in its forward queue before the
current round,u forwards the head of line packety
in its forward queue to one of its neighborv, chosen
uniformly at random among all its neighborsN (u).

(4) Depending on how many timesy has visitedv, the
nodev makes its decisions:
• If it is the first time thaty visits u, then the node
v accepts this source packet with probabilitydc(v)

m

and updates its storage asz+v = z−v ⊕ y.
• If y has visitedv before andc(y) < C1n logn,

then the nodev accepts this source packet with
probability 0.

• No mattery is accepted or not, the nodev puts it
into its forward queue and increases the counter of
y by onec(y) = c(y) + 1.

• If y has visitedv before andc(y) ≥ C1n logn then
the nodev discards packety forever.

(iv) Storage Phase: When a nodeu has made its decisions for
all the pre-coding output packetsyo1 , yo1 , ..., yom , i.e., all
these packets have visited the nodeu at least once, the
nodeu finishes its encoding process andzu is the storage
packet ofu.

The RCDS-I algorithm achieves the same decoding perfor-
mance as Raptor codes. Due to the space limitation, all the
proofs for the theorems and lemmas are omitted.

Theorem 3:Suppose sensor networks haven nodes andk
sources, and letk/m = (1+ ǫ/2)/(1+ ǫ). Whenn andk are
sufficient large, thek original source packets can be recovered
from (1 + ǫ)k storage packets. The decoding complexity is
O(k log(1/ǫ)).

The price for the benefits we achieved in the RCDS-I
algorithm is the extra transmissions. The total number of
transmissions (the total number of steps ofk random walks)
is given in the following theorem.

Theorem 4:Denote byT (I)
RCDS the total number of trans-

missions of the RCDS-I algorithm, then we have

T
(I)
RCDS = Θ(kn logn) + Θ(mn logn), (2)

wherek is the total number of sources before pre-coding,m
is the total number of outputs after pre-coding, andn is the
total number of nodes in the network.

B. With no Global Information—RCDS–II

In RCDS-I algorithm, we assume that each node in the
network knowsn and k—the total number of nodes and

4

sources. However, in many scenarios, especially, when changes
of network topologies may occur due to node mobility or node
failures, the exact value ofn may not be available for all
nodes. On the other hand, the number of sourcesk usually
depends on the environment measurements, or some events,
and thus the exact value ofk may not be known by each
node either. As a result, to design a fully distributed storage
algorithm which does not require any global information is
very important and useful. In this subsection, we propose such
an algorithm based on Raptor codes, called RCDS-II. The idea
behind this algorithm is to utilize some features of simple
random walks to do inference to obtain individual estimations
of n andk for each node.

To begin, we introduce the definition of inter-visit time and
inter-packet time. For a random walk on any graph, theinter-
visit time is defined as follows [8], [9]:

Definition 4: (Inter-Visit Time) For a random walk on a
graph, theinter-visit timeof nodeu, Tvisit(u), is the amount
of time between any two consecutive visits of the random walk
to nodeu. This inter-visit time is also calledreturn time.

For a simple random walk on random geometric graphs, the
following lemma provides results on the expected inter-visit
time of any node.

Lemma 5:For a nodeu with node degreedn(u) in a
random geometric graph, the mean inter-visit return time is
given by

E[Tvisit(u)] =
µn

dn(u)
, (3)

whereµ is the mean degree of the graph.
From Lemma 5, we can see that if each nodeu can

measure the expected inter-visit timeE[Tvisit(u)], then the
total number of nodesn can be estimated by

n̂′(u) =
dn(u)E[Tvisit(u)]

µ
. (4)

However, the mean degreeµ is a global information and may
be hard to obtain. Thus, we make a further approximation and
let the estimation ofn by the nodeu be

n̂(u) = E[Tvisit(u)]. (5)

In our distributed storage algorithms, each source packet
follows a simple random walk. Since there arek sources, we
havek individual simple random walks in the network. For
a particular random walk, the behavior of the return time is
characterized by Lemma 5. Nevertheless, Lemma 6 provides
results on the inter-visit time among allk random walks, which
is called inter-packet time for our algorithm and defined as
follows:

Definition 5: (Inter-Packet Time) Fork random walks on
a graph, theinter-packet timeof nodeu, Tpacket(u), is the
amount of time between any two consecutive visits of those
k random walks to nodeu.

Lemma 6:For a nodeu with node degreedn(u) in a
random geometric graph withk simple random walks, the

mean inter-packet time is given by

E[Tpacket(u)] =
E[Tvisit(u)]

k
=

µn

kdn(u)
, (6)

whereµ is the mean degree of the graph.
From Lemma 5 and Lemma 6, it is easy to see that for any

nodeu, an estimation ofk can be obtained by

k̂(u) =
E[Tvisit(u)]

E[Tpacket(u)]
. (7)

After obtaining estimations for bothn andk, we can employ
similar techniques used in RCDS-I to perform Raptor coding
and storage. We will only present details of the Interference
Phase due to the space limitation. The Initialization Phase,
Pre-coding Phase, Raptor-coding Phase and Storage Phase are
the same as in RCDS-I with replacements ofk by k̂(u) and
n by n̂(u) everywhere.

Inference Phase:
(1) For each nodeu, supposexs(u)1 is the first source packet

that visitsu, and denote byt(j)
s(u)1

the time whenxs(u)1

has itsj-th visit to the nodeu. Meanwhile, each node
u also maintains a record of visiting time for each other
source packetxs(u)i that visited it. Lett(j)

s(u)i
be the time

when source packetxs(u)i has itsj-th visit to the node
u. After xs(u)1 visiting the nodeu C2 times, whereC2 is
system parameter which is a positive constant, the node
u stops this monitoring and recoding procedure. Denote
by k(u) the number of source packets that have visited
at least once upon that time.

(2) For each nodeu, let J(s(u)i) be the number of
visits of source packetxs(u)i to the node u and

let Ts(u)i = 1
J(s(u)i)

∑J(s(u)i)
j=1 t

(j+1)
s(u)i

− t
(j)
s(u)i

.

Let Jii′ , min{J(s(u)i), J(s(u)i′)}, and
Ts(u)is(u)i′

= 1
Jii′

∑Jii′

j=1 t
(j)
s(u)i

−t
(j)
s(u)i′

. Then, the average
inter-visit time and inter-packet time for nodeu are given
by T̄visit(u) = 1

k(u)

∑k(u)
i=1 Ts(u)i , and T̄packet(u) =

1
k(u)(k(u)−1)

∑k(u)−1
i=1

∑k(u)
i′=i+1 Ts(u)is(u)i′

,respectively.
Then the nodeu can estimate the total number of
nodes in the network and the total number of sources as
n̂(u) = T̄visit(u)

2 ,and k̂(u) = T̄visit(u)

T̄packet(u)
.

(3) In this phase, the counterc(xsi) of each source packet
c(xsi) is incremented by one after each transmission.

IV. PERFORMANCEEVALUATION

In this section, we study the performance of the proposed
RCDS-I and RCDS-II algorithms for distributed storage in
wireless sensor networks through simulation. The main per-
formance metric we investigate is the successful decoding
probability versus the decoding ratio.

Definition 6: (Decoding Ratio)Decoding ratioη is the ratio
between the number of querying nodesh and the number of
sourcesk, i.e., η = h

k
.

Definition 7: (Successful Decoding Probability)Successful
decoding probabilityPs is the probability that thek source
packets are all recovered from theh querying nodes.

5

1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

fu
l D

ec
od

in
g

P
ro

ba
bi

lit
y

P
s

Decoding Ratio η

100 nodes and 10 sources
100 nodes and 20 sources
200 nodes and 20 sources
200 nodes and 40 sources

(a)

1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

fu
l D

ec
od

in
g

P
ro

ba
bi

lit
y

P
s

Decoding Ratio η

200 nodes and 20 sources
500 nodes and 50 sources
1000 nodes and 100 sources

(b)
Fig. 3. Decoding performance of the RCDS-I algorithm: (a) small number
of nodes and sources; (b) large number of nodes and sources

1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

fu
l D

ec
od

in
g

P
ro

ba
bi

lit
y

P
s

Decoding Ratio η

RCDS−I: 100 nodes and 10 sources
RCDS−I: 200 nodes and 20 sources
RCDS−II: 100 nodes and 10 sources
RCDS−II: 200 nodes and 20 sources

(a)

1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

fu
l D

ec
od

in
g

P
ro

ba
bi

lit
y

P
s

Decoding Ratio η

RCDS−I: 500 nodes and 50 sources
RCDS−I: 1000 nodes and 100 sources
RCDS−II: 500 nodes and 50 sources
RCDS−II: 1000 nodes and 100 sources

(b)
Fig. 4. Decoding performance comparison of the RCDS-I and RCDS-II
algorithms: (a) small number of nodes and sources; (b) largenumber of nodes
and sources

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

fu
l D

ec
od

in
g

P
ro

ba
bi

lit
y

P
s

System Parameter C
1

500 nodes and 50 sources
1000 nodes and 100 sources

(a)

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

fu
l D

ec
od

in
g

P
ro

ba
bi

lit
y

P
s

System Parameter C
2

100 nodes and 10 sources with η=1.5
100 nodes and 10 sources with η=2.0
200 nodes and 20 sources with η=1.5
200 nodes and 20 sources with η=2.0

(b)
Fig. 5. Impact of system parameters: (a) decoding performance of RCDS-I
algorithm with differentC1, (b) decoding performance of RCDS-I algorithm
with different C2.

In our simulation,Ps is evaluated as follows. Suppose the
network hasn nodes andk sources, and we queryh nodes.
There are

(

n
h

)

ways to choose suchh nodes, and we choose
M = 1

10

(

n
h

)

= n!
10·h!(n−h)! uniformly randomly samples of the

choices of query nodes. LetMs be the number of samples of
the choices of query nodes from which thek source packets
can be recovered. Then, the successful decoding probability is
evaluated asPs =

Ms

M
.

Our simulation results are shown in Figures. 3, 4 and 5.
Fig. 3 shows the decoding performance of RCDS-I algorithm
with different number of nodes and sources. The network is
deployed inA = [5, 5]2, and the system parameterC1 is
set asC1 = 5. From the simulation results we can see that
when the decoding ratio is above 2, the successful decoding
probability is about95%. Another observation is that when the
total number of nodes increases but the ratio betweenk andn
and the decoding ratioη are kept as constants, the successful
decoding probabilityPs increase whenη ≥ 1.4 and decreases

when η < 1.4. That is because the more nodes we have,
the more likely each node has the desired degree distribution.
Fig. 4 compares the decoding performance of RCDS-II and
RCDS-I algorithms. To guarantee each node obtain accurate
estimations ofn andk, we setC2 = 50. It can be seen that
the decoding performance of the RCDS-II algorithm is a little
bit worse than the RCDS-I algorithm when decoding ratioη
is small, and almost the same whenη is large. To investigate
how the system parameterC1 and C2 affects the decoding
performance of the RCDS-I and RCDS-II algorithms, we fix
the decoding ratioη and varyC1 and C2. The simulation
results are shown in Fig. 5. It can be seen that whenC1 ≥ 4,
Ps keeps almost like a constant, which indicates that after
4n logn steps, almost all source packet visit each node at
least once. We can also see that whenC2 is chosen to be
small, the performance of the RCDS-II algorithm is very poor.
This is due to the inaccurate estimations ofk andn of each
node. WhenC2 is large, for example, whenC2 ≥ 40, the
performance is almost the same.

V. CONCLUSION

In this paper, we studied Raptor codes based distributed
storage algorithms for large-scale wireless sensor networks.
We proposed two new decentralized algorithms RCDS-I and
RCDS-II that distribute information sensed byk source nodes
to n nodes for storage based on Raptor codes. In RCDS-I,
each node has limited global information; while in RCDS-II,
no global information is required. We computed the compu-
tational encoding and decoding complexity, and transmission
costs of these algorithms. We also evaluated their performance
by simulation.

REFERENCES

[1] S. A. Aly, Z. Kong, and E. Soljanin. Fountain codes based distributed
storage algorithms for large-scale wireless sensor networks. IEEE/ACM
International Conference on Information Processing in Sensor Networks
(IPSN), pages 171–182, Sa. Louis, MO, April 21-24, 2008.

[2] S. A. Aly, Z. Kong, and E. Soljanin. Fountain codes based distributed
storage algorithms.US patent, Status: pending, October, 2007.

[3] Avin C. and Ercal G. On the cover time of random geometric graphs.
In Proc. 32nd International Colloquium of Automata, Languages and
Programming, ICALP’05, Lisboa, Portugal, July, 2005.

[4] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. Ubiquitous access
to distributed data in large-scale sensor networks throughdecentralized
erasure codes. InProc. 4th IEEE Symposium on Information Processing
in Sensor Networks (IPSN), Los Angeles, CA, USA, April, 2005.

[5] A. Kamra, J. Feldman, V. Misra, and D. Rubenstein. Growthcodes:
Maximizing sensor network data persistence. InProc. of ACM SIG-
COMM 2006, Pisa, Italy, September, 2006.

[6] Y. Lin, b. Li, and B. Liang. Differentiated data persistence with priority
random linear code. InProc. of 27th International Conference on
Distributed Computing Systems (ICDCS’07), Toronto, Canada, June,
2007.

[7] Y. Lin, B. Liang, and B. Li. Data persistence in large-scale sensor net-
works with decentralized fountain codes. InProc. of IEEE INFOCOM
2007, Anchorage, AL, May, 2007.

[8] R. Motwani and P. Raghavan.Randomized Algorithms. Cambridge
University Press, 1995.

[9] S. Ross.Stochastic Processes. Wiley, New York, second edition, 1995.
[10] A. Shokrollahi. Raptor codes. IEEE Transactions on Information

Theory, 52:2551–2567, 2006.
[11] A. Shokrollahi. Raptor codes. InProc. of IEEE ISIT 2004, Chicago,

IL, USA, June 2004.

	Introduction
	Wireless Sensor Networks and Fountain Codes
	Network Model
	Fountain Codes and Raptor Codes

	Raptor Codes Based Distributed Storage (RCDS) Algorithms
	With Limited Global Information—RCDS-I
	With no Global Information—RCDS–II

	Performance Evaluation
	Conclusion
	References

