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Abstract— In the constrained pattern matching one searches for
a given pattern in a constrained sequence, which finds appli-
cations in communication, magnetic recording, and biology. We
concentrate on the so-called(d, k) constrained binary sequences
in which any run of zeros must be of length at leastd and at most
k, where 0 ≤ d < k. In our previous paper [2] we established the
central limit theorem (CLT) for the number of occurrences of a
given pattern in such sequences. Here, we presentprecise large
deviations results, often used in diverse applications. In particular,
we apply our results to detect under- and over-represented
patterns in neuronal data (spike trains), which satisfy structural
constraints that match the framework of (d, k) binary sequences.
Among others, we obtain justifiably accurate statistical inferences
about their biological properties and functions. Throughout, we
use techniques of analytic information theory such as combina-
torial calculus, generating functions, and complex asymptotics.

I. I NTRODUCTION

The main idea ofconstrained pattern matching is to search
for special structures (patterns) in a constrained sequence. In
digital communication systems such as magnetic and optical
recording, the main purpose of constrained pattern matching is
to improve the performance by matching system characteristics
to those of the channel. In biology constrained sequences are in
abundance. For example, spike trains of neuronal data satisfy
certain structural constraints due to the very nature of the
biological mechanisms that produce them.

In our previous paper [2] we set up the goal to understand
some aspects of pattern matching in constrained sequences.
Although our methods work for a large class of constrained
systems, we restrict here our analysis to the so-called(d, k)
sequences in which runs of zeros can neither be smaller than
d nor bigger thank, where0 ≤ d < k. Such sequences have
proved to be very useful for digital recording and biology.
For example, the spike trains of neuronal data (recorded from
different neurons in the brain of an animal) discussed above
seem to satisfy structural constraints that match the framework
of (d, k) binary sequences. Indeed, refractoriness requires that
a neuron cannot fire two spikes in too short a time; this
precisely translates into the constraint that the induced binary
spike train needs to contain at least a certain number of zeros
(corresponding to no activity) between each two consecutive
ones (corresponding to firing times).

In those applications, one often searches for statistically
significant patterns, that is, under- and over-representedpat-
terns. Therefore, as in our previous work [2] we study here
the following problem: given a wordw how many times it

occurs in a(d, k) sequence. We explore this problem in a
probabilistic framework, that is, we assume that a sequenceis
generated by a (biased) binary memoryless source and derive
theconditional distribution of the number of occurrences ofw
in a (d, k) sequence. We need the conditional distribution since
naturally only a small fraction of binary sequences satisfies
the (d, k) constraints. In our previous work [2] we derived the
central limit theorem (CLT), while here we presentprecise
large deviations results that are often more useful in practice.

In the information theory community,(d, k) sequences were
analyzed since Shannon. Recently, there has been a resurgence
of interest in constrained pattern matching [3], [8], [10] due to
various applications in recording and biology. Pattern matching
problems were also studied in computer science with the main
contributions coming from Guibas, Odlyzko, and others [1],
[4], [5], [9], [13], [15]. In this paper, we take the view of
combinatorics on words and construct languages representing
(d, k) sequences containing a given number of pattern occur-
rences. Using generating functions and complex asymptotics,
we present precise asymptotics for large deviations for the
number of occurrences. We apply it to find under- and over-
represented patterns in spike trains of neuronal data. To the
best of our knowledge these are novel results obtained through
tools that belong to analytic information theory.

II. M AIN RESULTS

We start with reviewing some facts from [2] to make the
paper self-contained and to introduce gently the reader into
the main methodology developed here. We focus only on
restricted (d, k) sequences that start with0 and end with
1. We use language representation to derive the probability
distribution of the number of occurrences of a given pattern
w (a (d, k) sequence itself) in a(d, k) sequence generated by
a binary memoryless source.

As in [2], [10], we first define the so-calledextended
alphabet as

Bd,k = {0 . . .0
︸ ︷︷ ︸

d

1, · · · , 0 . . . 0
︸ ︷︷ ︸

k

1}.

Let noww = w1 . . . wm ∈ {0, 1}m with w1 = 0 andwm = 1.
The same pattern overBd,k becomesw = β1 . . . βm′ , where
βi ∈ Bd,k and

∑m′

i=1 |βi| = m. Recall thatS denotes the
autocorrelation set of w overBd,k defined as

S = {βm′

l+1 : βl
1 = βm′

m′−l+1}, 1 ≤ l ≤ m′



whereβj
i = βi · · ·βj andβj

i = ǫ if i > j.
As in [2], [6], [13], we use language approach and define

four languages,T (d,k)
r , R(d,k), M(d,k), andU (d,k) as follows:

(i) T (d,k)
r as the set of all(d, k) sequences (over the extended

alphabetBd,k) containing exactlyr occurrences ofw;
(ii) R(d,k) as the set of all(d, k) sequences (over the extended

alphabetBd,k) containing only one occurrence ofw,
located at the right end;

(iii) U (d,k) defined as

U (d,k) = {u : w · u ∈ T (d,k)
1 };

(iv) M(d,k) defined as

M(d,k) = {v : w · v ∈ T (d,k)
2 andw occurs at

the right end ofw · v}.
To simplify our notation, we drop the upper index(d, k)

unless it is necessary. Then as in [2], [13], [15],

Tr = R ·Mr−1 · U , (1)

T0 · {w} = R · S, (2)

and M∗ = B∗ · {w} + S, (3)

U · B = M + U − {ǫ}, (4)

{w} ·M = B · R − (R− {w}), (5)

whereB∗ is the set of all restricted(d, k) sequences, that is,
B∗ = {ǫ}+ B + B2 + B3 + · · · . Similarly, M∗ =

∑∞
i=0 Mi,

whereM0 = {ǫ}.
Throughout, we assume that a binary sequence is generated

by a memoryless source withp being the probability of emit-
ting a ‘0’ and q = 1−p. The main tool of analytic information
theory isgenerating function defined for a languageL as

L(z) :=
∑

u∈L
P (u)z|u|,

whereP (u) is the probability ofu and |u| is the length ofu.
Recall that theautocorrelation polynomial S(z) is the proba-
bility generating function for the autocorrelation languageS.
In general, we write[zn]L(z) for the coefficient ofL(z) at
zn.

The language relationships (3)–(5) are easily translated into
probability generating functions. For example,

M(z)− 1 =
B(z) − 1

zmP (w) + S(z)(1 − B(z))
,

and U(z) = (1 − M(z))/(1 − B(z)) as well asR(z) =
zmP (w)U(z), where

B(z) = zq
(zp)

d − (zp)
k+1

1 − zp
.

This finally leads to

T0(z) =
S(z)

D(z)
, (6)

Tr(z) =
zmP (w)(D(z) + B(z) − 1)

r−1

D(z)r+1 , (7)

where
D(z) = S(z)(1 − B(z)) + zmP (w). (8)

Our goal is to compute a large deviations estimate of the
number ofw occurrences. To this end, we defineOn as a
random variable representing the number of occurrences of
w in a (regular) binary sequence of lengthn. We define two
generating functions

Tr(z) =
∑

n≥0

P (On = r,Dn)zn,

T (z, u) =
∑

r≥0

Tr(z)ur =
∑

r≥0

∑

n≥0

P (On = r,Dn)znur, (9)

where Dn is the event that a randomly generated binary
sequence of lengthn is a (d, k) sequence. Observe that

P (Dn) = [zn]T (z, 1)

is the probability that a randomly generated sequence of length
n is a (d, k) sequence. Clearly, from (1) and (9) we find

T (z, u) = R(z)
u

1 − uM(z)
U(z) + T0(z). (10)

We must realize thatT (z, u) is not a bivariateprobability
generating function since[zn]T (z, 1) 6= 1. Therefore, we need
to introduce aconditional probability generating function. Let
On(Dn) be a short-hand notation for the conditional number
of occurrences ofw in a (d, k) sequence. More formally,

P (On(Dn) = r) = P (On = r | Dn).

Then, the probability generating function ofOn(Dn) is

E[uOn(Dn)] =
[zn]T (z, u)

[zn]T (z, 1)
,

and the expected value ofOn(Dn) becomes a conditional
expected value defined as

E[On(Dn)] =
[zn]Tu(z, 1)

[zn]T (z, 1)
,

whereTu(z, 1) is the derivative ofT (z, u) at u = 1.
To formulate our main result we need one result from [2],

namely,

P (Dn) =
1

B′(ρ)
λn+1 + O(ωn) (11)

for someω < λ, and

E[On(Dn)] =
(n − m + 1)P (w)

B′(ρ)
λ−m+1 + O(1),

whereλ = 1/ρ and ρ is the unique positive real root of the
equationB(z) = 1.

In this paper, our main result deals with large deviations
and is presented next.

Theorem 1: Let τ := τ(p, w) be the smallest positive real
root of D(z) = 0 (cf. (8)) andρ := ρ(p) be the the unique
positive real root ofB(z) = 1. Definer = (1+ δ)E[On(Dn)]
for someδ > 0, and then fora such thatr = na set

ha(z) := a logM(z) − log z.



Let alsoza be aunique real root of the equationh′
a(z) = 0

such thatza ∈ (0, ρ). Then

P (On(Dn) = na) =
c1√
2πn

e−nI(a)

(

1 +
c2

n
+ O

(
1

n2

))

,

P (On(Dn) ≥ na) =
c1 · e−nI(a)

√
2πn(1 − M(za))

(

1 + O

(
1

n

))

,

whereI(a) = − log ρ − ha(za), and

c1 =
ρB′(ρ)g(za)

τa

with g(z) = P (w)zm−1

D(z)2M(z)
and τ2

a = h′′
a(za). The constantc2 is

explicitly computed in (13).
As a potential application of our main results, we use

Theorem 1 to detect under- and over-represented structures
in neuronal data (spike trains), and to obtain justifiably ac-
curate statistical inferences about their biological properties
and functions. We shall first argue that neuronal data are
best represented by a constrained sequence. Indeed, current
technology allows for the simultaneous recording of the spike
trains from one hundred (or more) different neurons in the
brain of a live animal. Such experiments have produced
enormous amounts of extremely valuable data, and one of
the core research areas of activity in neuroscience is devoted
to developing accurate and precise statistical tools to quantify
and describe the amount and representation of the information
that is contained in this data [12]. Because of the very nature
of the biological mechanisms that produce them, spike train
data satisfy structural constraints that match the framework of
(d, k) binary sequences, as discussed above.

For experiments, we used single-electrode data from cortical
neurons under random current injection. The details can be
found in [7], [16]. This spike timing data can be transformed
to a(d, k) sequence by setting the time resolution and dividing
time intobins of the same size. Each time bin is represented by
a bit 0 or 1. If there is a spike in a certain time bin, it is repre-
sented by a 1; otherwise it is represented by a 0. A fundamental
question is how one classifies an occurrence of a pattern as
significant. Here, the connotation of “significant” is used for
observed data that is interesting, surprising, suspicious, or—
perhaps most importantly—meaningful. We classify a pattern
as significant if it is unlikely to occur fortuitously, that is,
in a randomly generated instance of the problem. Thus, we
compare experimental data to the reference model, which in
our case is the probabilistic model developed in this paper.

Having this in mind, and using our large deviations results,
we derive a threshold,Oth, above which pattern occurrences
will be classified as statistically significant. The threshold is
defined as the minimumOth such that

P (On(Dn) ≥ Oth) ≤ αth,

where αth is a given probability threshold. From Theorem
1 we easily conclude that forαth in the range of the large
deviations domain, the threshold isOth = nath, where

ath ≈ I−1(log(1/αth)/n)
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Fig. 1. Number of occurrences ofw within a window of size 500; here[i]
stands for the pattern0 · · · 01 with i − 1 zeros.

and I−1(·) is the inverse function ofI(a) defined in the
theorem.

To set up our reference model, we need to fix the parameters
d, k, andp. First we can findd andk by observing the binary
sequence (e.g., by finding the minimum and maximum length
of runs of zeros). Then we can findp by solving the following
simultaneous equations with variablesρ andp:

B(ρ) = 1 and 1 − p =
1

ρB′(ρ)
.

Note thatB(z) has a variablep in each of its coefficients. The
second equation follows from the fact thatρB′(ρ) captures the
average length of symbols ofBd,k in a (d, k) sequence, and
thus its reciprocal representsq. In other words, we estimate
p indirectly through the estimation ofd andk. One might be
tempted to estimatep by just counting the total number of 0’s
and dividing it by the length of the sequence. But this could
lead to a poor estimate if a large portion of(d, k) sequence
set is not typical.

In our experiment, we set the size of bin to 3 ms and
obtained a(d, k) = (1, 6) sequence of length2193 with
p = 0.752686. Figure 1 shows the number of occurrences
for various patterns within a window of size500; here we
use a short-hand notation[i] for a pattern0 · · · 0

︸ ︷︷ ︸

i−1

1. The three

horizontal lines represent thresholds forαth = 10−6, 10−7,
and10−8, respectively. As expected, the thresholds vary with
the structure ofw. If the number of occurrences exceeds the
threshold at some position, we claim the pattern occurrence
is statistically significant in that window. This observation
can be used as a starting point for interpretation of neural



signals although there is still a huge gap between patterns
of spike trains and their meaning in a real nervous system.
In passing we observe that one would have obtained quite
different threshold values, if the constraints were ignored.

III. A NALYSIS

In this section we prove Theorem 1, that is, we compute
P (On(Dn) = r) for r = (1 + δ)E[On(Dn)] with δ > 0. Let
a be a real constant such thatna = (1 + δ)E[On(Dn)] and
we computeP (On(Dn) = na) asymptotically whenna is an
integer. Clearly,

P (On(Dn) = na) = [una]E[uOn(Dn)] =
[zn][una]T (z, u)

[zn]T (z, 1)
.

(12)
By (10),

[una]T (z, u) = [una]

(

T0(z) + uR(z)U(z)

∞∑

i=0

(uM(z))
i

)

= R(z)U(z)M(z)
na−1

=
P (w)zm

D(z)2
M(z)na−1.

Hence, Cauchy’s coefficient formula leads to [15]

[zn][una]T (z, u) =
1

2πi

∮
P (w)zm

D(z)
2 M(z)

na−1 1

zn+1
dz

where the integration is done along any contour around zero
in the convergence circle.

In order to derive large deviation results, we need to apply
thesaddle point method [15]. Therefore, we define the function
ha(z) of complex variablez as

ha(z) = a log M(z)− log z

such that

[zn][una]T (z, u) =
1

2πi

∮

enha(z)g(z)dz,

where

g(z) =
P (w)zm−1

D(z)
2
M(z)

.

In the lemma below, we characterize some properties ofha(z)
that are needed to estimate the integral. The proof of this
lemma will be presented in the final version of the paper.

Lemma 1: Under the conditions of this paper, the following
holds:
(i) There exists a unique real rootza of the equationh′

a(z) = 0
that satisfies0 < za < ρ.
(ii) We haveh′′

a(za) > 0.
(iii) The following is trueha(za) < − log ρ.

Let za be the unique positive real root of the equation
h′

a(z) = 0. We evaluate the integral onC = {z : |z| = za}, and
we splitC into C0 andC1 whereC0 = {z ∈ C : |arg(z)| ≤ θ0}
andC1 = {z ∈ C : |arg(z)| ≥ θ0} for someθ0. That is,

[zn][una]T (z, u) =
1

2πi

∫

C0

enha(z)g(z)dz

+
1

2πi

∫

C1

enha(z)g(z)dz.

Let

I0 =
1

2πi

∫

C0

enha(z)g(z)dz

and

I1 =
1

2πi

∫

C1

enha(z)g(z)dz.

We will compute I0 first and we later show that|I1| is
exponentially smaller thanI0.

Now we setθ0 = n−2/5 and computeI0 with the change
of variablez = zaeiθ,

I0 =
1

2π

∫ +θ0

−θ0

enha(zaeiθ)g(zae
iθ)zaeiθdθ

=
za

2π

∫ +θ0

−θ0

exp(nha(zaeiθ) + iθ)g(zaeiθ)dθ.

To simplify the notation, let us define some variables as
follows:

τa
2 = h′′

a(za) (cf. part (ii) of Lemma 1),

βa =
h

(3)
a (za)

3!τa
3

, andγa =
h

(4)
a (za)

4!τa
4

.

Using Taylor series aroundθ = 0 we arrive at

ha(zaeiθ) = ha(za) − τa
2za

2

2
θ2 −

(

βaτa
3za

3 +
τa

2za
2

2

)

iθ3

+

(

γaτa
4za

4 +
3

2
βaτa

3za
3 +

7

24
τa

2za
2

)

θ4 + O(θ5)

sinceh′
a(za) = 0. Similarly,

g(zae
iθ) = g(za)+g′(za)zaiθ−g′′(za)za

2 + g′(za)za

2
θ2+O(θ3).

When |θ| ≤ θ0, nθk → 0 (k ≥ 3) asn → ∞, and then

enha(zaeiθ)+iθ = exp

(

nha(za) − τa
2za

2

2
nθ2

)

×
(

1 + α(θ) +
α(θ)2

2!
+

α(θ)3

3!
+ · · ·

)

,

where

α(θ) = iθ −
(

βaτa
3za

3 +
τa

2za
2

2

)

inθ3+

+

(

γaτa
4za

4 +
3

2
βaτa

3za
3 +

7

24
τa

2za
2

)

nθ4 + O(nθ5).

Therefore we have

I0 =
za

2π

∫ +θ0

−θ0

exp(nha(zaeiθ) + iθ)g(zae
iθ)dθ

=
zae

nha(za)

2π

∫ +θ0

−θ0

exp

(

−n
τa

2za
2

2
θ2

)

×
(

1 + α(θ) +
α(θ)

2

2!
+

α(θ)
3

3!
+ · · ·

)

g(zaeiθ)dθ.



With the change of variableθ = ω
τaza

√
n

, and using
∫ +∞
−∞ e−

x2

2 x2k = Γ(2k)
2k−1Γ(k)

√
2π, after some algebra we obtain

I0 =
g(za)enha(za)

τa

√
2πn

[

1 +
1

n

(
3βa

τa

g′(za)

g(za)
− 1

2τa
2

g′′(za)

g(za)

+3γa − 15

2
βa

2

)

+ O

(
1

n2

)]

.

It is easy to see that the main contribution to the large devi-
ations comes fromI0. Thus we only need to show thatI1 is
small. For this, we need to first considerM(z), the probability
generating function of non-empty languageM. Clearly, all
coefficients ofM(z) are non-negative, andM(z) is aperiodic,
as can be proved. By the non-negativity of coefficients and
aperiodicity, the function|M(zae

iθ)| is uniquely maximum at
θ = 0. It also infinitely differentiable atθ = 0. Consequently,
there exists an angleθ1 ∈ (0, π) such that

∣
∣M(zaeiθ)

∣
∣ ≤

∣
∣M(zae

iθ1)
∣
∣ for θ ∈ [θ1, π],

and |M(zaeiθ)| is decreasing forθ ∈ [0, θ1]. Thus, for large
n,

∣
∣M(zae

iθ)
∣
∣ ≤

∣
∣M(zaeiθ0)

∣
∣ for θ ∈ [θ0, π]

sinceθ0 = n−2/5 < θ1. Therefore, forθ ∈ [θ0, π],

∣
∣
∣enha(zaeiθ)

∣
∣
∣ =

∣
∣M(zaeiθ)

∣
∣
na

za
n

≤
∣
∣M(zaeiθ0)

∣
∣
na

za
n

=

∣
∣
∣enha(zaeiθ0 )

∣
∣
∣ ,

and this leads to

1

2π

∣
∣
∣
∣

∫ π

θ0

enha(zaeiθ)g(zaeiθ)zaeiθdθ

∣
∣
∣
∣

≤ za · max(g)

2π

∫ π

θ0

∣
∣
∣enha(zaeiθ)

∣
∣
∣ dθ

≤ za · max(g)

2π

∫ π

θ0

∣
∣
∣enha(zaeiθ0 )

∣
∣
∣ dθ

=
za(π − θ0) · max(g)

2π
· exp

(

nha(za) − O(n1/5)
)

= O(I0 · e−cn1/5

),

wheremax(g) is the maximum of|g(zaeiθ)| for θ ∈ [θ0, π],
andc is a positive constant. Similarly,

1

2π

∣
∣
∣
∣
∣

∫ −θ0

−π

enha(zaeiθ)g(zaeiθ)zaeiθdθ

∣
∣
∣
∣
∣
= O(I0 · e−cn1/5

).

Thus,

|I1| ≤ 1

2π

∣
∣
∣
∣

∫ π

θ0

enha(zaeiθ)g(zaeiθ)zaeiθdθ

∣
∣
∣
∣

+
1

2π

∣
∣
∣
∣
∣

∫ −θ0

−π

enha(zaeiθ)g(zae
iθ)zaeiθdθ

∣
∣
∣
∣
∣

= O(I0 · e−cn1/5

),

that is, |I1| is exponentially smaller thanI0.

Putting everything together, we obtain

[zn][una]T (z, u) = I0 + I1 = I0(1 + O(e−cn1/5

))

=
g(za)e

nha(za)

τa

√
2πn

[

1 +
1

n

(
3βa

τa

g′(za)

g(za)

− 1

2τa
2

g′′(za)

g(za)
+ 3γa − 15

2
βa

2

)

+ O

(
1

n2

)]

.

Finally, we are ready to computeP (On(Dn) = na). By
(11),(12) and the above,

P (On(Dn) = na) =
[zn][una]T (z, u)

[zn]T (z, 1)

=
ρB′(ρ)g(za)e−nI(a)

τa

√
2πn

[

1 +
1

n

(
3βa

τa

g′(za)

g(za)
− 1

2τa
2

g′′(za)

g(za)

+3γa − 15

2
βa

2

)

+ O

(
1

n2

)]

, (13)

whereI(a) = − log ρ − ha(za), which can be proved to be
positive. This establishes Theorem 1, where the constantc2

can be extracted from the above.
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