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Abstract— We consider the problem of source coding with
receiver side information for the simple network proposed by
R. Gray and A. Wyner in 1974. In this network, a transmitter
must reliably transport the output of two correlated inform ation
sources to two receivers using three noiseless channels: a public
channel which connects the transmitter to both receivers, and
two private channels which connect the transmitter directly to
each receiver. We extend Gray and Wyner’s original problem by
permitting side information to be present at each receiver.We
derive inner and outer bounds for the achievable rate regionand,
for three special cases, we show that the outer bound is tight.

I. I NTRODUCTION

The field of network source coding is centered on the
following problem: given a noiseless communications network
and a set of information sources, what is the best way to
compress the output of each source for efficient and reliable
transportation over the network? A solution to this type of
problem needs to remove any temporal redundancy in each
source, exploit any statistical correlations between different
sources and optimize the use of limited channel capacities.

In network source coding, acodeis a collection of rules that
define how the output of each source is to be compressed,
transported over the network and reconstructed. A code is
said to be reliable if the output of each source can be
reconstructed without error at each of its intended destinations.
The performanceof a reliable code is measured by the rates
at which it sends data over each channel; an optimal code will
send data at the smallest rates and thereby consume the least
network capacity. An ordered collection of rates (one for each
channel) is said to beachievableif there exists a reliable code
which operates at these rates. The set of all achievable rates
R is called theachievable rate regionof the network, and its
lower boundaryR provides a performance benchmark for the
comparison of reliable codes.
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The achievable rate regionR is known for a small ad-hoc
collection of networks; for most “real world” networks,R
is unknown [1]. With the exception of [2], achievable rate
regions have been studied on a network-by-network basis;
researchers have designed and studied simple networks which
isolate particular problems of interest. Two notable examples
are: the separate coding of correlated sources [3], and the
sharing of a finite capacity channel between multiple users [4].
It is hoped that solutions to these simple networks will yield
practical and efficient codes for larger networks.
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Fig. 1. Figure shows the network source coding problem proposed by R.
Gray and A. Wyner [5]. The transmitter is connected to two receivers via
three noiseless channels. The sequences{Xi} and {Yi} are to be encoded
at the transmitter, transported over the network and decoded at thex and
y-receivers respectively. In this paper, we study an extension of this problem
where “side information”{Ui} and{Vi} are present at each receiver. These
additional information sources are marked with dashed lines in the figure.

We study the achievable rate regionR of the network
shown in Figure 1. A transmitter must transport the output of
two correlated sources to two receivers using three noiseless
channels: a public channel which connects the transmitter to
both receivers, and two private channels which connect the
transmitter directly to each receiver. The achievable rateregion
R of this network was found by R. Gray and A. Wyner [5]
in 1974. They showed that an optimal code should endeavor
to use the public channel to transport information common to
both sources. As we will see, the intuition of this solution is
lost when side information is introduced at each receiver; in
particular, it is not clear how one should decompose the output
of each source for transmission over the three channels.
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An outline of the paper is as follows. To fix ideas, we
briefly review [5] in Section II. In Section III, we formally
defineR for the network with side information. In Sections IV
and V, we derive outer and inner bounds forR respectively.
In Section VI, we ascertainR for one source, a degraded
network and a complementary delivery network respectively.
Finally, we conclude the paper in Section VII.

II. T HE GRAY-WYNER PROBLEM

Consider the network (without receiver side information)
shown in Figure 1. We denote the capacities (in bits per
second) of channels0, 1 and2 by C0, C1 andC2 respectively.
Finally, letX andY be finite alphabets, and letX n andY n

denote their respectiven-fold cartesian product spaces.
Suppose{(Xi, Yi)} , {(Xi, Yi); i = 1, 2, . . .} is a

sequence of independent and identically distributed (i.i.d.)
X ×Y valued random variables emitted by a discrete mem-
oryless sourceQXY (x, y) = Prob[X = x, Y = y]. Suppose
further that the random sequence{(Xi, Yi)} appears at the
transmitter at the rate of one per second. It is desired that the
transmitter delivers a reliable reproduction{X̂i} , {X̂i; i =
1, 2, . . .} of the sequence{Xi} to thex-receiver, and a reliable
reproduction{Ŷi} , {Ŷi; i = 1, 2, . . .} of the sequence
{Yi} to the y-receiver. Assuming no delay constraints and
unlimited computational power at the transmitter and receivers,
the main problem is to ascertain which channel capacity
triples (C0, C1, C2) are both necessary and sufficient for each
sequence to be reliably transported to its intended destination.

We assume the classicn-block source coding model where
the sequence{(Xi, Yi)} is parsed and transported over the
network in message blocks of lengthn (for some large integer
n). Let (Xn, Y n) = (X1, Y1), (X2, Y2), . . . , (Xn, Yn) denote
the message at the transmitter, and letX̂n = X̂1, X̂2, . . . , X̂n

and Ŷ n = Ŷ1, Ŷ2, . . . , Ŷn denote the reconstructed messages
at thex andy-receivers respectively.

For eachi = 0, 1, 2, let Mi = {1, 2, . . . , |Mi|} be a finite
index set for use on channeli. A network source code is a
collection of mappings(e(n), d(n)x , d

(n)
y ), wheree(n) : X n ×

Y n → M0 × M1 × M2 is the encoder at the transmitter;
d
(n)
x : M0 × M1 → X n is the decoder at thex-receiver;

andd(n)y : M0 × M2 → Y n is the decoder at they-receiver.
The transmitter encodes the pair(Xn, Y n) with three indices
(M0,M1,M2) = e(n)(Xn, Y n) which are sent over channels
0, 1 and 2 respectively. After receiving indicesM0 andM1,
the x-receiver reconstructŝXn = d

(n)
x (M0,M1). Similarly,

after receiving indicesM0 andM2, they-receiver reconstructs
Ŷ n = d

(n)
y (M0,M2). An error is said to occur if either̂Xn 6=

Xn or Ŷ n 6= Y n, and the code is said to operate at a rate
of (1/n) log2 |Mi| bits per source symbol on channeli (for
i = 0, 1, 2).

A triple of rates (R0, R1, R2) is said to be achievable
if there exists a sequence of codes{(e(n), d(n)x , d

(n)
y ); n =

1, 2, . . .} such that the probability of error approaches zero
and (1/n) log |Mi| approachesRi (for i = 0, 1, 2) asn goes
to infinity.

Let RGW denote the set of all achievable rate triples. It can
be shown thatRGW is a closed convex subset of Euclidean
three space, which is completely defined by its lower boundary
RGW [5]:

RGW ,
{
(R0, R1, R2) ∈ RGW : (R̂0, R̂1, R̂2) ∈ RGW ,

R̂i ≤ Ri (i = 0, 1, 2) → R̂i = Ri (i = 0, 1, 2)
}
.

Given QXY and a network with capacity triple(C0, C1,
C2), the sequences{Xi} and {Yi} may be reliably recon-
structed at thex and y-receivers respectively if and only if
(C0, C1, C2) lies aboveRGW ; thus, RGW defines exactly
those capacity triples which are both necessary and sufficient
for reliable communication.

Gray and Wyner [5] showed that to achieve rates
(R0, R1, R2) which lie on the lower boundaryRGW , the ca-
pacity of channel0 should be prioritized for use by information
common to both{Xi} and {Yi}. Specifically, they designed
a coding scheme which used an auxiliary random variableW
to represent the information transported over channel0, and
they showed any(R0, R1, R2) ∈ RGW may be achieved by
optimizing over the choice ofW .

The formal description ofRGW in terms ofW is as follow.
Let W be a finite alphabet of cardinality|W | ≤ |X ||Y |+ 2,
and letPGW denote the family of probability functions on
W × X × Y such that

∑
w p(w, x, y) = QXY (x, y). Now,

for eachp ∈ PGW , let

R
(p)
GW ,



(R0, R1, R2) :

R0 ≥ Ip(X,Y ;W )
R1 ≥ Hp(X |W )
R2 ≥ Hp(Y |W )



 ,

whereIp(·; ·) denotes mutual information andHp(·|·) denotes
conditional entropy (with respect top).

Lemma 1: [5, Thm. 4] The achievable rate regionRGW

of the Gray-Wyner Network is given by

RGW =




⋃

p∈PGW

R
(p)
GW




c

,

where(·)c denotes the set closure operation.
It follows from Lemma 1 thatRGW is completely described

by a single coding scheme which makes use of an auxiliary
random variableW . As we will see, this coding scheme
extends, in a natural way, to the network with side information.
Unfortunately, however, this extension does not appear to
completely describe the corresponding rate region.

III. E XTENSION TO THESIDE INFORMATION CASE

SupposeX , Y , U andV are finite sets, and letX n, Y n,
U n and V n denote their respectiven-fold cartesian product
spaces. Suppose further that{(Xi, Yi, Ui, Vi)} is a sequence
of i.i.d. X ×Y ×U ×V valued random variables emitted by a
discrete memoryless sourceQXY UV (x, y, u, v) = Prob

[
X =

x, Y = y, U = u, V = v
]
. Finally, for eachi = 0, 1, 2, let

Mi = {1, 2, . . . , |Mi|} be a finite index set for channeli.
As before, a source code is a collection of mappings

(e(n), d
(n)
x , d

(n)
y ), wheree(n) : X n×Y n → M0×M1×M2 is



the encoder at the transmitter;d
(n)
x : M0×M1×U n → X n is

the decoder at thex-receiver; andd(n)y : M0×M2×V n → Y n

is the decoder at they-receiver. The transmitter encodes the
pair (Xn, Y n) with indices (M0,M1,M2) = e(n)(Xn, Y n)
which are sent over channels0, 1 and 2 respectively. After
receiving indicesM0 and M1 as-well-as side information
Un, the x-receiver reconstructŝXn = d

(n)
x (M0,M1, U

n).
Similarly, after receivingM0, M2 and V n, the y-receiver
reconstructŝY n = d

(n)
y (M0,M2, V

n).
An error occurs if eitherX̂n 6= Xn or Ŷ n 6= Y n. Let

Pe,x , Prob[X̂n 6= Xn], Pe,y , Prob[Ŷ n 6= Y n] andPe ,

max{Pe,x, Pe,y}.
Definition 1 (Achievable Rate):A rate triple (R0, R1, R2)

is said to be achievable if, for arbitraryǫ > 0 and suf-
ficiently large n, there exists a code(e(n), d(n)x , d

(n)
y ) with

parameters(n, |M0|, |M1|, |M2|, Pe) such thatPe ≤ ǫ and
(1/n) log |Mi| ≤ Ri + ǫ for all i = 0, 1, 2. We let R denote
the set of all achievable rate triples.

IV. A N OUTER BOUND

SupposeW is a finite set of cardinality|W | ≤ |X ||Y |+3
and P is the family of probability functions onW × X ×
Y ×U ×V such thatp(w, x, y, u, v) = p(w|x, y)p(x, y, u, v)
and

QXY UV (x, y, u, v) =
∑

w∈W

p(w, x, y, u, v)

for all p ∈ P. Now, for eachp ∈ P let

R
(p)
out =

{
(R0, R1, R2) :

R0 ≥ max
{
Ip(X,Y ;W |U), Ip(X,Y ;W |V )

}

R0 +R1 ≥ max
{
Ip(X,Y ;W |U), Ip(X,Y ;W |V )

}

+Hp(X |W,U),
R0 +R2 ≥ max

{
Ip(X,Y ;W |U), Ip(X,Y ;W |V )

}

+Hp(Y |W,V ).





Theorem 1 (Outer Bound):If (R0, R1, R2) is an achiev-
able rate triple, then there exists ap ∈ P such that
(R0, R1, R2) ∈ R

(p)
out.

A. Proof Outline: Theorem 1

We show: if {(e(n), d(n)x , d
(n)
y )} is a sequence of codes

wherePe → 0 asn → ∞, then there exists ap ∈ P such that
((1/n) log |M0|, (1/n) log |M1|, (1/n) log |M2|

)
∈ R

(p)
out.

Suppose(e(n), d(n)x , d
(n)
y ) is a code with(M0,M1,M2) =

e(n)(Xn, Y n), X̂n = d
(n)
x (M0,M1, U

n) and Ŷ n =

d
(n)
y (M0,M2, V

n), then

log |M0| ≥ H(M0|U
n) ≥ I(Xn, Y n;M0|U

n)

=
n∑

i=1

I(Xi, Yi;M0, X
i−1
1 , X i−1

1 , U i−1
1 , Un

i+1|Ui) (1)

≥

n∑

i=1

I(Xi, Yi;M0|Ui) =

n∑

i=1

I(Xi, Yi;Wi|Ui) , (2)

where (1) follows because{(Xi, Yi, Ui, Vi)} is drawn in an
i.i.d. fashion and (2) follows by settingWi = M0. Similarly,

log |M0| ≥

n∑

i=1

I(Xi, Yi;Wi|Vi) . (3)

On applying Fano’s Inequality [6, Pg. 37] we get

H(Xn|M0,M1, U
n) ≤ H(Xn|X̂n) ≤ nδ(Pe, n) , (4)

whereδ(Pe, n) , (1/n) + Pe log |X ||Y |. Similarly, we also
have thatH(Y n|M0,M1, V

n) ≤ nδ(Pe, n).
Now consider the series of Shannon (in)equalities (5)

through (12). Note, (7) follows because{(Xi, Yi, Ui, V )}
is drawn in an i.i.d. fashion and (11) follows sinceM0 


(Xi, Yi)
 (Ui, Vi) forms a Markov Chain and (4). From (10)
and (12), it respectively follows that

1

n

(
log |M0|+ log |M1|

)

≥
1

n

n∑

i=1

[
I(Xi, Yi;Wi|Ui) +H(Xi|Wi, Ui)

]
− δ(Pe, n) ,

and

1

n

(
log |M0|+ log |M1|

)

≥
1

n

n∑

i=1

[
I(Xi, Yi;Wi|Vi) +H(Xi|Wi, Ui)

]
− δ(Pe, n) .

Note, (1/n)[log |M0| + log |M2|] may be bound in a similar
manner. Following the time sharing principle given in [5,
Pg. 1709], we may now construct ap ∈ P such that each
inequality in the theorem holds asn → ∞ and Pe →
0. Finally, we may bound the cardinality of the auxiliary
random variableW using the support lemma of Ahlswede
and K̈orner [7, Lemma 3].

V. A N INNER BOUND

A natural extension of the code proposed by Gray and
Wyner [5] yields the following inner bound forR.

Let W andP be defined as in Section III. Forp ∈ P, let

R
(p)
in =

{
(R0, R1, R2) :

R0 ≥ max
{
Ip(X,Y ;W |U), Ip(X,Y ;W |V )

}

R1 ≥ Hp(X |W,U),
R2 ≥ Hp(Y |W,V ).



 ,

andRin =
(
∪p∈P R

(p)
in

)c
.

Theorem 2:R ⊇ Rin.
Remark 1: If U = V , thenR = Rin.
Remark 2:Suppose(X,Y )
U
V forms a Markov chain.

It can be shown that a sum rateR0+R1+R2 is achievable if
and only ifR0 +R1 +R2 ≥ H(Y |V )+H(X |Y, U). (See [8]
for the special case whereV = constant.) We may setW = Y
in Theorem 2 to achieve this sum rate.

Remark 3:SupposeX = Y . Sgarro [9] showed that the
sum rateR0+R1+R2 is achievable if and only ifR0+R1+



log |M0|+ log |M1| ≥ H(M0,M1) = H(M0,M1|U
n) + I(M0,M1;U

n) (5)

≥ I(Xn, Y n;M0,M1|U
n) + I(M0,M1;U

n) (6)

=

n∑

i=1

[
I(Xi, Yi;M0,M1, X

i−1
1 , Y i−1

1 , U i−1
1 , Un

i+1|Ui) + I(Ui;M0,M1, U
i−1
1 )

]
(7)

≥
n∑

i=1

[
I(Xi, Yi;M0,M1, U

i−1
1 , Un

i+1|Ui) + I(Ui;M0)
]

(8)

=

n∑

i=1

[
I(Xi, Yi;M0|Ui) + I(Xi, Yi;M1, U

i−1
1 , Un

i+1|M0, Ui) + I(Ui;M0)
]

(9)

≥

n∑

i=1

[
I(Xi, Yi;M0|Ui) + I(Xi;M1, U

i−1
1 , Un

i+1|M0, Ui) + I(Ui;M0)
]

(10)

=

n∑

i=1

[
I(Xi, Yi;M0|Vi) +H(Xi|M0, Ui)− nδ(Pe, n)

]
(11)

=
n∑

i=1

[
I(Xi, Yi;Wi|Vi) +H(Xi|Wi, Ui)− nδ(Pe, n)

]
(12)

R2 ≥ max{H(X |U), H(X |V )}. We may setW = X = Y
in Theorem 2 to achieve this sum rate.

Remark 4:SupposeU = Y andV = X . Wyner et. al. [4]
showed that the sum rateR0 + R1 + R2 is achievable if and
only if R0 +R1 +R2 ≥ max{H(X |Y ), H(Y |X)}. We may
setW = (X,Y ) in Theorem 2 to achieve this sum rate.

Remark 5:The code, which yields the achievability ofRin,
is essentially a version of Heegard and Berger’s “triple rate
split code” given in [10, Thm. 2]. Indeed, we note that the
problem of minimizing the sum rateR0+R1+R2 is a special
case of the two receiver generalized Kaspi-Heegard-Berger
problem [10, Sec. VII].

A. Proof Outline: Theorem 2

1) Code Construction:Supposep ∈ P. Let R′
0, R′

1 and
R′

2 be non-negative integers whose values will be chosen
later. Generate2nR

′

0 independentw-codewords of lengthn
by choosing symbols i.i.d. fromW according topW (theW -
marginal ofp). Label the resulting code book with the index
m′

0: CW , {wn(m′
0) : 1 ≤ m′

0 ≤ 2nR
′

0}. Similarly, generate
2nR

′

1 and2nR
′

2 independentx andy-codewords usingpX and
pY respectively:CX , {xn(m′

1) : 1 ≤ m′
1 ≤ 2nR

′

1}, and
CY , {yn(m′

2) : 1 ≤ m′
2 ≤ 2nR

′

2}.
Uniformly at random assign to eachwn ∈ CW a “bin label”

from the setM0 = {1, 2, . . . , 2⌊nR0⌋}, and lethW : CW →
M0 denote the induced mapping. LetBW (m0) denote the set
of w-codewords with bin labelm0: BW (m0) , {wn ∈ CW :
hW (wn) = m0}, and letBW denote the collection of allw-
bins. In the same way, assign one of2⌊nR1⌋ and 2⌊nR2⌋ bin
labels to eachx and y-codeword, and definehX , hY , BX

andBY .
2) Encoding: The encoder assumes the messagesxn, yn,

un and vn emitted by the source areǫ-strong joint typical;
that is,(xn, yn, un, vn) ∈ A

∗(n)
ǫ (pXY UV ). Let E1 denote the

event where this assumption is false. Then [6, Lem. 10.6.1]

Pr
[
E1

]
≤ ǫ1(n,X × Y × U × V ) , (13)

whereǫ1(n,X × Y × U × V ) → 0 in n for fixed ǫ > 0.
The transmitter looks for awn(m′

0) ∈ CW which isǫ-strong
joint typical with (xn, yn). If two-or-more such codewords
exist, the transmitter selects the codeword with the smallest
index. If no such codeword exists, an error is declared and the
transmitter arbitrarily selects somewn

e (m
′
0) ∈ CW . Let E2

denote this error event. Then [6, Lem. 10.6.2],

Pr
[
E2

]
≤ e

−
“

2nR′

02−n(I(X,Y ;W )+ǫ2)
”

, (14)

where ǫ2 → 0 as ǫ → 0 and n → ∞. We assumeR′
0 ≥

I(X,Y ;W ) + ǫ2, so that Pr[E2] → 0 as ǫ → 0 andn → ∞.
After the transmitter selectswn(m′

0) ∈ CW it sends the index
m0 = hW (wn(m′

0)) on channel0.
The transmitter looks for axn(m′

1) ∈ CX such that
xn(m′

1) = xn. If two-or-more such codewords exist, the
transmitter selects the codeword with the smallest index. If no
such codeword exists, an error is declared and the transmitter
arbitrarily selects somexn

e (m
′
1) ∈ CX . Let E3,x denote this

error event. Then,

Pr
[
E3,x

]
≤ e

−
“

2nR′

12−n(H(X)+ǫ3,x)
”

, (15)

whereǫ3,x → 0 asǫ → 0 andn → ∞. ChooseR′
0 ≥ H(X)+

ǫ3,x arbitrarily, so that Pr[E3,x] → 0 as ǫ → 0 and n →
∞. The transmitter encodeyn is a similar fashion, and sends
m1 = hX (xn(m′

1)) andm2 = hY (yn(m′
2)) on channels1

and2 respectively.
3) Decoding: Given m0 andun, theX-receiver looks for

a uniqueŵn ∈ BW (m0) which is jointly typical withun. If
no such codeword can be found, an error is declared and the
decoder arbitrarily selects somêwn

e ∈ BW (m0). Let



• E4,x: the codewordwn(m′
0) chosen by the transmitter is

not jointly typical with un, and
• E5,x: there are two-or-morew-codewords inBW (m0)

which are jointly typical withun.

ConsiderE4,x. SinceW 
 (X,Y ) 
 U forms a Markov
Chain underp, we have that [6, Lem. 15.8.1]

Pr
[
E4,x

]
≤ ǫ4,x , (16)

whereǫ4,x → 0 asn → ∞.
Now considerE5,x. We have thatun ∈ A

∗(n)
ǫ (PU ). As

before, the probability that a randomly generatedw-codeword
is jointly typical withun is upper bound by2−n(I(W ;U)+ǫ5,x),
where ǫ5,x → 0 as n → ∞. Moreover, the number of
codewords in each bin is at most2n(R

′

0−R0) + ǫ5′,x, where
ǫ5′,x → 0 asn → ∞ [11, Pg. 2766]. Hence,

Pr
[
E5,x

]
≤ 2−n(R0−R′

0+I(W ;U)−ǫ5,x) + ǫ5′,x .

We needR0−R′
0+I(W ;U)−ǫ5,x ≥ 0, so that Pr

[
E5,x

]
→

0 asn → ∞. This requires

R0 ≥ R′
0 − I(W ;U) + ǫ5,x

≥ I(X,Y ;W )− I(W ;U) + ǫ2 + ǫ5,x (17)

= I(X,Y, U ;W )− I(W ;U) + ǫ2 + ǫ5,x (18)

= I(X,Y ;W |U) + ǫ2 + ǫ5,x , (19)

where (17) follows because we selectedR′
0 ≥ I(X,Y ;W ) +

ǫ2, (18) follows becauseW 
 (X,Y ) 
 U forms a Markov
Chain, and (19) follows from the chain rule for mutual
information. Similarly, they-receiver will correctly find aw-
codeword with high probability ifR0 ≥ I(X,Y ;W |V )+ǫ2+
ǫ5,y, whereǫ5,y → 0 as ǫ → 0 andn → 0.

Given ŵn, m1 andun, theX-receiver looks for a unique
x̂n ∈ BX (m1) which is jointly typical with ŵn and un. If
there exists two-or-more such codewords, an error is declared
and the decoder arbitrarily selects somex̂n

e ∈ BX (m1). Let
E6,x denote this error event. It follows that

Pr
[
E6,x

]
≤ 2−n(R1−R′

1+I(X;W,U)−ǫ6,x) + ǫ6′,x , (20)

whereǫ6,x → 0 andǫ6′,x → 0 asǫ → 0 andn → ∞. If R1 ≥
H(X |W,U) + ǫ6,x it follows from (20) that Pr[E6,x] → 0 as
n → ∞. Similarly, they-receiver will correctly findŷn with
high probability if R2 ≥ H(Y |W,V ) + ǫ6,y, whereǫ6,y → 0
as ǫ → 0 andn → 0.

VI. T HREE SIMPLE NETWORKS

A. Two Descriptions ofR whenX = Y

Let P andR
(p)
out be defined as in Section IV.

Theorem 3:If X = Y , thenR =
(
∪p∈PR

(p)
out

)c

.

Now supposeA andB are finite sets of cardinalities|A | ≤
|X | + 1 and |B| ≤ |X | + 1. Let P∗ denote the family of
probability functions onA × B × X × U × V such that
p(a, b, x, u, v) = p(a, b|x)p(x, u, v) and

QXUV (x, u, v) =
∑

(a,b)∈A×B

p(a, b, x, u, v) .

For eachp ∈ P∗, let

R
(p)∗ =

{
(R0, R1, R2) :

R0 ≥ max
{
Hp(X |A,U), Hp(X |B, V )

}

R1 ≥ Ip(X ;A|U),
R2 ≥ Ip(X ;B|V ).



 .

Theorem 4:If X = Y , thenR =
(
∪p∈P∗R(p)∗

)c
.

B. R for a Type of Degraded Network

Let P andR
(p)
out be defined as in Section IV.

Theorem 5:If Y = (X,Z) and (X,Z) 
 U 
 V forms a

Markov Chain, thenR =
(
∪p∈PR

(p)
out

)c

.

C. R for a Complementary Delivery Network

Let P andR
(p)
out be defined as in Section IV.

Theorem 6:If U = Y and V = X , then R =(
∪p∈PR

(p)
out

)c

.

Now supposeA andB are finite sets of cardinalities|A | ≤
|X ||Y |+ 1 and |B| ≤ |X ||Y |+ 1. Let P∗∗ denote the set
of probability functions onA × B × X × Y such that

QXY (x, y) =
∑

(a,b)∈A×B

p(a, b, x, y)

is true for all (x, y) andp ∈ P∗∗. For eachp ∈ P∗∗, let

R
(p)∗∗ =

{
(R0, R1, R2) :

R0 ≥ max
{
Hp(X |A, Y ), Hp(Y |B,X)

}

R1 ≥ Ip(X ;A|Y ),
R2 ≥ Ip(Y ;B|X).



 .

Theorem 7:If U = Y and V = X , then R =(
∪p∈P∗∗R(p)∗∗

)c
.

VII. C ONCLUSION

We investigated the achievable rate regionR of a simple
network with side information present at each receiver. Our
first theorem gave an outer bound which, for three simple
networks, was shown to be equal toR. Our second result
gave an inner bound which was obtained via an extension of
the coding theorem given by Gray and Wyner [5].
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