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Message-Passing Decoding of Lattices Using Gaussian Mixtures

Brian M. Kurkoski∗ Justin Dauwels†

Abstract— A lattice decoder which represents messages
explicitly as a mixture of Gaussians functions is given. In
order to prevent the number of functions in a mixture from
growing as the decoder iterations progress, a method for
replacing N Gaussian functions with M Gaussian functions,
with M ≤ N , is given. A squared distance metric is used to
select functions for combining. A pair of selected Gaussians
is replaced by a single Gaussian with the same first and
second moments. The metric can be computed efficiently,
and at the same time, the proposed algorithm empirically
gives good results, for example, a dimension 100 lattice has
a loss of 0.2 dB in signal-to-noise ratio at a probability of
symbol error of 10−5.
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1 Introduction
Lattices play a central role in many communica-

tion problems. While Shannon used a non-lattice, and
non-constructive, Euclidean-space code to compute the
capacity of the AWGN channel, recently Erez and Za-
mir showed that lattice encoding and decoding can also
achieve the capacity of the AWGN channel [1]. Sim-
ilarly, for the problem of communication with known
noise, which has applications to multiuser communi-
cations and information hiding, lattice codes play an
important role [2]. In source coding, lattices may be
used for lossy compression of a real-valued source.

To approach theoretical capacities, it is necessary to
let the dimension of the lattice or code become asymp-
totically large. However, for most lattices of interest,
the decoder complexity is worse than linear in the di-
mension, and most studied lattices have small dimen-
sion. For example, a frequently cited reference on lat-
tice decoding gives experimental results with a maxi-
mum dimension of 45 [3]. Other approaches use trellis-
based lattices, which are exponentially complex in the
number of states [4]. Historically, finite-field error cor-
recting codes also suffered the same complexity limita-
tion, however, with the advent of iteratively-decoded
low-density parity check codes and turbo codes, the
theoretical capacity of some binary-input communica-
tion channels can be achieved [5].

Recently, a new lattice construction and decoding
algorithm, based upon the ideas of low-density parity
check codes has been introduced. So-called low-density
lattice codes (LDLC) are lattices defined by sparse in-
verse generator matrix with a pseudo-random construc-
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tion. Decoding is performed iteratively using message-
passing, and complexity is linear in the block length.
Sommer, Feder and Shalvi, who proposed this lattice
and decoder, demonstrated decoding with dimension
as high as 106. However, the experiments considered
decoding only for a special communications problem
where the transmit power is unconstrained. Comments
in their paper suggest that the algorithm did not con-
verge when applied to the more important problem of
general lattice decoding [6] [7].

When decoding on the AWGN channel, the LDLC
decoder messages are continuous-valued functions,
which can be exactly represented by a mixture of Gaus-
sian functions. However, as iterations progress, the
number of Gaussians in the mixture grows rapidly. A
direct implementation of a decoder which exploits this
property is infeasible, and so prior works quantize the
messages, ignoring the Gaussian nature of the mes-
sages.

In this paper, the LDLC decoder messages are rep-
resented as Gaussian functions, and the growth in the
number of Gaussians is reduced by a proposed Gaussian
mixture reduction algorithm. This algorithm approxi-
mates a number of Gaussians N with a smaller number
of Gaussians M . The algorithm combines Gaussians
in a pair-wise fashion iteratively until a stopping con-
dition is reached. A distance metric, which computes
the squared difference between a pair of Gaussian func-
tions, and the single Gaussian which has the same first
and second moments, is used.

Section 2 gives a review of the construction and de-
coding algorithm for low-density lattice codes. If the
channel noise is Gaussian, then messages in the decod-
ing algorithm can be represented as a mixture of Gaus-
sian functions. Section 3 gives a method for replacing
a pair of Gaussians with a single Gaussian, which is
applied to an algorithm which reduces a mixture of N
Gaussian functions to a mixture of M Gaussians. Sec-
tion 4 applies this algorithm to the decoding of low-
density lattice codes, and considers simulation results.
Section 5 is the conclusion.

2 Low-density Lattice Codes
2.1 Lattices and Lattice Communication

A lattice is a regular infinite array of points in Rn.
Definition An n-dimensional lattice Λ is the set of

points x = (x1, x2, . . . , xn) with

x = Gb, (1)

where G is an n-by-n generator matrix and b =
(b1, . . . , bn) is the set of all possible integer vectors,
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bi ∈ Z.
The following communications system is considered.

Let the codeword x be an arbitrary point of the lattice
Λ. This codeword is transmitted over an AWGN chan-
nel with known noise variance σ2, and received as the
sequence y = {y1, y2, . . . , yn}:

yi = xi + zi, i = 1, 2, . . . , n, (2)

where zi is the AWGN. A maximum-likelihood decoder
selects x̂ as the estimated codeword:

x̂ = arg max
x∈Λ

Pr(y|x) (3)

The received codeword is correct if x = x̂ and incor-
rect otherwise. The power of the transmitted symbol,
||x||2 is unbounded. Instead, power is restricted by the
volume of the Voronoi region, det(G).

For this system, Poltyrev [8] showed that for suf-
ficiently large n, there exists a lattice for which the
probability of error becomes arbitrarily small, if and
only if,

σ2 <
|det(G)|2/n

2πe
. (4)

Poltyrev’s result is in contrast to Shannon’s theo-
rem that the capacity of the Gaussian channel, subject
to a transmission power constraint, is 1

2 log(1 + SNR).
To achieve capacity while observing the power con-
straint, the codepoints are on the surface of an n-sphere
with high probability.

2.2 LDLC Definition
Definition A low-density lattice code is a lattice

with a non-singular generator matrix G, for which
H = G−1 is sparse.

Regular LDLC’s have H matrices with constant row
and column weight d. Although not necessary, it is
convenient to assume that det(H) = 1/det(G) = 1.
The non-zero entries are selected pseudo-randomly.

In a magic square LDLC, the absolute values of the
d non-zero entries in each row and each column are
drawn from the set {h1, h2, . . . , hd} with h1 ≥ h2 ≥
· · · ≥ hd > 0. The signs of the entries of H are pseudo-
randomly changed to minus with probability 0.5. From
here, (n, d) magic square LDLC’s are considered with
h1 = 1, and hi = 1/

√
d for i = 2, . . . , d. Such codes

resulted in only slightly worse performance than other
weight sequences [7].

2.3 LDLC Decoding
The LDLC decoding algorithm is based upon belief-

propagation, where messages are real functions cor-
responding to probability distributions on the sym-
bols xi. As with decoding low-density parity check
codes, the decoding algorithm may be presented on a
bipartite graph. There are nd variable-to-check mes-
sages qk(z), and nd check-to-variable messages rk(z),
k = 1, 2, . . . , nd.

With an AWGN channel, the initial message is:

qk(z) =
1√
2πσ

e−
(yi−z)

2

2σ2 , (5)

for the edge k connected to variable node i.
2.3.1 Check Node

For the check node, note that (1) can be re-written
as:

Hx = b, (6)

which defines a sparse system of equations:

hij1xj1 + hij2xj2 + · · ·+ hij1xj1 = bi, (7)

for i = 1, 2, . . . , n, and jk ∈ Ii, where Ii is the columns
of H which have a non-zero entry in position i.

Let x̃k = hkxk, so
∑d

i=1 x̃i = b, where b is an in-
teger. The input and output messages are qk(z) and
rk(z), respectively, for k = 1, 2, . . . , d. From (7), for an
arbitrary i, xk =

b− (h1x1 + · · ·+ hk−1xk−1 + hk+1xk−1 + · · ·+ hdxd)
hk

,

or,

xk =
1
hk

(b−
d\k∑
i=1

x̃i). (8)

The output message rk(z) can be obtained from the
input messages qi(z), i = 1, . . . , d, i 6= k in four steps,
Unstretch, Convolution, Extension and Stretch.

Unstretch is multiplication by hk. The message for
x̃i is q̃k(z),

q̃k(z) = qk(
z

hk
). (9)

Convolution The message for
∑d\k

i=1 x̃i is r̃k(z). The
distribution of the sum of random variables is the con-
volution of distributions,

r̃k(z) = (q̃1 ∗ · · · ∗ q̃k−1 ∗ q̃k+1 ∗ · · · ∗ q̃d)(z),(10)

where ∗ denotes real-number convolution.
Extension is a shift-and-repeat operation for the un-

known integer b. Conditioned on a specific value of b,
the distribution of b −

∑d\k
i=1 x̃i is r̃k(b − z). Assum-

ing that b is an arbitrary integer with uniform a priori
distribution,

r̃′k(z) =
∞∑

b=−∞

r̃k(b− z). (11)

Stretching is multiplication by 1/hk. Finally the
message rk(z) which is the message for (8), is obtained
as:

rk(z) = r̃′k(hkz) (12)

Note that the above operations are linear and can
be interchanged as is required for an implementation.



2.3.2 Variable Node
At variable node i, take the product of incoming

messages, and normalize.
Product:

q̂k(z) = e−
(yi−z)

2

2σ2

d\k∏
i=1

ri(z). (13)

Normalize:

qk(z) =
q̂k(z)∫∞

−∞ q̂k(z)dz
. (14)

2.3.3 Estimated Codeword and Integer Se-
quence

The check node and variable node operations are re-
peated iteratively until a stopping condition is reached.
Estimate the transmitted by codeword x̂ by first com-
puting the a posteriori message Fi(z) for the code sym-
bol xi as:

Fi(z) = e−
(yi−z)

2

2σ2

d∏
k=1

rk(z). (15)

Find x̂i as:

x̂i = arg max
z∈R

Fi(z). (16)

The estimated integer sequence b̂ is:

b̂ = 〈Hx̂〉, (17)

where 〈z〉 denotes the integer closest to z.

2.4 Gaussian Mixture Decoder
When the channel noise is Gaussian, all of the

LDLC messages can be described as a mixture of Gaus-
sian functions. From here, “Gaussians” will be used as
shorthand for “Gaussian functions”.

In this section, it is assumed that a message f(z) is
a mixture of N Gaussians,

f(z) =
N∑

i=1

ciN (z;mi, vi) , (18)

where ci ≥ 0 are the mixing coefficients with
∑N

i=1 ci =
1, and

N (z;m, v) =
1√
2πv

e−
(z−m)2

2v . (19)

In this way, the message f(z) can be described by a list
of triples of means, variances and mixing coefficients,
{(m1, v1, c1), . . . , (mN , vN , cN )}

In describing the Gaussian mixture decoder, ini-
tially assume that the input messages to a node consist
of a single Gaussian, that is N = 1.

Check node Without loss of generality, consider
check node inputs k = 1, 2, . . . , d − 1 and output

d. Each input message qk(z) is a single Gaussian
N (z;mk, vk).

The message q̃k(z) is obtained by multiplying by
hk, so q̃k(z) = N

(
z;hkmk, h

2
kvk

)
.

The message r̃d(z) is the convolution of q̃k(z), k =
1, . . . , d− 1. So:

r̃d(z) = N

(
z;

d−1∑
k=1

hkmk,

d−1∑
i=1

h2
kvk

)
. (20)

The message r̃′d(z) is r̃d(z) shifted over all possible
integers:

r̃′d(z) =
∞∑

b=−∞

N

(
z;

d−1∑
k=1

hkmk + b,

d−1∑
k=1

h2
kvk

)
.

The output message rd(z) is obtained by scaling by
−1/hd, so:

rd(z) =
∞∑

b=−∞

N

(
z;−

∑d−1
k=1 hkmk + b

hd
,

∑d−1
k=1 h

2
kvk

h2
d

)
.

Variable Node. Let the check-to-variable node mes-
sages rk(z), k = 1, . . . , d−1 be Gaussians N (z;mk, vk).
For notational convenience, let m0 = yi be the symbol
received from the channel at node i and let v0 = σ2 be
the channel variance, as in (5). The output message
qd(z), the product of these input messages, will also be
a Gaussian,

qd(z) = kdN (z;md, vd) , (21)

where,

1
vd

=
d−1∑
k=0

1
vk
, (22)

md

vd
=

d−1∑
k=0

mk

vk
(23)

and,

kd =
√

vd

(2π)d−2
∏

i vi
exp
(
− vd

2

d−2∑
i=0

d−1∑
j=i+1

(mi −mj)2

vivj

)
.

For the general case where the input consists of a
mixture of Gaussians, at either the check node or the
variable node, the output can be found by conditioning
on one element from each input mixture and comput-
ing a single output Gaussian. The mixing coefficient for
this Gaussian is the product of the input mixing coef-
ficients. Then the output is the mixture of these single
Gaussians created by conditioning all input combina-
tions.

The number of Gaussians in each mixture grows
rapidly as the iterations progress. At the variable
node, if input k consists of a mixture of Nk Gaus-
sian functions, then the output message will consist of



N1N2 · · ·Nd−1 Gaussian functions. At the check node,
even if the number of integer shifts is bounded, the
number of Gaussian functions in the mixture also grows
as O(Nd−1). A naive implementation of this Gaussian
mixture decoder is prohibitively complex. The follow-
ing section proposes a technique for approximating a
large number of Gaussians.

3 Gaussian Mixture Reduction
This section describes an algorithm which approxi-

mates a mixture of Gaussian functions with a smaller
number of Gaussian functions.

The algorithm input is a mixture of N Gaussians,
f(z), as defined in (18), given as a list of triples.
The algorithm output is a list of M triples of means,
variances and mixing coefficients, { (mm

1 , v
m
1 , c

m
1 ), . . . ,

(mm
M , vm

M , cmM ) } with
∑M

i=1 c
m
i = 1, that similarly forms

a Gaussian mixture g(z). With M ≤ N , the output
mixture should be a good approximation of the input
mixture:

f(z) ≈ g(z) =
M∑
i=1

cmi N (z;mm
i , v

m
i ) . (24)

First, a metric which describes the error due to re-
placing a two Gaussians with a single Gaussian is given.
Then, this is incorporated into a greedy search algo-
rithm which replaces N Gaussians with M Gaussians.

3.1 Approximating a Mixture of Two Gaus-
sians with a Single Gaussian

Definition The squared difference SD(p||q) between
two distributions p(z) and q(z) with support Z is de-
fined as:

SD(p||q) =
∫

z∈Z
(p(z)− q(z))2dz (25)

Lemma The squared difference SD(p||q) has the fol-
lowing properties:
• SD(p||q) ≥ 0 for any distributions p and q.
• SD(p||q) if and only if p = q.
• SD(p||q) = SD(q||p).
Lemma The squared difference between the Gaus-

sian distributions N (m1, v1) and N (m2, v2) is given by
SD(N (m1, v1),N (m2, v2)) =

1
2
√
πv1

+
1

2
√
πv2
− 2√

2π(v1 + v2)
e
− (m1−m2)2

2(s1+s2) . (26)

Lemma The squared difference between a single
Gaussian N (m, v) and a mixture of two Gaussians
c1N(m1, v1) + c2N(m2, v2), with c1 + c2 = 1, is:

1
2
√
πv

+
c21

2
√
πv1

+
c22

2
√
πv2

− 2c1√
2π(v + v1)

e
− (m−m1)2

2(v+v1) − 2c2√
2π(v + v2)

e
− (m−m2)2

2(v+v2)

+
2c1c2√

2π(v1 + v2)
e
− (m1−m2)2

2(v1+v2) . (27)

There is unfortunately no closed-form expression for
the minimal squared difference in the previous lemma.
However, minimizing the Kullback-Leibler divergence
between the single Gaussian distribution and the mix-
ture of two Gaussian distributions is tractable; it sim-
ply amounts to moment matching. Therefore, from
now we will consider the moment-matched Gaussian
approximation.

Lemma The mean m and variance v of a mixture of
two Gaussian distributions c1N (m1, v1)+c2N (m2, v2)
are given by:

m = c1m1 + c2m2 (28)
s = c1(m2

1 + v1) + c2(m2
2 + v2)

−c21m2
1 − 2c1c2m1m2 − c22m2

2. (29)

Let ti, i = 1, 2 denote the triple (mi, vi, ci), where
c1 + c2 is not necessarily one, and let the normalized
triple be ti = (mi, vi, ci/(c1 +c2)). The single Gaussian
which satisfies the property of the Lemma is denoted
as:

t = MM(t1, t2), (30)

where t = (m, v, 1), with m and v as given in (28) and
(29).

Definition The Gaussian quadratic loss GQL(p) of
a probability distribution p is defined as the squared
difference between p and the Gaussian distribution with
the same mean m and variance v as p:

GQL(p) = SD(p‖N (m, s)). (31)

Corollary The Gaussian quadratic loss of a mixture
of two Gaussian distributions,

GQL(t1, t2)=SD(c1N (m1, v1)+c2N (m2, v2)‖N (m, v)),

is obtained evaluating (27), with m and v as given in
(28) and (29).

3.2 Approximating N Gaussians with M Gaus-
sians

Here, we use the results from the previous subsec-
tion and propose an algorithm which approximates a
mixture ofN Gaussians with a mixture ofN Gaussians.

Input: list L = {t1, t2, . . . , tN} of N triples describ-
ing a Gaussian mixture, and two stopping parameters,
θ the allowable one-step error (measured by GQL) and
M , the maximum number of allowable Gaussians in the
output.
Algorithm

1. Initialize the current search list, C, with the input
list: C ← L.

2. Initialize the current error, θc, to the minimum
GQL between all pairs of Gaussians:

θc = min
ti,tj∈C,i6=j

GQL(ti, tj).



3. Initialize length of current list, M c = N .
4. While θc < θ or M c > M :

(a) Determine the pair of Gaussians (ti, tj) with
the smallest GQL:

(ti, tj) = arg min
ti,tj∈C,i6=j

GQL(ti, tj).

(b) Add the single Gaussian with the same mo-
ment as ti and tj to the list:

C ← C ∪MM(ti, tj).

(c) Delete ti and tj from list: C ← C \ {ti, tj}.
(d) Recalcuate the minimum GQL:

θc = min
ti,tj∈C,i6=j

GQL(ti, tj).

(e) Decrement the current list length: M c ←
M c − 1.

5. Algorithm output: list of triples C
Note that two conditions must be satisfied for the

algorithm to stop. That is, the one-step error may be
greater than the threshold θ if the minimum number
of Gaussians is not yet met. On the other hand, the
number of output Gaussians may be less than M , if the
one-step error is sufficiently low.

4 Gaussian-Mixture Reduction Applied

to LDLC Decoding
In this section, the Gaussian mixture reduction al-

gorithm of Section 3 is applied to the LDLC decoding
algorithm described in Section 2.4.

At the check node, observe that the message r̃k(z),
as given in (10), can be computed recursively with
ak(z) and bk(z) defined as:

a1(z) = q̃1(z), (32)
ak(z) = ak−1(z) ∗ q̃k(z), k = 2 . . . , d− 1, (33)

and,

bd(z) = q̃d(z), (34)
bk(z) = bk+1(z) ∗ q̃k(z), k = d− 1, . . . , 2. (35)

Then r̃k(z) is found using a variation on the forward-
backward algorithm as:

r̃1(z) = b2(z), (36)
r̃k(z) = ak−1(z) ∗ bk+1(z),

k = 2, 3, . . . , d− 1 and, (37)
r̃d(z) = ad−1(z). (38)

The Gaussian mixture reduction algorithm is ap-
plied after the computation (33) and (35), for each k.
For example if ak(z) is the mixture produced by apply-
ing the Gaussian mixture reduction algorithm to ak(z),

ak(z) = GMR(ak(z)), (39)

then the forward recursion of the check node function
may be stated as:

a1(z) = q̃1(z), (40)
For k = 2, 3, . . . , d− 1:

ak(z) = ak−1(z) ∗ q̃k(z), (41)
ak(z) = GMR(ak(z)), (42)

and similarly for the backward recursion.
Similarly at the variable node, the product (13) can

be decomposed into a forward and backward recursion.
In this case as well, the Gaussian mixture reduction
algorithm is applied after each step of the recursion.

In the Gaussian mixture reduction algorithm, it is
desirable to repeat step 4 as long as the current re-
duced Gaussian function g(z) (represented by C) re-
mains a good approximation of the input function f(z)
(represented by L). In practice, it was found that us-
ing a “local” stopping condition of a threshold on the
one-step error was sufficient to give a good “global” ap-
proximation f(z) ≈ g(z). In many cases, f(z) was well-
approximated by a single Gaussian, which was found
by the proposed algorithm.

However, using an error threshold alone does not
always restrict the number of output Gaussians, an im-
portant goal of the mixture reduction algorithm. Thus,
a second stopping condition, which requires that the
number of Gaussians be lower than some fixed thresh-
old, is also enforced. Thus, the Gaussian combining
may continue while M c > M , even if the one-step er-
ror threshold has been exceeded. In practice, this did
not appear to have a detrimental result for a wide range
of symbol-error rates.

Simulation results comparing the proposed decoder
with the quantized decoder [7] are shown in Fig. 1.
A LDLC with n = 100, d = 5 was used. The symbol
error rate of a cubic lattice used for transmission is la-
beled “Uncoded.” The horizontal axis is the difference
between the channel noise variance and the Poltyrev
capacity, 1/2πe, in dB.

For the parameter selection θ = 0.5, 1.0, and M ≤
6, it was found that the proposed algorithm performed
with a slight performance loss when the probability of
symbol error was greater than 10−5. For example, with
θ = 0.5 and M = 6, the loss at a symbol error rate
of 10−5 is less than 0.1 dB. For lower symbol error
rates, an error floor appears. It may be helpful to con-
sider this error floor as analogous to quantization error
floors which appear in the decoding of low-density par-
ity check codes when insufficient quantization levels are
used.

Complexity In the Gaussian mixture reduction al-
gorithm, the primary complexity is computing the ini-
tial error, which requires computing the GQL between
N pairs, a complexity of O(N2). In the Gaussian
mixture decoder, the primary complexity the pairwise-
computation of the outputs, which is O(M2). These
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Figure 1: Symbol error rate of proposed Gaussian mixture (GM) decoder vs. quantized decoder for n = 100, d = 5.

numbers N and M are random variables which depend
upon the nature of the messages, and the effective-
ness of the Gaussian mixture reduction algorithm. In
the simulations the maximum value of M was 6, and
N ≤ kM2, where k is the constant number of inte-
ger shifts, k = 3 was used in the simulations. On the
other hand, the complexity of the quantized algorithm
is dominated by a discrete Fourier transform of size
1/∆ where ∆ is the quantization bin width, ∆ = 1/128
was used in the simulations. It is difficult to directly
make comparisons of the computational complexity of
the two algorithms.

The memory required for the proposed algorithm,
however, is significantly superior. The proposed al-
gorithm requires storage of 3M (for the mean, vari-
ance and mixing coefficient), for each message, where
M ≤ 6. The quantized algorithm, however used 1024
quantization points for each message.

5 Conclusion

LDLC codes can be used for communication over
unconstrained power channels. In this paper, we pro-
posed a new LDLC decoding algorithm which exploits
the Gaussian nature of the decoder messages. The
core of the algorithm is a Gaussian mixture reduction
method, which approximates a message by a smaller
number of Gaussians. As a result, the LDLC algo-
rithm which tracks the means, variances and mixing
coefficients of the component Gaussians, rather than
using quantized messages, was tractable. It was shown
by computer simulation that this algorithm performs
nearly as well as the quantized algorithm, when the
dimension is n = 100, and the probability of symbol
error is greater than 10−5.
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