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Abstract—We consider the problem of source coding with  The achievable rate regia# is known for a small ad-hoc
receiver side information for the simple network proposed ly  collection of networks; for most “real world” networksz
R. Gray and A. Wyner in 1974. In this network, a transmitter s nknown [1]. With the exception of [2], achievable rate
must reliably transport the output of two correlated inform ation . . .
sources to two receivers using three noiseless channels: apic  '€9/0NS have been sFud|ed on a ngtwork-by-network baS|_s,
channel which connects the transmitter to both receivers, md researchers have designed and studied simple networks& whic
two private channels which connect the transmitter directy to isolate particular problems of interest. Two notable exi@sp
each receiver. We extend Gray and Wyner’s original problem ly  agre: the separate coding of correlated sources [3], and the
permitting side information to be present at each receiver.We sharing of a finite capacity channel between multiple usés [

derive inner and outer bounds for the achievable rate regiorand, Itis h d that soluti to th imol twork ill wiel
for three special cases, we show that the outer bound is tight IS hope at solutions to these Simplé networks wi gie
practical and efficient codes for larger networks.

l. INTRODUCTION -5'55-_{[]_} _______ N f'Rng%/ir
° i
The field of network source coding is centered on the 3 = § —
following problem: given a noiseless communications nekwo § % o
and a set of information sources, what is the best way to || > 2 4
compress the output of each source for efficient and reliable| 2 —3| §
transportation over the network? A solution to this type of (2 & 4
problem needs to remove any temporal redundancy in each g 5
source, exploit any statistical correlations betweenedéiht g § ,
sources and optimize the use of limited channel capacities. 8 _________ o & {Vi}
In network source coding,@deis a collection of rules that  — {v;} Y -Receiver

define how the output of each source is to be compressed,

transported over the network and reconstructed. A codefj§- 1. Figure shows the network source coding problem psegdy R.
id to bereliable if the output of each source can b Gray and A. Wyner [5]. The transmitter is connected to twoergars via

sal . p e -C &hree noiseless channels. The sequercEs} and {Y;} are to be encoded

reconstructed without error at each of its intended desting.  at the transmitter, transported over the network and detedethez and

The performanceof a reliable code is measured by the rat%receive_rs r_espectiv_ely. In this paper, we study an extenef this problem
ere “side information"{U;} and{V;} are present at each receiver. These

at which it sends data over each channel; an optlmal code V\gmditional information sources are marked with dashedslinethe figure.
send data at the smallest rates and thereby consume the least

network capacity. An ordered collection of rates (one farthea We study the achievable rate regio#i of the network
channel) is said to bachievabléf there exists a reliable code shown in Figuréll. A transmitter must transport the output of
which operates at these rates. The set of all achievable raigo correlated sources to two receivers using three naisele
Z is called theachievable rate regiowf the network, and its channels: a public channel which connects the transmitter t
lower boundaryZ provides a performance benchmark for thgoth receivers, and two private channels which connect the
comparison of reliable codes. transmitter directly to each receiver. The achievablenegéeon
Z of this network was found by R. Gray and A. Wyner [5]
NICTA is funded by the Australian Government as represertgdhe jn 1974, They showed that an optimal code should endeavor
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visit at the Institute for Telecommunications Research,Wniversity of South  |gst when side information is introduced at each receiver: i
Australia, and Bell Laboratories, Alcatel-Lucent. R. Timtravel was funded ;

by student travel scholarships from NICTA, ARC Communimasi Research particular, it is not clear hO\_N O_ne should decompose theuiutp
Network (ACoRN), and the University of South Australia. of each source for transmission over the three channels.
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An outline of the paper is as follows. To fix ideas, we LetZqw denote the set of all achievable rate triples. It can
briefly review [5] in Sectiordl. In Sectiofill, we formally be shown thatZsw is a closed convex subset of Euclidean
defineZ for the network with side information. In Sectidng] IVthree space, which is completely defined by its lower boundar
and[M, we derive outer and inner bounds f@rrespectively. Zcw [5]:

In Section[V], we ascertait¥Z? for one source, a degraded __ N PN
network and a complementary delivery network respectively Zcw = {(Ro, R1, R2) € Zaw : (Ro, Ry, R2) € Zaw,
Finally, we conclude the paper in SectionVII. Ri<R; (i=0,1,2) > R, =R; (i =0, 1,2)}.

Given Qxy and a network with capacity tripléCy, C1,
C3), the sequence$X;} and {Y;} may be reliably recon-

Consider the network (without receiver side informatiorgtructed at ther and y-receivers respectively if and only if
shown in Figure[ll. We denote the capacities (in bits pé€y,C;,Cs) lies aboveZcaw; thus, Zgw defines exactly
second) of channel 1 and2 by Cj, C; andC, respectively. those capacity triples which are both necessary and sufficie
Finally, let 2" and#/ be finite alphabets, and It and%#™ for reliable communication.
denote their respective-fold cartesian product spaces. Gray and Wyner [5] showed that to achieve rates

Suppose{(X;,Y;)} 2 {(X;,Y;); i = 1,2,...} is a (Ro, R1, R2) which lie on the lower boundarg?cw, the ca-
sequence of independent and identically distributedd().i. pacity of channel should be prioritized for use by information
2 x % valued random variables emitted by a discrete mernemmon to both{ X;} and{Y;}. Specifically, they designed
oryless sourc® xy (x,y) = ProjX = 2z, Y = y|. Suppose a coding scheme which used an auxiliary random varisble
further that the random sequen¢é€X;,Y;)} appears at the to represent the information transported over chafineind
transmitter at the rate of one per second. It is desired Heat they showed anyRo, R, Ra) € Zcw may be achieved by
transmitter delivers a reliable reproducti¢’;} =2 {X,; i = optimizing over the choice of’.
1,2,...} of the sequencéX;} to thex-receiver, and a reliable  The formal description afZcw in terms of W is as follow.
reproduction{Y;} £ {Y;; i = 1,2,...} of the sequence Let # be a finite alphabet of cardinality’| < |2||%| + 2,
{Y;} to the y-receiver. Assuming no delay constraints andnd let Zqw denote the family of probability functions on
unlimited computational power at the transmitter and nemsi, 7 x 2" x % such that)" p(w,z,y) = Qxvy(z,y). Now,
the main problem is to ascertain which channel capacifgr eachp € Zaw, let

Il. THE GRAY-WYNER PROBLEM

triples (Cy, C1, C2) are both necessary and sufficient for each Ry > L(X,Y;W)
sequence to be reliably .transported to its mtended dewtima L@g)v)v 2 (Ro,R1,Ry) : Ry > Hy(X|W) :
We assume the classieblock source coding model where Ry > H,(Y|W)

the sequencd(X;,Y;)} is parsed and transported over the ) )
network in message blocks of length(for some large integer Wherel,(-; -) denotes mutual information anfd, (-|-) denotes
n). Let (X", Y") = (X1,Y1), (X2, Ya),...,(X,,Y,) denote conditional entropy (with respect 9.

the message at the transmitter, andXet — X1, Xo,..., X, Lemma 1: [5, Thm. 4] The achievable rate regic#icw

andY" = Y;,Ys,...,Y, denote the reconstructed messagd¥ the Gray-Wyner Network is given by
at thex andy-receivers respectively. €

For eachi = 0,1,2, let . = {1,2,...,|.#;|} be a finite Zew = U 20|,
index set for use on channél A network source code is a pEPaw

; ; (n) 4(n) 4(n) (n) . 9n
collection of mappingset™’, dz ~, dy "), wheree™™ : 27 x where(-)¢ denotes the set closure operation.

n H H .
YT — Mo x My x M, 1S the encoder at the wansmitter, ™y L oo Lemmd_l thatZw is completely described

di") s My X M — 2" is the decoder at the-receiver; . . ; -
andd™ - 4 x Mo — M is the decoder at the-receiver by a single .codlng scheme Whlch make§ use (_)f an auxiliary
v o 2 ' " random variablelV. As we will see, this coding scheme

The transmitter encodes the pak™, y™) with three indices extends, in a natural way, to the network with side informrati

(My, My, Ms) = e™(X™, Y™) which are sent over channel : :
. LT nfortunately, however, this extension does not appear to
0, 1 and 2 respectively. After receiving indiced/l, and M, : . .
Y completely describe the corresponding rate region.

the z-receiver reconstructX” = dé”)(Mo,Ml). Similarly,

after receiving indiced/, and M, they-receiver reconstructs I1l. EXTENSION TO THE SIDE INFORMATION CASE

Yyn = dz(f) (Mo, Ma). An error is said to occur if eithek™ # Suppose?’, %, % and?¥ are finite sets, and le®™™, %™,

X" orY" # Y™, and the code is said to operate at a ratg” and 7™ denote their respective-fold cartesian product

of (1/n)log, |.#;| bits per source symbol on channe(for spaces. Suppose further thetX;, Y;, Us;, i)} is a sequence

i=0,1,2). of i.i.d. ' x % x % x ¥ valued random variables emitted by a
A triple of rates (Ro, R1, Ry) is said to be achievable discrete memoryless sour@xyvv (z,y,u,v) = ProbX =

if there exists a sequence of cod@($(">7d§”),d§,”)); n= zY=yU=uV = v]. Finally, for eachi = 0,1, 2, let

1,2,...} such that the probability of error approaches zera?; = {1,2,...,|.#;|} be a finite index set for channél

and (1/n) log|.#;| approaches?; (for i = 0,1,2) asn goes  As before, a source code is a collection of mappings

to infinity. (e, d™ d), wheree™ : 2 x W™ = My x My x My IS



the encoder at the transmlttdﬁ,”) //lolel XY™ — Z™is where [) follows becausé(X;,Y;,U;, V;)} is drawn in an
the decoder at the-receiver; andi s My} Mox V™ — ™ lid. fashion and[(R) follows by setting’; = M. Similarly,
is the decoder at thg-receiver. The transmitter encodes the "
pair (X", Y™) with indices (Mo, My, My) = ™ (X™ Y™) log | | > ZI(XiaYi;Wilvi) ) (3)
which are sent over channels 1 and 2 respectively. After =1
receiving indicesM, and M; as-well-as side information
U", the z-receiver reconstructst” = di")(Mo,Ml,U").
Similarly, after receivingMo, M, and V", the y-receiver H(X"| My, My,U"™) < H(X"|)A(") <né(P.,n), (4)
reconstructs™ = d\" (Mo, M, V™).

An error occurs if eitherX” # X" or Y™ # Y™. Let whereé(Pe,n)n (1/")+}Z e log | 2°]|/|. Similarly, we also
Pem A Prqun 7& Xn] - A Proqyn # Yn] andP 2 have thatH(Y |M0,M1,V. ) < mS(Pe,n) - -

Now consider the series of Shannon (in)equalitiEs (5)

through [12). Note,[{7) follows becausg X;,Y;,U;,V)}
is drawn in an i.i.d. fashion and{1L1) follows sindd, o
(X;,Y;) e (U, V;) forms a Markov Chain and(4). Fror (10)
and [12), it respectively follows that

On applying Fano’s Inequality [6, Pg. 37] we get

max{ Pz, Pey}.

Definition 1 (Achievable Rate)A rate triple (Ry, R1, R2)
is said to be achievable if, for arbitrary > 0 and suf-
ficiently large n, there exists a codée™ dt™ d{™) with
parametergn, |.#|, |.#.|, | #>|, P.) such thatP. < e and
(1/n)log|.#;| < R; + € for all i = 0,1,2. We let% denote
the set of all achievable rate triples.

1 n
IV. AN OUTER BOUND . > [I(Xiayi;WHUi) + H(X|W3,Ui) | = 6(Pe,n)

~(tog|. 0] + tog.44])

Suppose# is a finite set of cardinality?’| < |27||#| + 3
and & is the family of probability functions o¥ x 2~ x

Y x U x ¥ such thap(w, z,y, u,v) = p(w|z,y)p(x, y, u,v) l(log || + log |///1|)
n

and

and
1 n
Qxvuv (@, y,u,v) = Y p(w,z,y,u,0) >=> [I(Xi,m;wim) + H(X;|W;, U;)| — 8(P.,n) .
weW n =1
for all p € #. Now, for eachp € & let Note, (1/n)[log|.#5| + log |.#>]] may be bound in a similar
manner. Following the time sharing principle given in [5,
%gut = {(Ro,Rl,Rz) Pg. 1709], we may now constructzae & such that each
) ) inequality in the theorem holds as — oo and P, —
§0+R E mzxgpg’?mg;’?g’?mgﬁ 0. Finally, we may bound the cardinality of the auxiliary
0 b= mj_(H Z()X|17/V ’U) PTPAT random variablel’ using the support lemma of Ahlswede
and Korner [7, Lemma 3].
Ro+ Ry > max{[ (X,Y;W|U), L,(X,Y; W|V)}
+H, (Y|W V) V. AN INNER BOUND

Theorem 1 (Outer Bound)f (Ry, Ri,R,) is an achiev- A natural_ extension of _the_code proposed by Gray and
able rate triple, then there exists @ € £ such that Wyner [5] yields the following inner bound fo%.

(Ro, R1, Ry) € gout Let 7 and £ be defined as in Sectign]lll. Fere 22, let
A. Proof Outline: Theorerfil 1 2P = {(Ro,Rth)

We show: if {(e™,d\™, d{")} is a sequence of codes Ry > max{[ (X,Y;W|U), L,(X,Y; W|V)}
whereP, — 0 asn — oo, then there exists a € & such that Ry > Hy(X|W, U) ,
((1/n)log |-#0|, (1/n)log|. 4], (1/n)log|.44]) € iy Ry > H(Y|W.V).

Supposee(™ dé ),d(")) is a code with(Mo, My, M) =

n n yn n o _ (n) n no _ and Zi, = Upggz %1(5) C'
((n))(X YT, i( = dV (Mo, My, U") and Y = Theorem(Z:%Q%n.)
dy (Mo, M2, V™), then Remark 1:If U =V, thenZ = %;,,.
log || > H(Mo|U™) > I(X™,Y™; Mo|U™) Remark 2:Supposd X, Y)eU eV forms a Mark_ov chaih.
n It can be shown that a sum raf® + R; + R» is achievable if
= SCI(XG Vi Mo, XEL XETL Ui o o) () @nd only ifRo Ry + Ry > H(Y|V) + H(X|Y,U). (See [8]
Py for the special case whefé = constant.) We may sét =Y
n n in Theoren® to achieve this sum rate.
> ZI(Xl-,Yi;MO|UZ—) = ZI(XZ-,Yi;WAUi) , (2 Remark 3:SupposeX = Y. Sgarro [9] showed that the
i=1 i=1 sum rateRy + R; + R is achievable if and only if?y) + Ry +



log || + log |21 > H(Mo, My) = H(Mo, M1|U™) + I(Mo, M1;U"™) %)
> I(X", Y™ Mo, My|U™) + I(Mo, My;U™) (6)
=Y [I(X3,Yi; Mo, My, X371, Y U U U + T(U; Mo, My, U )] )

=1

I

s
Il
-

[1(X;, Yis Mo, My, U™, UL [U;) + 1(Us; M) (8)

|

N
Il
-

[1(X;,Yi; Mo|Uy) + I(X;, Yis My, Ui Ul | Mo, Us) + 1(Uss Mo)] )

[1(X;,Yi; Mo|Uy) + (X5 My, Uy UP [ Mo, Us) + 1(Uss M) (10)

M-

N
Il
-

I
NE

[1(X;,Y3; Mo|V;) + H(X;| Mo, Us) — nd(P.,n)] (11)
1

.
Il

|

N
Il
-

[I(Xl,Y;,Wzlv;)+H(XZ|WZ,UZ) —né(Pe,n)} (12)

Ry > max{H(X|U), H(X|V)}. We may sefi’ = X =Y event where this assumption is false. Then [6, Lem. 10.6.1]
in Theoren® to achieve this sum rate.
Remark 4:Suppose/ = Y andV = X. Wyneret. al. [4] PIE] <ei(n, 2 x % x % x V), (13)
showed that the sum rat®, + R, + R, is achievable if and wheree;(n, 2 x % x % x ¥) — 0 in n for fixed e > 0.
only if Ro + 1 + Ro > max{H(X[Y), H(Y[X)}. We may  The transmitter looks for a" (m}) € ¢, which ise-strong
setW = (X,Y) in Theoren{® to achieve this sum rate. joint typical with (z",4"). If two-or-more such codewords
Remark 5:The code, which yields the achievability @i, exist, the transmitter selects the codeword with the srstalle
is essentially a version of Heegard and Berger's “triple rafngex. If no such codeword exists, an error is declared aad th
split code” given in [10, Thm. 2]. Indeed, we note that thgansmitter arbitrarily selects some”(m)) € €y . Let E,

problem of minimizing the sum rat&, + R, + R, is a special denote this error event. Then [6, Lem. 10.6.2],
case of the two receiver generalized Kaspi-Heegard-Berger

problem [10, Sec. VII]. PrE;] <e

_ (2nR62—n(I(X,Y;W)+e2))

: (14)

A. Proof Outline: Theorern]2 wheree; — 0 ase — 0 andn — oco. We assumeR; >
I(X,Y; W) + €2, so that P[E;] — 0 ase — 0 andn — oo.

1) Code Construction:Supposep € &. Let R, R} and A =, . .
R}, be non-negative integers whose values will be chos@‘ttnter the transmitter selects” (mj) € @ it sends the index

. — n /
later. Generate"®o independentv-codewords of lengtn mgl’h htw(w (7_7&0)) |0” lfhafn”e[)-n / . - et
by choosing symbols i.i.d. fror#” according topy, (the W- e transmitter looks for &™(m;) € ¥a suc a

n / — n —Or- H
marginal ofp). Label the resulting code book with the inde{ (ml)'tt_ xl' ltf m’o ordmoredsuifrl] t%odewolrldst (_ax(';t’ tlhe
mly: Gy 2 {w(ml) : 1 < ml, < 2"Fo}. Similarly, generate ransmitter selects the codeword wi e smallest indexo

onR} and2nks independent: andy-codewords usingx and suc_h C(_)deword exists, a:ln etror is declared and the trargmitt
py respectively €y 2 {e(m!) : 1 < m/ < 2"Fi}, and arbitrarily selects some (m}) € €. Let E5 , denote this
Gy L [y (mb) : 1 < ml < 2773}, error event. Then,

Uniformly at random assign to eaceit® € % a “bin label”
from the set#, = {1,2,...,2l"%]} and lethy : Gy —
o denote the induced mapping. L&ty (mo) denote the set wheree; ., — 0 ase — 0 andn — oo. ChooseR), > H(X)+
of w-codewords with bin labetng: By (mg) £ {w™ € €y : e, arbitrarily, so that A ,] — 0 ase — 0 andn —
hy (w™) = me}, and let%y denote the collection of alb-  oo. The transmitter encodg” is a similar fashion, and sends
bins. In the same way, assign one®ff1) and2l"F2) bin  m; = hy (27(m))) andma = ha (y™(m})) on channelsl
labels to each: and y-codeword, and defing -, ha, B2 and?2 respectively.
and Ay . 3) Decoding: Given mgy andu™, the X-receiver looks for

2) Encoding: The encoder assumes the messaggsy™, a uniquew™ € %y (mo) which is jointly typical withu™. If
u™ andv™ emitted by the source arestrong joint typical; no such codeword can be found, an error is declared and the
that is, (z",y™, u™,v") € Arm (pxyuv)- Let E; denote the decoder arbitrarily selects som& € %y (my). Let

27LR/1277L(H(X)+63@))

Pr{Es.] < e , (15)



o FE,,:the codewordv™(my) chosen by the transmitter isFor eachp € 27*, let
not jointly typical with«™, and
e Es . there are two-or-morev-codewords in%y (mg)

RO = {(R07R17R2) :
which are jointly typical withu™.

) ) Ry > max{Hp(X|A, U),H,,(X|B,V)}
ConsiderE, .. SinceW o (X,Y) e U forms a Markov R, > IL(X:A|U)
Chain underp, we have that [6, Lem. 15.8.1] Ry > Ii(XTBW)’.

Pr[EAL,w} S €42 (16)

Theorem 4:If X =Y, thenZ = (Upe - ZP)*)".
whereey , — 0 asn — oo.

Now considerEs .. We have that" ¢ A:(")(PU). As
before, the probability that a randomly generatedodeword out
is jointly typical with u™ is upper bound by~ (W:U)+es.x) Theorem 5:If Y = (X, Z) and (X, %) o U eV forms a
where es, — 0 asn — oo. Moreover, the number of Markov Chain, thenZ = (Upeg,%(gﬁ) _
codewords in each bin is at mogt(Ro—Ro) €5z, Where
€5 — 0 asn — oo [11, Pg. 2766]. Hence,

B. # for a Type of Degraded Network
Let 2 and %), be defined as in SectidilV.

C. # for a Complementary Delivery Network

Let 2 and %2"”), be defined as in SectidnlV.
Theorem 6é|f U =Y andV = X, then %
We needRy— Ry+1(W;U)—es5, > 0, so that P[Es5 ;| — (Upe@%(p) _

. . out
0 asn — oo. This requires

Pr[Es ] <2 n(Fo-BotIWil)=cs.a) 4 e

Now supposez andZ are finite sets of cardinalitids?| <
|22+ 1and|B| < |Z||#]+ 1. Let Z** denote the set

Ro > Ry — I(W;U) + €5, N |
of probability functions ona x & x 2" x % such that

>I(X,)Y,W)—I(W;U)+ €2+ €54 (17)
=I(X,Y,U;W) = I(W;U) +e2+ €5, (18) Qxy(z,y) = Z pla,b,x,y)
=I(X,Y;W|U)+ e+ 65,4 , (19) (a,b)EA x B

where [I) follows because we selectgf > I(X,Y; W)+ s true forall(z,y) andp € **. For eachp € &7, let

€2, (18) follows becausé? o (X,Y) e U forms a Markov

Chain, and [(I9) follows from the chain rule for mutual R = {(RoleaRQ):

information. Similarly, they-receiver will correctly find aw- Ry > max{H,(X|A,Y),H,(Y|B,X)}
codeword with high probability iRy > I(X,Y; W|V)+e2+ Ry > L(X;A]Y),
€s,y, Wherees , — 0 ase — 0 andn — 0. Ry, > IL,(Y;B|X).
Given w"™, m; andu™, the X-receiver looks for a unique
Theorem7:If U = Y and V = X, thenZ =

" € Ba (mq) which is jointly typical with @™ and u™. If (
there exists two-or-more such codewords, an error is cher.d:lar(Upe9’**92
and the decoder arbitrarily selects sofiffec %4 (m1). Let

. VIlI. CONCLUSION
Es » denote this error event. It follows that

We investigated the achievable rate regi@gnof a simple
network with side information present at each receiver. Our
first theorem gave an outer bound which, for three simple
networks, was shown to be equal #8. Our second result
gave an inner bound which was obtained via an extension of
the coding theorem given by Gray and Wyner [5].

Pr[ng] < 2—n(R1—R/1+I(X;W,U)—66,w) + ewr (20)

Ty

whereeg , — 0 andegr , — 0 ase — 0 andn — oo. If Ry >
H(X|W,U) + e, it follows from (20) that P{Fs ] — 0 as
n — oo. Similarly, they-receiver will correctly findy™ with
high probability if R, > H(Y|W,V) + €, Whereeg ,, — 0
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