
ar
X

iv
:c

s/
06

11
07

3v
2 

 [c
s.

IT
]  

21
 J

un
 2

00
7

IEEE TRANSACTIONS ON INFORMATION THEORY 1

Prefix Codes for Power Laws with Countable Support

Michael B. Baer,Member, IEEE

Abstract— In prefix coding over an infinite alphabet, methods that
consider specific distributions generally consider those that decline more
quickly than a power law (e.g., Golomb coding). Particular power-law
distributions, however, model many random variables encountered in
practice. For such random variables, compression performance is judged
via estimates of expected bits per input symbol. This correspondence
introduces a family of prefix codes with an eye towards near-optimal
coding of known distributions. Compression performance isprecisely
estimated for well-known probability distributions using these codes and
using previously known prefix codes. One application of these near-
optimal codes is an improved representation of rational numbers.

Index Terms— Coding of integers, continued fractions, infinite alpha-
bet, optimal prefix code, power law, rational numbers, search trees,
Shannon entropy.

I. I NTRODUCTION

Consider discrete power-law distributions, those of the form

p(i) ∼ ci−α

for constantsc > 0 and α > 1, where p(i) is the probability
of symbol i, and f(i) ∼ g(i) implies that the ratio of the two
functions goes to1 with increasingi. Such distributions could be
either inherently discrete or discretized versions of continuous power-
law distributions.

Several researchers in varied fields have, in classic papersranging
from decades to centuries old, observed power-law behaviorfor
various discrete phenomena. These include distribution ofwealth
[1], [2], town and city populations [2], [3], word frequency[2],
[4], [5], numbers of species of a given genus [2], [6], and terms
in continued fractions [7], [8]. More recent papers model various
Internet phenomena [9]. So active is the topic that several surveys
and popular expositions exist, e.g., [9]–[11].

However, there has been relatively little work on lossless com-
pression of symbols obeying such distributions, in spite ofa rich
literature on prefix coding problems [12]. Exponential-Golomb codes
[13] (generalizations of Elias’γ code [14]) are a good fit for certain
power laws [15], [16], leading to their widespread use in compressing
video and numerical data [15], [17]. To the author’s knowledge,
though, only one specific infinite-cardinality power-law distribution,
the Gauss-Kuzmin distribution [18, p. 341], has been used tojudge
compression performance of prefix codes [19], [20].

Here we propose simple codes which not only improve upon exist-
ing codes for encoding symbols distributed according to theGauss-
Kuzmin distribution — which applies to coding rational numbers
using continued fractions — but also efficiently code other common
distributions, such as the zeta distribution with parameter 2 [21], [22].
We estimate compression performance for dozens of code/distribution
combinations. For fixed codes, these estimates are rigorously shown
to be precise.

II. BACKGROUND, FORMALIZATION , AND MOTIVATION

The most common infinite-alphabet codes are codes that are
optimal for geometric [23], [24] and geometrically-based [25]–[29]
distributions. For geometric distributions, these are known as Golomb
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codes, and are based on theunary code— ones terminated by a zero,
i.e., a code consisting of codewords the form{1j0} for j ≥ 0. In
a Golomb code (Gk), a unary code prefix precedes a binary code
suffix. This binary suffix is acomplete binary code, in that it has (k)
codewords of the same length or length differing by at most one. For
example, the alphabetic complete binary code of size three that is
monotonically nonincreasing in length is{0, 10, 11}, so the Golomb
code G3 is {00, 010, 011, 100, 1010, . . .}. If the complete binary
code suffix is of constant length, the overall Golomb code is also
called a Rice code. Rice codes are used in standards such as JPEG-
LS [30]. Codes that exhibit an efficient coding rate for powerlaws,
by contrast, are not known to be optimal (excepting those with finite
support and trivial examples for dyadic probability mass functions).

We restrict ourselves to binary codes and assume that the symbols
to be coded are positive integers. Thus, an infinite-alphabet source
emits symbols drawn from the alphabetX = {1, 2, 3, . . .}. (Some
applications code the alphabetX0 = {0, 1, 2, . . .} or the alphabet
XZ = {0,−1, 1,−2, 2, . . .}, but any code of either form can be
mapped trivially to a code onX .) Symboli has probabilityp(i) > 0,
forming probability mass functionP = {p(i)}. The source symbols
are coded into binary codewords. The codewordc(i) ∈ {0, 1}∗,
corresponding to symboli, has lengthn(i) ∈ Z+, thus defining
length distributionN = {n(i)}. An optimal code is one that
minimizes

P

i∈X p(i)n(i) with the constraint of a corresponding
code being uniquely decodable, which one is if and only if the
Kraft inequality,

P

i∈X 2−n(i) ≤ 1, is satisfied. We can assume
without loss of generality that these codes are prefix codes,that
is, codes where there are no two codewords of the formc(i) and
c(j) = c(i)x, wherec(i)x denotes the concatenation of stringsc(i)
and (nontrivial)x. (In a similar use of notation,0k and1k denotek
0’s andk 1’s, respectively. Note also that we uselg to denotelog2
and ln to denoteloge, wheree is the base of the natural logarithm.)

One cannot use the Huffman source coding algorithm [31] to find
an optimal code, as one can for a finite source alphabet. However, it
is sensible that a code over the integers should bemonotonic, that is,
thatn(i) ≥ n(i+1) for all i ≥ 0. An exchange argument easily shows
that this is necessary for the code to be optimal given a distribution
for which p(i) > p(i+ 1) for all i.

Also desirable is for a code to bealphabeticor order preserving;
that is, if c(i, j) is thejth bit of theith codeword, thenc(i+1, j) <
c(i, j) only if there is ak < j such thatc(i + 1, k) 6= c(i, k).
Alphabetic codes allow the prefix coding tree to be used as a
decision tree, which is useful for search problems, as in [32], [33].
It is also useful for implementation of arithmetic coding: Because
binary arithmetic coding is much faster than other types of arithmetic
coding, a decision tree can reduce an infinite-alphabet source into
a binary source for fast arithmetic coding, as in [15]. In addition,
order preservation is necessary for the ordered representation of
rational numbers as integers in continued fractions [19], [20]; in this
correspondence we improve upon these representations.

Any valid monotonic prefix code has a (possibly different) alpha-
betic prefix code with the same length distribution. For example, the
Elias γ code was first presented in a nonalphabetic version, then
transformed into alphabetic form (as a decision tree) in [32]. Where
there is ambiguity, we will assume use of the alphabetic version of
a code.

Another desirable property is one we call “smoothness”:
Definition: We call N = {n(i)} j-smoothif, for every i > j, if

n(i + 1) = n(i + 2), thenn(i + 1) − n(i) ≤ 1, that is, there are
no “jumps” followed by “plateaus”;weakly smoothmeans that it is
j-smooth for somej. Thus, for anyj, a j-smooth code includes all
weakly smooth codes. Similarly,0-smooth (orstrongly smooth) codes
include allj-smooth (and thus weakly smooth) codes. Also, we call a
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P = {p(i)} j-antiunaryif, for every i > j, p(i) < p(i+1)+p(i+2);
antiunary means that it isj-antiunary for somej.

Observation: No j-antiunary distribution has an optimal code
which is notj-smooth. Thus no antiunary distribution has an optimal
code which is not weakly smooth.

Proof: Suppose aj-antiunary distributionP has an optimal code
with lengthsN which is notj-smooth. Then there exists ani > j
such thatn(i+1) = n(i+2) andn(i+1)−n(i) > 1. ConsiderN ′ =
{n′(i)} for which n′(k) = n(k) except at valuesn′(i) = n(i) + 1,
n′(i+1) = n(i+1)− 1, andn′(i+2) = n(i+2)− 1. ClearlyN ′

satisfies the Kraft inequality and
P

i p(i)n
′(i) <

P

i p(i)n(i), soN
is not optimal.

Every power law is antiunary, but most previously proposed codes
suitable for power-law distributions are not weakly smooth, so they
could not be optimal solutions. The proof shows that, when such
codes are applied to antiunary distributions, it is always asimple
matter to improve such a code for use with such a distribution.

For many probability distributions, however, there is no guarantee
that an optimal code would be computationally tractable, let alone
computationally practical for compression applications.We thus
judge performance of candidate codes by expected bits per coded
symbol rather than by strict optimality. One of the contributions of
this correspondence is a comparison of various codes for well-known
power-law distributions.

III. A NEW FAMILY OF CODES FOR INTEGERS

We propose a family of monotonic, alphabetic, computational
efficient,0-smooth codes, starting with the code shown in the center
set of columns (n0(·) andc0(·)) of Table I, which is defined as

c0(i) =

8

<

:

0b(i− 1, 3), i < 4
1c0
`

i−2
2

´

0, i = {4, 6, 8, . . .}
1c0
`

i−3
2

´

1, i = {5, 7, 9, . . .}.

The termb(j, k) denotes the(j+1)th codeword of a complete binary
code withk items, which is order-preserving (alphabetic), with the
first 2⌈lg k⌉ − k items having length⌊lg k⌋ and the last2k − 2⌈lg k⌉

items having length⌈lg k⌉. In this case, that means thatc0(1) =
0b(0, 3) = 00, c0(2) = 0b(1, 3) = 010, and c0(3) = 0b(2, 3) =
011. Thus, for example,c0(12) = 1c0(5)0 = 11c0(1)10 = 110010.
This is a unary code of lengthm, followed by a binary digitb (where
b = 0 or b = 1), and a binary code of lengthm+ b− 1, and is thus
straightforward to encode, decode, and write in the form of an implicit
infinite search tree.

This code, like exponential-Golomb codes, is a modificationof the
γ code. Whereas theγ code has anm-bit unary code followed by
a complete binary code for2m−1 items, Code0 follows the unary
prefix by a complete binary suffix for3 ·2m−1 items. Straightforward
extensions of this can be obtained by modifying the search tree. We
can add ak-bit binary number to each possible codeword — as in
the fourth and fifth set of columns in Table I — extending Code0
in the same manner that Rice codes extend unary codes, that is,

ck(i) = c0

„

1 +

—

i− 1

2k

�«

b((i− 1) mod 2k, 2k)

wherek > 0 and b
`

(i− 1) mod 2k, 2k
´

is thek-bit representation
of (i− 1) mod 2k. Call any of the new extensions Codek.

Another extension, similar to [15] and [34], involves first coding
with a finite code tree, then, if this initial codeword is all1’s, adding
Code0. If we start as in a unary code and switch to Code0 after κ
ones, then let Code−κ denote the implied code, e.g., Code−1, the
second set of columns (n−1(·) andc−1(·)) in Table I. Formally, for

k = −κ < 0,

ck(i) =



1i−10, i ≤ −k

1(−k)c0(i+ k), i > k.

All codes presented here are0-smooth (strongly smooth), and can
be coded and decoded using only additions, subtractions, and shifts
such that the total number of operations is proportional to the number
of encoded output bits.

IV. A PPLICATION

Table II lists various distributions for which no optimal code is
known and estimates, in expected bits per input symbol, of coding
performance using several different codes. The entropy andthe
expected bits per symbol of an optimal code are also estimated. H
denotes the entropy of the distribution (H(P ) = −Pi p(i) lg p(i))
andN∗ (the expected codeword length of) the optimal code. Golin
denotes the best Golin code [35]; Codek denotes the best of the
codes introduced here;l denotes the Levenshtein (Levenxtein)
code [36];γ/δ/ω/EGk denotes the best of the Elias codes [14] and
exponential-Golomb codes [13], which in these examples is always
the Eliasγ code (EG0); Y denotes Yokoo’s code for the Gauss-
Kuzmin distribution [20]; and Gk denotes the best Golomb code (with
parameterk) [23]. These codes are defined in the cited papers and
the definitions are repeated in the Appendix, which also explains the
methods by which the estimations of bits per symbol are calculated.
In cases for which there are multiple codes and/or parameters, the best
one is chosen and indicated in superscript. Note that, as in previous
papers on these and similar codes [13], [37], the best code ischosen
by its empirical performance; there appears to be no simple rule for
deciding which code to use.

We show the performance for the overall best fixed code for each
distribution in bold in Table II, and, if a Golin code is better, this is in
italics. Note that Golin codes do well for inputs with rapidly declining
probabilities, whereas Yokoo’s code and the codes introduced here
have the best results for inverse square probability mass functions.
However, Golin codes, in being calculated on the fly, are often
impractical, both due to the potential for rounding errors to lead to
coding errors and due to the computational complexity of therequired
floating point divisions.

We find that Code−1 is of particular interest as it happens to
be an excellent code for the Gauss-Kuzmin distribution, defined and
well-approximated as follows:

pGK(i) , − lg

»

1− 1

(i+ 1)2

–

≈ lg e

(i+ 1)2

This shows how it is a power law. The Gauss-Kuzmin distribution is
the one for which to code when expressing coefficients of continued
fractions, as in [19], [38], in which EG0 is proposed for use, and [20],
in which Yokoo’s code is proposed. Code−1 is only about0.008%
worse than the (approximated) optimal code, whereas Yokoo’s code
is 0.449% worse and the Eliasγ code (EG0) is 1.007% worse.

Note also that Code−2 is a good code for the zeta distribution
with parameters = 2, where the zeta distribution is defined as

pζs(i) ,
1

isζ(s)

and ζ is the Riemann zeta functionζ(s) ,
P∞

i=1 i
−s for s > 1.

The zeta distribution is used to model several phenomena including
language [5]. Optimal codes for the zeta distribution (s = 2) were
considered in Kato’s unpublished manuscript [22]. In this work, the
optimal codeword lengths for the first ten symbols are shown to lie
in ranges of two possible values for each codeword (or one forthe
first, which hasn(1) = 1). The codeword lengths of Code−2 all lie
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Code−2 Code−1 Code0 Code1 Code2
i n−2(i) c−2(i) n−1(i) c−1(i) n0(i) c0(i) n1(i) c1(i) n2(i) c2(i)
1 1 0 1 0 2 0 0 3 0 0 0 4 0 0 00
2 2 10 3 1 0 0 3 0 1 0 3 0 0 1 4 0 0 01
3 4 11 0 0 4 1 0 1 0 3 0 1 1 4 0 1 0 0 4 0 0 10
4 5 11 0 1 0 4 1 0 1 1 4 10 0 0 4 0 1 0 1 4 0 0 11
5 5 11 0 1 1 5 1 10 0 0 4 10 0 1 4 0 1 1 0 5 0 1 0 00
6 6 11 10 0 0 5 1 10 0 1 5 10 1 00 4 0 1 1 1 5 0 1 0 01
7 6 11 10 0 1 6 1 10 1 00 5 10 1 01 5 10 0 0 0 5 0 1 0 10
8 7 11 10 1 00 6 1 10 1 01 5 10 1 10 5 10 0 0 1 5 0 1 0 11
9 7 11 10 1 01 6 1 10 1 10 5 10 1 11 5 10 0 1 0 5 0 1 1 00

10 7 11 10 1 10 6 1 10 1 11 6 110 0 00 5 10 0 1 1 5 0 1 1 01

TABLE I
FIVE OF THE CODES INTRODUCED HERE

H N∗ Golin Codek l γ/δ/ω/EGk Y Gk

Gauss-Kuzmin 3.43253 3.47207 3.50705(1,2) 3.472346(−1) 3.77915 3.50705(γ) 3.48765 ∞
(∀k)

Y
ul

e-
S

im
on ρ = 1 2.95215 2.98136 3.(1,2) 2.983338(−1) 3.17826 3.(γ) 2.98138 ∞

(∀k)

ρ = 1.5 2.17073 2.21571 2 .22507 (1)
2.230792(−2) 2.32233 2.28020(γ) 2.26031 2.85003(3)

ρ = 2 1.74685 1.83787 1 .84024 (1)
1.848484(−4) 1.91747 1.94200(γ) 1.92361 2.(1)

ρ = 2.5 1.47629 1.62102 1 .62191 (1)
1.626668(−5) 1.68947 1.74664(γ) 1.73044 2.66666 . . .(1)

ρ = 3 1.28665 1.48534 1 .48563 (1,2)
1.488172(−6) 1.54608 1.61950(γ) 1.60550 1.5(1)

ze
ta s = 2 2.36259 2.41766 2.43310(1) 2.417772(−2) 2.53468 2.44631(γ) 2.43042 ∞

(∀k)

s = 2.5 1.46525 1.65431 1 .65767 (1)
1.658015(−4) 1.70907 1.73223(γ) 1.71963 1.94737 . . .(1)

s = 3 0.97887 1.33453 1 .33504 (1)
1.336680(−4) 1.36956 1.42207(γ) 1.41389 1.36843 . . .(1)

entropy “designer” codes f i x e d c o d e s

TABLE II
COMPRESSION(IN BITS PER SYMBOL) AND CODE PARAMETER(WHERE APPLICABLE)

within the allowed ranges. However, we can empirically find better
codes, showing that Code−2, although the best simply described
code we know of, is about0.005% worse than an optimal code.

A third distribution family is that of Yule [6] and Simon [2],

pYS
ρ (i) , ρB(i, ρ+ 1)

„

pYS
ρ (i) = ρ

(i− 1)!ρ!

(ρ+ i)!

«

whereB(i, j) is the beta function,ρ > 0, and the right equation
applies for integerρ. Thus, for example, ifρ = 1, thenp(i) = 1/i(i+
1). Several statistics, from species population to word frequencies,
have been observed to obey a Yule-Simon distribution, most often
with parameterρ = 1 [2]. This particular distribution is also related
to continued fractions, being the distribution of the first coefficient
when the number being represented is chosen uniformly over the
unit interval (0, 1). For PYS

1 , Yokoo’s code is0.066% better than
Code−1.

The estimates in Table II were calculated based on finite sums
and estimates of the remaining infinite sum. For fixed codes and for
entropy, these codes are as calculated in the Appendix, and are thus
accurate to the precision given. The Golin code was estimated based
on the partial code and conditional entropy of the remainingitems.
Similarly, optimal expected codeword lengths were estimated using
an optimal code for the partial sum and the entropy of the remaining
items; although not having the same guaranteed accuracy, the results
seem to provide accurate estimates based upon the behavior of coding
truncated probability distributions of increasing size. In [39], it is
shown that sequences of such truncated distributions always have a
subsequence converging to the optimal code, providing theoretical
justification for the use of this technique. Values that are exactly
calculated from infinite sums, rather than estimated, are indicated
by the reduced number of figures (for multiples of0.1) or through
ellipses in the case of

2.66666 . . . =
5

3
, 1.94737 . . . =

ζ(1.5)

ζ(2.5)
, and1.36843 . . . =

ζ(2)

ζ(3)
.

These values are exactly known due to being means of Yule-Simon
and zeta distributions, which are known in closed form. In addition,
the average length of the Eliasγ code (EG0) code for a Yule-Simon
distribution withρ = 1 is easily calculated as

∞
X

i=1

p(i)n(i) = 1 + 2

∞
X

i=1

⌊lg i⌋
i(i+ 1)

= 1 + 2
∞
X

j=0

j

2j+1−1
X

i=2j

„

1

i
− 1

i+ 1

«

= 1 + 2

∞
X

j=0

j2−j−1 = 3.

Golin’s algorithms both result in the same code for this distribution,
since the algorithms’ conditions result in groupings of probabilities
summing to powers of two.

Excluding Golin codes, we find that the codes introduced heredo
quite well, only failing to improve upon existing fixed codesin one
case, the Yule-Simon distribution with parameterρ = 1 (p(i) =
1/i(i + 1)). Because Yokoo’s code requires computing codewords
for complete binary codes with unequal codeword lengths, however,
the codewords of codes introduced here require less computation to
encode and decode. For all tested distributions, Yokoo’s code and the
codes introduced here are both strict improvements on exponential-
Golomb and Elias codes, confirming that, in practice, strongly smooth
codes are preferable to those lacking this property.

Note that not all known codes for integers were tested here; certain
codes can be ruled out due to the length of the first few codewords
(e.g., Even-Rodeh [40], Williams-Zobel [41]), whereas others lack the
alphabetic property and/or have significantly higher computational
complexity (e.g., Fibonacci [42], [43]). In comparison to feasible
codes, the codes introduced here are a notable improvement.While
not optimal, they can be quite useful in practical applications.
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APPENDIX

Consider all codes and probability distributions that are monotonic
and for which we can findα, β, κ > 0, µ, ξ > 0, τ > 0, υ > 0, φ > 0
such that

n(i) ∈ [τ ln(i+ µ+ 1) + α, υ ln(i+ µ) + β]

and

p(i) ∈
»

φ

(i+ κ)ξ+1
,

φ

iξ+1

–

for large enoughi ≥ imin. Then, forx > imin, we have
∞
X

i=x

p(i)n(i) ≥
Z ∞

x

p(i)n(i− 1)di

≥
Z ∞

x

τφ ln(i+ µ) + αφ

(i+ κ)ξ+1
di

≥ φ

Z ∞

x

τ ln(i+ κ) + τfmin(x) + α

(i+ κ)ξ+1
di

=
τφ ln(x+min(κ, µ)) + τφξ−1 + αφ

ξ(x+ κ)ξ

wherefmin(x) = min(ln(x+ µ)− ln(x+ κ), 0), and
∞
X

i=x

p(i)n(i) ≤
Z ∞

x

p(i− 1)n(i)di

≤
Z ∞

x

υφ ln(i+ µ) + βφ

(i− 1)ξ
di

≤ φ

Z ∞

x

υ ln(i− 1) + υfmax(x) + β

(i− 1)ξ
di

=
υφ ln(x+max(−1, µ)) + υφξ−1 + βφ

ξ(x− 1)ξ

wherefmax(x) = max(ln(x+µ)+ln(x−1), 0), providing upper and
lower bounds to average codeword length using codeN = {n(i)}
for probability distributionP = {p(i)}. Other distributions (such as
Golomb codes) and entropy can be bounded similarly.

Such an approach enables us to find estimates with accuracies
limited only by the precision of the partial summations (i.e., round-off
error). For the probability distributions currently underconsideration,
we have:

ξ φ κ

PGK 1 1 lg e

PYS
ρ ρ ρ ρΓ(ρ+ 1)

P ζ
s 0 s− 1 ζ−1(s)

In order to find bounds for expected codeword lengths, we should
first define the codes we are using. Since we only care about
codeword lengths, we use code definitions that apply toX and have
the same lengthsN as the (equivalent but possibly different) original
definitions:

Elias γ cγ(i) =

8

<

:

0, i = 1
1cγ

`

i
2

´

0, i = {2, 4, 6, . . .}
1cγ

`

i−1
2

´

1, i = {3, 5, 7, . . .}
Elias δ cδ(i) = cγ(1 + ⌊lg i⌋)b(i− 2⌊lg i⌋, 2⌊lg i⌋)

Eliasω cω(i) =



0, i = 1
c′ω(⌊lg i⌋)b(i)0, i > 1

l cl =



0, i = 1
1cω(i− 1), i > 1

EGk cEGk(i) = cγ
`

1 +
¨

i−1
2k

˝´

b((i− 1) mod 2k, 2k)

Yokoo cYok(i) =

8

>

>

>

>

<

>

>

>

>

:

0, i = 1
100, i = 2
101, i = 3
1gi00b(i− 2gi ,mi), i < qi
1gi01b(i− qi, 2

gi −mi), i ≥ qi

where c′ω(i) is all but the last bit ofcω, gi , lg i, mi , (2gi −
(−1)gi)/3, andqi , 2gi +mi. Recall thatb(j, k) denotes the(j +
1)th codeword of a complete binary code withk items.

For these codes,α, β, µ, τ > 0, υ > 0 can be

α β µ τ υ

γ, Yokoo −1 1 0 2 lg e 2 lg e
l 2 2 −1 lg e 2.5 lg e

(i > 1)

Codek α0 − k −1− k 2 + k 2 lg e 2 lg e
(k ≤ 0)

(i > −k)

where α0 = 1 − 2 lg 3. (Parameters forδ codes,ω codes, EGk
codes, and Codek for k > 0 can be similarly formulated, but these
are unused here, as theγ code is clearly better for all distributions
considered.)

For finding the best code within code families with multiple codes
— such as Codek, EGk, and Gk (Golomb codek, defined in the
main text) — partial sums can be used to limit the number of codes
tested to a finite number. For example, these codes haven(1) → ∞ as
k → +∞, so at some pointp(1)n(1) will be too large to consider
Code k with parametersk > kmax for somekmax. Similarly, as
k → −∞, the unary portion of the code can be used for the partial
sum.

Lacking α, β, µ, τ, υ, an obvious lower bound for
P∞

i=1 p(i)n(i)
is
Px−1

i=1 p(i)n(i), but a much more accurate bound can be found
via entropy bounding with a value ofx such that

Px−1
i=1 2−n(i) =

1−2−yx for someyx. For such values, since the code can be assumed
without loss of generality to be monotonic, the codewords can be
assumed to be all the leaves of a subtree rooted at depthyx. Since
any normalized tree is subject to the entropy bound

P

i p(i)n(i) ≥
H(P ), we can normalize to find a useful bound for the overall code.
Let us first assign

σx ,

x−1
X

i=1

p(i), Hx ,

∞
X

i=x

p(i) lg
1

p(i)

Hcond
x ,

∞
X

i=x

p(i)

1− σx

lg
1− σx

p(i)
= lg(1− σx) +

Hx

1− σx

whereHx can be lower-bounded by as previously described. Thus,
applying the entropy bound to the normalized subtree,

∞
X

i=x

p(i)
P∞

j=x p(j)
(n(i)− yx) ≥ Hcond

x

so
∞
X

i=1

p(i)n(i) ≥ (yx +Hcond
x )(1− σx)

= Hx + (yx + lg(1− σx))(1− σx)

This is useful for the codes calculated on the fly, e.g., Golin’s codes.
Golin’s original approach,alg1, starts by finding the minimum

valuek1 such that

2k1
X

i=1

p(i) >
3−

√
5

2
= 0.381966 . . .

and assigning the first2k1 inputs code0b(i− 1, 2k1). The algorithm
then normalizes the remaining inputs and finds the minimum value
k2 such that

2k1+2k2
X

i=2k1+1

p1(i) >
3−

√
5

2
wherep1(i) =

p(i)

1−P2k1

j=1 p(j)
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and assigns the next2k2 inputs code10b(i−1−2k1 , 2k2). Continuing
as needed, the algorithm sequentially finds minimumkh (given k1
throughkh−1) such that

S(kh
1 , P ) ,

PK(h)

i=1+K(h−1) p(i)

1−PK(h−1)
i=1 p(i)

>
3−

√
5

2

whereK(h) ,
Ph

j=1 2
kj , and assigns code

1h−10b

 

i− 1−
h−1
X

j=1

2kj

!

to items1+K(h−1) = 1+
Ph−1

j=1 2kj throughK(h) =
Ph

j=1 2
kj .

This top-down approach is quite similar to Shannon-Fano coding
[44], a modification of which results inalg2, previously proposed in
[45]. In this case, the the grouping condition is not the firstkh such
thatS(kh

1 , P ) > (3−
√
5)/2, but thekh minimizing

|S(kh
1 , P )− 0.5|

that is, the group of a power of two that results in the most even
division between those grouped and those left ungrouped. (Note that
Shannon-Fano codes use the overall “best split” whereas these codes
use the best split that groups items together in powers of two.)
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