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Abstract— In the constrained pattern matching one searches for occurs in a(d, k) sequence. We explore this problem in a
a given pattern in a constrained sequence, which finds appli- probabilistic framework, that is, we assume that a sequiance
cations in communication, magnetic recording, and biologyWe — qanerated by a (biased) binary memoryless source and derive
concentrate on the so-calledd, k) constrained binary sequences th ditional distributi fth b f f
in which any run of zeros must be of length at least/ and at most | econaiion IStribution of the num efr_o occ.urr.enc_esw.
k, where 0 < d < k. In our previous paper [2] we established the ina(d, k) sequence. We need the conditional distribution since
central limit theorem (CLT) for the number of occurrences of a naturally only a small fraction of binary sequences sassfie
given pattern in such sequences. Here, we preseptecise large the (d, k) constraints. In our previous work [2] we derived the
deviations results, often used in diverse applications. In particulay central limit theorem (CLT), while here we presemecise

we apply our results to detect under- and over-represented - ..
patterns in neuronal data (spike trains), which satisfy stuctural large deviations results that are often more useful in fract

constraints that match the framework of (d, k) binary sequences.  In the information theory communityd, k) sequences were
Among others, we obtain justifiably accurate statistical iferences analyzed since Shannon. Recently, there has been a resargen

about their biological properties and functions. Throughait, we  of interest in constrained pattern matching [3], [8], [10fcto
use techniques of analytic information theory such as comba- 4105 applications in recording and biology. Patternahiaig
torial calculus, generating functions, and complex asymitics. N : . .
problems were also studied in computer science with the main
contributions coming from Guibas, Odlyzko, and others [1],
|. INTRODUCTION [4], [5], [9], [13], [15]. In this paper, we take the view of

The main idea otonstrained pattern matching is to search combinatorics on words and construct languages representi
for special structures (patterns) in a constrained seaqudnc (d, k) sequences containing a given number of pattern occur-
digital communication systems such as magnetic and opticahces. Using generating functions and complex asymptotic
recording, the main purpose of constrained pattern magdkin we present precise asymptotics for large deviations for the
to improve the performance by matching system charadtexisthnumber of occurrences. We apply it to find under- and over-
to those of the channel. In biology constrained sequeness arrepresented patterns in spike trains of neuronal data. o th
abundance. For example, spike trains of neuronal datdysatisest of our knowledge these are novel results obtained ghrou
certain structural constraints due to the very nature of theols that belong to analytic information theory.
biological mechanisms that produce them.

In our previous paper [2] we set up the goal to understand
some aspects of pattern matching in constrained sequencedVe start with reviewing some facts from [2] to make the
Although our methods work for a large class of constraingghper self-contained and to introduce gently the reader int
systems, we restrict here our analysis to the so-cglled) the main methodology developed here. We focus only on
sequences in which runs of zeros can neither be smaller thestricted (d, k) sequences that start with and end with
d nor bigger thank, where0 < d < k. Such sequences havel. We use language representation to derive the probability
proved to be very useful for digital recording and biologydistribution of the number of occurrences of a given pattern
For example, the spike trains of neuronal data (recorded frav (a (d, k) sequence itself) in &, k) sequence generated by
different neurons in the brain of an animal) discussed abosebinary memoryless source.
seem to satisfy structural constraints that match the fnaorle  As in [2], [10], we first define the so-calledxtended
of (d, k) binary sequences. Indeed, refractoriness requires thhshabet as
a neuron cannot fire two spikes in too short a time; this

II. MAIN RESULTS

precisely translates into the constraint that the indudedrip Ba = {wlv o ’wl}'

spike train needs to contain at least a certain number ofzero d k

(corresponding to no activity) between each two conseeutivet noww = wy ... w, € {0,1}™ with w; = 0 andw,, = 1.
ones (corresponding to firing times). The same pattern ove, , becomesw = i ... (3,,/, where

In those applications, one often searches for statis]ica%i € By, and Zrz’l |8:| = m. Recall thatS denotes the
significant patterns, that is, under- and over-represepéd o itocorrelation setl(;f w over By, defined as
terns. Therefore, as in our previous work [2] we study here ’
the following problem: given a words how many times it S = {6{1’1 : Bl = ﬁmf,lﬂ}, 1<i<m

m



where3! = 3;---f; and 8/ = € if i > j. where

As in [2], [6], %ﬂ we use language approach and define D(z) =S5(2)(1 — B(2)) + z™P(w). (8)

, (d,k) (d;k) (d;k) : . I .
fo_ur Ia?dglij)agesz; , RGP, MG, andU as follows: Our goal is to compute a large deviations estimate of the
() 7" as the set of alld, k) sequences (over the extendedumper ofw occurrences. To this end, we defidg, as a
alphabetB,,;) containing exactly- occurrences ofu; random variable representing the number of occurrences of

(i) R(** as the set of alld, k) sequences (over the extended, in a (regular) binary sequence of lengihWe define two
alphabetB, ;) containing only one occurrence ab, generating functions

located at the right end;

(i) U@ defined as T.(z) = > P(O, =7,Dy)z",
U = fu: woue T 3 HXSZEZ
) i T(z,u)=» T.(z)u" = P(O, =r,Dp)z"u", (9)
(iv) MF) defined as = =5
MER) - — {v: w-ve TQ(d’k) andw occurs at where D,, is the event that a randomly generated binary
the right end ofw - v}. sequence of length is a (d, k) sequence. Observe that
To simplify our notation, we drop the upper indéx, k) P(Dy) = ["|T(2,1)
unless it is necessary. Then as in [2], [13], [15], is the probability that a randomly generated sequence gtfien
T, = R-M"'.-U, (1) nisa(d, k) sequence. Clearly, from (1) and (9) we find
To-{w} = R-S, @) = R(z)—% .
] 0 T(z,u) R(z)1 e U(z)+To(z) (10)
an M" = B -{w}+S, ®3) We must realize thaf’(z,u) is not a bivariateprobability
U-B = M+U-—{e}, (4) generating function since™]T'(z,1) # 1. Therefore, we need
{fw} - M = B-R—(R-{w}), (5) 1o introduce aconditional probability generating function. Let

) ) _ 0,(D,,) be a short-hand notation for the conditional number
whereB* is the set of all restrictedd, k) sequences, that is, of occurrences ofy in a (d, k) sequence. More formally,
B* = {e} + B+ B*+ B3 +---. Similarly, M* = >  M?,
where M = {¢}. P(On(Dy) =7) = P(Op = 7| Dy).
Throughout, we assume that a binary sequence is generaltﬁgn’ the probability generating function 6%, (D,,) is
by a memoryless source withbeing the probability of emit-

ting a ‘0’ and ¢ = 1—p. The main tool of analytic information E[uC"(Pn)] = M,
theory isgenerating function defined for a languagg as [2"]T'(2, 1)
o Jul and the expected value @,(D,,) becomes a conditional
L(z): %P(u)z ’ expected value defined as
where P(u) is the probability ofu and |u| is the length ofu. E[0,(D,)] = Ma
Recall that theautocorrelation polynomial S(z) is the proba- [z"]T'(2,1)

bility generating function for the autocorrelation langea. whereT,(z,1) is the derivative ofl’(z,u) atu = 1.
In general, we writg[z"]L(z) for the coefficient ofL(z) at ~ To formulate our main result we need one result from [2],
2" namely,

The language relationships (3)—(5) are easily translated i P(D,) = 1 AL O@w™) (11)
probability generating functions. For example, " B'(p)
— for somew < A, and
M(z)—1= Blz) 1 , ¢
2" P(w) + 5(z)(1 - B(2)) (n—m+DPw), .,
andU(z) = (1 — M(2))/(1 — B(z)) as well asR(z) = (p)
z"P(w)U(z), where where\ = 1/p and p is the unique positive real root of the
(2p)? = (zp)" equationB(z) = 1.
B(z) = zq%. In this paper, our main result deals with large deviations

and is presented next.
This finally leads to .
Theorem 1: Let 7 := 7(p,w) be the smallest positive real

To(z) = 5(2)7 (6) root of D(z) = 0 (cf. (8)) andp := p(p) be the the unique
D(z) positive real root of3(z) = 1. Definer = (1+6)E[O,(D,,)]
L) 2 P(w)(D(z) + B(2) — 1)“1 @ for somed > 0, and then fora such thatr = na set
r(2) = )

ha(2) := alog M(z) — log 2.



Let alsoz, be aunique real root of the equatiom:,(z) = 0 2, 2
such thatz, € (0, p). Then ]
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with g(z) = % and 72 = h/(z,). The constant, is E
explicitly computed in (13). 2] 2]

As a potential application of our main results, we use, |
Theorem 1 to detect under- and over-represented structwg“g
in neuronal data (spike trains), and to obtain justifiably ac: .,

!
curate statistical inferences about their biological ertips ] BT ]
o H—Fi 55 {_‘J_‘I
o ]

#of occurrences

and functions. We shall first argue that neuronal data a

best represented by a constrained sequence. Indeed, tcurl |

technology allows for the simultaneous recording of th&epi  ° wsoposion T i

trains from one hundred (or more) different neurons in the (c) w=[4][5][3] (d) w=[5][5][5]

brain of a live animal. Such experiments have prOduc%ﬁj 1. Number of occurrences af within a window of size 500; herg]

enormous amounts of extremely valuable data, and one sf,gs for the pattern- - - 01 with i — 1 zeros.

the core research areas of activity in neuroscience is ddvot

to developing accurate and precise statistical tools toiifya

and describe the amount and representation of the infosmatand 7='(-) is the inverse function off (a) defined in the

that is contained in this data [12]. Because of the very matuheorem.

of the biological mechanisms that produce them, spike trainTo set up our reference model, we need to fix the parameters

data satisfy structural constraints that match the framlewb d, k, andp. First we can findl andk by observing the binary

(d, k) binary sequences, as discussed above. sequence (e.g., by finding the minimum and maximum length
For experiments, we used single-electrode data from ebrtiof runs of zeros). Then we can findby solving the following

neurons under random current injection. The details can ®igultaneous equations with variablesind p:

found in [7], [16]. This spike timing data can be transformed 1

to a(d, k) sequence by setting the time resolution and dividing B(p)=1 and 1-p= pT(p)-

time intobins of the same size. Each time bin is represented b , i , -
ote thatB(z) has a variable in each of its coefficients. The

a bit 0 or 1. If there is a spike in a certain time bin, it is repr i f
sented by a 1; otherwise it is represented by a 0. A fundamerﬁﬁcond equation follows from the fact tha’ () captures the
(d, k) sequence, and

question is how one classifies an occurrence of a patternaﬁ@ra_ge length Ofl symbols i,y |nha g :
significant. Here, the connotation of “significant” is usext f thUS Its reciprocal represens In other words, we estimate

observed data that is interesting, surprising, suspicioss- P indirectly through the estimation of andk. One might be

perhaps most importantly—meaningful. We classify a pattepempted to estimatg by just counting the total number of 0's

as significant if it is unlikely to occur fortuitously, thas,i and dividing it by the length of the sequence. But this could

in a randomly generated instance of the problem. Thus, J&d to @ poor estimate if a large portion @f, k) sequence

compare experimental data to the reference model, whichSR! IS not typlca_ll. . .

our case is the probabilistic model developed in this paper. In_our experiment, we set the size of bin to 3 ms and
Having this in mind, and using our large deviations result@Pt@ined a(d. k) = (1,6) sequence of lengtiz193 with

we derive a threshold);;, above which pattern occurrence$ ~— 0.752686. Figure 1 shows the number of occurrences

will be classified as statistically significant. The threishis  1°F Va”‘r’lus Fr’]attzms within fa window of siz&00; :erehwe
defined as the minimur®,;, such that use a short-hand notatidi] for a pattern0---01. The three

i—1
P(On(Dy) > O) < agn, horizontal lines represent thresholds fof, = 106, 1077,
where oy, is a given probability threshold. From Theoren%andlo , respectively. As expected, the thresholds vary with
. . he structure ofw. If the number of occurrences exceeds the
1 we easily conclude that faw,, in the range of the large i )
deviations domain, the threshold @, — na,,. where threshold at some position, we claim the pattern occurrence
’ ths is statistically significant in that window. This obsereati

asn, ~ I (log(1/cun)/n) can be used as a starting point for interpretation of neural



signals although there is still a huge gap between pattetret

of spike trains and their meaning in a real nervous system. Iy=— [ eGg(2)dz
In passing we observe that one would have obtained quite 2mi Je,
different threshold values, if the constraints were igdore  gnd
1
I1l. ANALYSIS L= j e"a(2) g(2)dz.
1

In this section we prove Theorem 1, that is, we compute
P(O,(D,) = r) for r = (1 + 6)E[O,(D,,)] with § > 0. Let We will compute I, first and we later show thaf/,| is
a be a real constant such that = (1 + 6)E[O,,(D,,)] and exponentially smaller tha,.
we computeP(O,,(D,,) = na) asymptotically whema is an ~ Now we setfy = n~*/> and computel, with the change

integer. Clearly, of variablez = z,e?,
na [Zn][una]T(Z7u) 1 oo n zq€ % %
P(On(Dy) = na) = [u ]E[Uon(D")] = W Iy = o eha(za e)g(zae 9) 2,¢" df
12) ) | |
By (10), = 2—“ exp(nha(zq4¢) +i0)g(24¢")db.
00 T J—60
W T(z,u) = ( z) +uR(z Z (uM (2 Z) To simplify the notation, let us define some variables as
i= follows:
— U na 1
P( ) Ta? = h!(z4) (cf. part (i) of Lemma 1)
= 7 M (Z)m - 3 @)
D(Z) 6 — ha (Za) and’}/ _ h’a (ZG)
Hence, Cauchy’s coefficient formula leads to [15] 3l Al
11 Using Taylor series aroun@l= 0 we arrive at
[ n][ na] na 1
z'||u 2, U o
T 2mi D +1 19)  huCe) Ta22a292 (gt 4 72242 48
where the integration is done anng any contour around zerb( = falza) 2 aTa Za 2 !

in the convergence circle. .
In order to derive large deviation results, we need to apply + (%Ta 2t + gaTa 323+ —T4224 ) 0* + 0(6°)

thesaddle point method [15]. Therefore, we define the function 24
ha(z) of complex variablez as sinceh’, (z,) = 0. Similarly,
ha(z) = alog M (z) — log z 9" (20)2a2 + ' (20)2
€)= g(2a 0)Zal0— =" LEL92+0(6°).
cuch that 9(za¢"") = 9(za)+9' () i ; +0(6*)
"] [T (2, u) = 2i j{enha(z)g(z)dz’ When 6] < 6, nf* — 0 (k > 3) asn — oo, and then
T ) 2, 2
where enha(ae™ )0 — oxpy (nha(za) - Mnez)
P(w)zmt 2

)= ———————.

9) = D) @ o)

In the lemma below, we characterize some properties, 0f) X\ 1+alf) + — =+ ——

that are needed to estimate the integral. The proof of this

lemma will be presented in the final version of the paper. where
Lemma 1. Under the conditions of this paper, the following 72,2

holds: a(f) =if — (ﬁaTa?’za?’ + %) ind>+

(i) There exists a unique real rogt of the equatiorh/,(z) = 0

that satisfied < z, < p.

(i) We havehn!/(z,) > 0.

(iii) The following is j[rueha(za.)_ < —logp. _ Therefore we have
Let z, be the unique positive real root of the equation +0,

3 7
+ <7a7a42a4 + 55@7—@32113 + 24Ta Za ) TL94 + O(TLHO)

hy(2) = 0. We evaluate the integral ¢h= {z : [z| = z,},and [, — Za exp(nhq(zqe™) + i6)g(z4¢)do
we splitC into Cy andC; whereCy = {z € C : |arg(2)| < 6o} 21 J g,
andC; = {z € C: |arg(z)| > 6y} for somef,. That is, 2geMha(za) 0o Ta22a2 5
1 = T/ exp (—n—b‘ )
[M[u" T (z,u) = — [ e Pg(2)dz —0o
21 Co a(9)2 a(9)3

X

L+a(d) + —— + —o— + - | g(2a€)db.
+ L[ e gz)an. < 2! 3! )
27 Je,



With the change of variabley = — and using  Putting everything together, we obtain

TaZa/n'

o 2 . .
[T e T = #2?()]6)\/27T, after some algebra we obtain ;"™\ T(z,u) = Io+ I = Io(1+O(e="""))
b 9™ D T 1 (80,0() 1 ¢(za) _ glea)erte®) [H L (3ﬁa g'(z0)

o TaV/ 2T n\ T 9(za) 27,2 9(za) TaV 21N n\ 7o 9(%a)
15 4 1 1 ¢"(za) 15 4 1

- =11 - 370 — =02 ) +0 (= ) |-
3% — 5 b ) +O<n2)] 272 gza) +3% — 50" | +O{

It is easy to see that the main contribution to the large deViinally, we are ready to comput®(O,(D,) = na). By
ations comes froniy. Thus we only need to show that is (11),(12) and the above,

small. For this, we need to first considef(z), the probability
generating function of non-empty languagd. Clearly, all
coefficients ofM (z) are non-negative, anti/ (z) is aperiodic, , I

- o —nl(a) / 7
as can be proved. By the non-negativity of coefficients and »Z (P)g(za)e """ {1 n 1 (35& 9(z) 1 g"(z)
n

[2"][u™*]T (2, w)

P(On(Dn) = na) = = 7r o

aperiodicity, the functionM (z,¢)| is uniquely maximum at TaV/ 21N Ta 9(2a)  27a% 9(2a)
6 = 0. It also infinitely differentiable at = 0. Consequently, 15 5 1
there exists an angk®, € (0,7) such that +3% — 75‘1 +0 nZ /|’ (13)

|M(2aei9)| < \M(zaei91)| for 6 € 61, 7], whereI(a) = —logp — ha(z.), which can be proved to be
o ) positive. This establishes Theorem 1, where the constant
and [M(zqe™)| is decreasing fo? € [0,61]. Thus, for large can pe extracted from the above.

n,
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