
Computation of Moments in the Trellis
Axel Heim and Vladimir Sidorenko

Institute of Telecommunications and Applied Information Theory
Ulm University

89081 Ulm, Germany
Email: {axel.heim, vladimir.sidorenko}@uni-ulm.de

Ulrich Sorger
Computer Science and Communications

University of Luxembourg
Luxembourg

Email: ulrich.sorger@uni.lu

Abstract— Decisions on sources with memory transmitted over
independent channels can be taken by employing trellis calcula-
tions. In this paper, it is shown that for a certain class of functions
their moments can be computed in the trellis, too. This is done
by generalizing the forward/backward recursion known from the
BCJR algorithm [1]. In analogy to the symbol probabilities, by
introducing a constraint at a certain depth in the trellis we obtain
symbol moments. These moments are required for an efficient
implementation of the discriminated belief propagation algorithm
in [2], and can furthermore be utilized to compute conditional
entropies in the trellis.

The moment computation algorithm has the same asymptotic
complexity as the BCJR algorithm. It is applicable to any
commutative semi-ring, thus also providing a generalization of
the Viterbi algorithm [3].

I. INTRODUCTION

Trellises were introduced into the coding theory literature
by Forney [4] as a means of describing the Viterbi algorithm
for decoding convolutional codes. Bahl et al. [1] showed that
block codes can also be described by a trellis, and Wolf
[5] proposed the use of the Viterbi algorithm for trellis-
based soft-decision decoding of block codes. In [6], McEliece
investigated the complexity of a generalized Viterbi algorithm
which allows efficient computation of flows in a code trellis.
These results were further generalized in [7] and [8]. However,
the calculation of flows does not fully exploit the capabilities
of the trellis (representation): For a certain set of functions it
is possible to calculate the moments of these functions in the
trellis. These functions can be scalar or vectorial, as long as
they are linear and fulfill a separability criterion.

For iterative decoding of coupled codes, the popular sum-
product algorithm is used to calculate the symbol probabilities
of the component codes. These probabilities are exchanged
between component decoders until a stable solution is found.
This iterative algorithm works very well for long ‘turbo’, low-
density parity check (LDPC) and some other codes, obtained
by concatenation of simple component codes in a special way.
However, performance becomes poor when utilizing short or
some good component codes.

Recently, Sorger [2] proposed a generalized decoder dis-
criminating code words c by their correlation crT or cwT

with the received word r or a ‘believed’ word w, respectively.
Not only symbol probabilities are considered, but also the dis-
tribution of these probabilities over the correlation value. An

cr
T

P
(c

r
T
,
c i
|r

)

ci = +1

ci = −1

0 50 100
0

0.01

0.02

0.03

0.04

0.05

Fig. 1. Symbol Distributions of Correlation crT

efficient algorithm is introduced using the first two moments
to approximate these distributions.

In this paper we present an algorithm to compute such
moments in the trellis.

Example 1: Consider Figure 1 which shows two distribu-
tions of the correlation function crT , where c is a code word
and r is the noisy version of a code word č ∈ C after
transmission over a memory-less binary symmetric channel
(BSC). The curves show the distributions for c ∈ Ci(+1) and
c ∈ Ci(−1), respectively, where Ci(x) := {c ∈ C : ci = x}
denotes the sub-code of C for which the symbol ci at a given
position i of each code word equals x ∈ {−1,+1}. The
integrals over the distributions equal the symbol probabilities
P (ci = x|r). However, the probability ratio

P (crT , ci = +1|r)
P (crT , ci = −1|r)

(1)

varies significantly over crT which can be exploited when
knowledge on the correlation črT with the transmitted code
word is available.

The distributions in Figure 1 can be approximated with their
moments

EC

[(
crT

)m
∣∣∣ r, ci

]
:=

∑
c∈C

(
crT

)m · P (c|r, ci) (2)

up to a certain order m, where EC [.] is the expectation over
all code words c ∈ C. The distributions will be GAUSSian for
sufficiently long codes which can be understood by the law of
large numbers. Hence we can expect the first two moments to
suffice for a good approximation.

We present generalizations of the methods in [6] which enable
us to compute expressions like EC

[(
cwT

)m |r, ci

]
for some

word w, whereof (2) is a special case. The complexity of the
algorithm is of the same order as the one of the classically
used BCJR algorithm.

The remainder of this paper is structured as follows. The
next section contains a review of common terminology in the
context of trellises. This is extended in Section III, which
deals with the computation of moments in a more general
frame. In Section IV we will return to the original problem
by transferring the results of Section III to linear block codes
and calculate the conditional entropy in the trellis.

II. DEFINITIONS

A trellis T = (V, E) of rank n is a finite-directed graph1

with vertex set V and edge set E, in which every vertex is
assigned a depth in the range {0, 1, . . . , n}. Each edge is
connecting a vertex at depth i − 1 to one at depth i, for
some i ∈ {1, 2, . . . , n}. Multiple edges between vertices are
allowed. The set of vertices at depth i is denoted by Vi, so
that V =

⋃n
i=0 Vi. For v ∈ Vi we write depth(v) = i. The set

of edges connecting vertices at depth i− 1 to those at depth i
is denoted Ei−1,i, so that E =

⋃n
i=1 Ei−1,i. There is only one

vertex at depth 0, called A, and only one at depth n, called
B. If e ∈ E is a directed edge connecting the vertices u and
v, which we denote by e : u → v, we call u the initial vertex,
and v the final vertex of e and write init(e) = u, fin(e) = v.
We denote the number of edges leaving a vertex v by ρ+(v),
and the number of edges entering a vertex v by ρ−(v), i.e.,

ρ+(v) = |{e : init(e) = v}|
ρ−(v) = |{e : fin(e) = v}|.

If u and v are vertices, a path P of length L from u to v is a
sequence of L edges: P = e1e2 · · · eL, such that init(e1) = u,
fin(eL) = v, and fin(ei) = init(ei+1), for i = 1, 2, . . . , L− 1.
If P is such a path, we sometimes write P : u → v for short,
as well as init(P) = init(e1) and fin(P) = fin(eL). We denote
the set of paths from vertices at depth i to vertices at depth j
by Ei,j . We assume that for every vertex v 6= A,B, there is
at least one path from A to v, and at least one path from v to
B.

Example 2 (Trellis): Figure 2 shows a trellis of rank n = 4
with edge set E = {a, b, c, d, e, f, g, h, i, j, k, l} and vertex
set V = {A, 1, 2, 3, 4, 5, 6, B}. There are eight paths P : A →
B from A to B. There is ρ−(1) = 1 edge entering (edge a)
and ρ+(1) = 2 edges (edges c and d) leaving vertex v = 1.

We assume each edge in the trellis is labeled. Let T = (V, E)
be a trellis of rank n, such that each edge e ∈ E is labeled

1This paragraph is an excerpt from [6] with minor modifications.

a c

b

d

e

f

g

h

i

j

k

l

A B
1

2

3

4

5

6

i = 0 i = 1 i = 2 i = 3

depth

i = 4 = n

Fig. 2. Trellis of rank n = 4 with vertex set V = {A, 1, 2, 3, 4, 5, 6, B}
and edge set E = {a, b, c, d, e, f, g, h, i, j, k, l}

with a real valued number λ(e) ∈ R. We now define the label
of a path, and the flow between two vertices.

Definition 1 (Path Labels): The label λ(P) of a path P =
e1e2 · · · eL is defined as the product λ(P) = λ(e1) · λ(e2) ·
. . . · λ(eL) of the labels of all edges in the path. (Note that
the subscript indicates the sequence number rather than the
edge’s depth.)

Definition 2 (Flow): If u and v are vertices in a labeled
trellis, we define the flow η(u, v) from u to v to be the sum
of the labels on all paths from u to v, i.e.,

η(u, v) =
∑

P:u→v

λ(P) .

For simplicity, we only consider operations on the set of real
numbers with ordinary addition and multiplication. However,
the algorithm can be transferred to any commutative semi-ring,
thus leading to a generalization of the Viterbi algorithm [3].

Example 3: We continue Example 2. The trellis depicted
in Figure 2 is the trellis of the (4, 3, 2) single parity check
code. In the BCJR algorithm, the edge labels λ(e) are the
probabilities of the corresponding transitions in the channel.

III. TRELLIS-BASED COMPUTATIONS

In this section we consider distributions of the type

D : q 7→ D(q) =
∑

P:A→B
f(P)=q

λ (P)

for special functions f , i.e., q is mapped to the sum of the
labels of all paths P with f(P) = q. We present an algorithm
to calculate the moments

θ̄(m)(T) :=
∑

P (f(P))m · λ(P)∑
P λ(P)

, m = 0, 1, . . .

in the trellis T , and - by introducing a constraint on the paths
- the symbol moments

Ω̄(m)
i (T, x) :=

∑
P:A→B
c(ei)=x

(f(P))m · λ(P)

∑
P:A→B
c(ei)=x

λ(P)

of such distributions in the trellis. We show that the complexity
of the moment calculation algorithm is O(|E|), where |E| is
the number of edges in the trellis.

To each edge e ∈ E of the trellis T we introduce a second
label c(e) ∈ R, which we will refer to as the c-label. For
distinction, we will call λ(e) the λ-label.

Example 4: We continue Example 3. Solid lines correspond
to the c-label c(e) = 1, dashed lines correspond to c(e) = −1
(bipolar binary notation). E.g., the path P = adik has the
c-label c(P) = [+1 − 1 − 1 + 1] which is a code word.

Let
gi (c(e)) : x 7→ y; x, y ∈ R

be a common function of c(e) for all edges e ∈ Ei−1,i. Further,
let

f (c(P)) = f (c(e1), c(e2), . . . , c(eL)) : c 7→ y; c(ei), y ∈ R

be a function of the c-labels of the edges of a path P with
length L. The bold letter indicates that c is a vector. For
simplicity, in the following we will abbreviate gi (c(e)) and
f (c(P)) by gi(e) and f(P), respectively. The functions f(P)
have to fulfill the linearity criterion

f(P) = f(e1e2 · · · en) = g1(e1) + g2(e2) + · · ·+ gn(en) (3)

for all paths P : A → B.

Definition 3 (Forward Numerator): We define the m-th for-
ward numerator of a function f at vertex v of a trellis T as

α(m)(v) :=
∑

P:A→v

(f(P))m · λ(P) (4)

with initial values

α(m)(A) :=
{

1 : m = 0
0 : m > 0 .

Theorem 1 (Forward Recursion): The m-th forward nu-
merator α(m)(v) of a vertex v ∈ Vi on depth i can be
recursively calculated in a trellis T by

α(m)(v) =
∑

e:fin(e)=v

λ(e) ·
m∑

l=0

(
m

l

)
(gi(e))

l · α(m−l) (init(e)) .

(5)
Proof: The proof is by induction on depth(v). For

depth(v) = 1, it follows from the definition of a trellis that
all paths from A to v must consist of just one edge e, with
init(e) = A and fin(e) = v. Thus the true value of α(m)(v)
is the sum of the λ-labels on all edges e joining A to v,
weighted by (g1(e))

m. On the other hand, the value assigned
to α(m)(v) in (5) is (because of the initialization α(0)(A) = 1,
α(m)(A) = 0 for m > 0)

α(m)(v) =
∑

e:A→v

λ(e) · (g1(e))
m · 1

which is, as required, the sum of the labels on all edges e
joining A to v, weighted by (g1(e))

m. Thus the algorithm
works correctly for all vertices v with depth(v) = 1 and any
m ≥ 0.

Assuming now that the assertion is true for all vertices at
depth i or less and all m ≤ M , a vertex v at depth i + 1 is

considered. Inserting the induction hypothesis in (4) into (5)
we have

α(m)(v) =
X

e:fin(e)=v

λ(e) ·
mX

l=0

m

l

!
(gi(e))

l ·
X

P:A→init(e)

λ(P) · (f(P))m−l

=
X

e:fin(e)=v

X
P:A→init(e)

λ(e)·λ(P)·
mX

l=0

m

l

!
(gi(e))

l·(f(P))m−l,

and using the binomial theorem we obtain

α(m)(v) =
∑

e:fin(e)=v

∑
P:A→init(e)

λ(Pe) · (f(P) + gi(e))
m

. (6)

But every path from A to v must be of the form Pe, where P
is a path from A to a vertex u with depth(u) = i, init(e) = u
and fin(e) = v. Thus by (6) and (3), α(m)(v) is correctly
calculated by the algorithm.

Remark 1 (Flow): α(0)(v) in (4) is the flow η(A, v) from
A to v (cf. Definition 2) as it is calculated during the forward
recursion of the BCJR algorithm.

Theorem 2 (Complexity): The computation of the forward
numerators up to order M for all vertices in a trellis requires
O(|E|) arithmetic operations, i.e., multiplications and addi-
tions.

Proof: The sum over l in (5) requires m additions and
(m + 1) · 2 multiplications (disregarding the computation of
(gi(e))

l), the sum over e requires (ρ−(v)− 1) + ρ−(v) · m
additions and ρ−(v)·(1 + (m + 1) · 2) multiplications. Hence,
for a vertex v ∈ Vi,

MX
m=0

`
ρ−(v) · (m + 1) − 1

´
= ρ−(v)·

„
1

2
M2 +

3

2
M + 1

«
−(M+1)

additions and
M∑

m=0

ρ−(v) · (2m + 3) = ρ−(v) ·
(
M2 + 4M + 3

)
multiplications are necessary. Summing over all vertices ex-
cept A, and with |E| =

∑n
i=1

∑
v∈Vi

ρ−(v) the requirement
of additions and multiplications is

add =
(

1
2
M2 +

3
2
M + 1

)
· |E| − (M + 1) · (|V| − 1)

mult = (M2 + 4M + 3) · |E|.

With |V| ≥ 1 the total number of operations is thus bounded
above by

(
3
2M2 + 11

2 M + 4
)
· |E|.

In analogy to the forward numerator in Definition 3 we can
also define a backward numerator.

Definition 4 (Backward Numerator): The m-th backward
numerator of a vertex v ∈ Vi is defined as

β(m)(v) :=
∑

P:v→B

(f(P))m · λ(P)

with initial values

β(m)(B) =
{

1 : m = 0
0 : m > 0 .

Theorem 3 (Backward Recursion): The m-th backward nu-
merator β(m)(v) of a vertex v ∈ Vi can be calculated in a
trellis T by

β(m)(v) =
∑

e:init(e)=v

λ(e)·
m∑

l=0

(
m

l

)
(gi+1(e))

l ·β(m−l) (fin(e)) .

Proof: The proof is analog to the proof of Theorem 1.

It obviously holds that α(m)(B) = β(m)(A) =: θ(m)(T),
providing the m-th moment

θ̄(m)(T) :=
θ(m)(T)
θ(0)(T)

=

∑
P:A→B

(f(P))m · λ(P)∑
P:A→B

λ(P)

of the distribution of function f given T .
In analogy to the BCJR algorithm [1] for calculating symbol

probabilities, we next consider the calculation of moments of
f introducing a constraint on the value of the c-labels at a
certain depth i in the trellis. I.e., the moments are calculated
in a sub-trellis of T .

Definition 5 (Symbol Moment): We define the m-th symbol
moment Ω̄(m)

i (T, x) at depth i of a trellis T as

Ω̄(m)
i (T, x) :=

∑
P:A→B
ci=x

(f(P))m · λ(P)

∑
P:A→B
ci=x

λ(P)

where ci = c(ei) and ei ∈ Ei−1,i is the i-th edge of path P.

Theorem 4: The m-th symbol moment can be calculated by

Ω̄(m)
i (T, x) =

Ω(m)
i (T, x)

Ω(0)
i (T, x)

with

Ω(m)
i (T, x) =

∑
e∈Ei−1,i:

c(e)=x

λ(e) ·
m∑

l=0

(
m

l

)
β(m−l)(fin(e))·

·
l∑

k=0

(
l

k

)
(gi(e))

k · α(l−k)(init(e)). (7)

Proof: Let PH and PT denote the head and tail parts of
the paths P : A → B through the trellis T , with an edge e
in between, i.e., P = PHePT with init(PH) = A, fin(PH) =
init(e), fin(e) = init(PT) and fin(PT) = B, for a given depth
i and e ∈ Ei−1,i. Then we can write

Ω(m)
i (T, x) =

∑
P:A→B
ci=x

(f(P))m · λ(P)

=
∑

e∈Ei−1,i:
c(e)=x

∑
PH :A→
init(e)

∑
PT :fin(e)
→B

(f(PH)+gi(e)+f(PT))m ·

· λ (PH e PT) .

Applying the binomial theorem twice and separating the λ-
labels we obtain

Ω(m)
i (T, x) =

∑
e∈Ei−1,i:

c(e)=x

λ(e)·
m∑

l=0

(
m

l

)∑
PT :

fin(e)→B

(f(PT))m−l ·λ(PT)·

·
l∑

k=0

(
l

k

)
(gi(e))

k ·
∑
PH :

A→init(e)

(f(PH))l−k · λ(PH),

and using the definitions of forward and backward numerators
finally yields the assertion of the theorem.

Remark 2 (Forward/Backward Moments): For numeric rea-
sons it may be advantageous to directly compute the forward
and backward moments

ᾱ(m)(v) :=
α(m)(v)
α(0)(v)

and β̄(m)(v) :=
β(m)(v)
β(0)(v)

,

respectively, and to calculate and carry the 0-th numerators
(flows) in the logarithmic domain.

Remark 3: We cannot only determine the moments of a
trellis or sub-trellis, but also of a single edge.

Remark 4: The symbol distribution for two sub-trellises of
the [7 5]oct convolutional code, namely the sub-codes with the
i-th code bit ci = +1 and ci = −1, respectively, is given in
Example 1. The curves obtained by GAUSSian approximation
almost coincide with the ones plotted in Figure 1.

Remark 5: It is straight forward to extend the proposed
algorithm to the calculation of joint moments of two or more
functions.

IV. APPLICATIONS

We will now apply the results of Section III to linear block
codes. We show how to compute the moments

EC [(H(c|w))m |r, ci = x] :=
∑
c∈C

(H(c|w))m
P (c|r, ci = x)

(8)
of the distribution

D : q = H(c|w) 7→ P (q|r, ci = x) =
∑
c∈C:

H(c|w)=q

P (c|r, ci = x)

over all code words c ∈ C given a received word r and
the i-th code bit being ci = x ∈ {−1, 1}, where P (c|r) is
the conditional probability of c given r. However, both for
soft decision (AWGN channel) and hard decision (binary sym-
metric channel) with equiprobable code words the conditional
uncertainty

H(c|w) = K1 + K2 · cwT (9)

of c given a word w linearly relates to the correlation with
constants K1 and K2. Thus we can equivalently compute the
moments

EC

[(
cwT

)m |r, ci = x
]

=
∑
c∈C

(
cwT

)m · P (c|r, ci = x)

(10)

of cwT in the trellis and afterwards apply the binomial
theorem to obtain (8).

These moments are required, e.g., for the discriminated
belief propagation algorithm in [2]. As a special case we can
calculate the conditional mean uncertainty or entropy

H(C|r) =
∑
c∈C

H(c|r) · P (c|r)

of a code or sub-code given r.
Consider a binary linear block code C of length n which

is representable in a trellis, e.g., a terminated convolutional
code. Let the c-labels c(e) = ci ∈ {±1} be the bipolar
representation of the code bit labeling edge e ∈ Ei−1,i. To
each path P : A → B it belongs a sequence c(P) of n c-labels
representing a code word c ∈ C. Let r = [r1r2 · · · rn], ri ∈ R,
be the noisy version of a code word c after transmission over
a memory-less channel. Let the λ-label of a path P be the
conditional probability of the received word r given the code
word c, i.e., λ(P) = P (r|c). Let further the function f of
the paths’ c-labels, i.e., the function of the code words, be the
correlation (inner product) of w and c,

f(P) = f(c(P)) = cwT =
n∑

i=1

ciwi .

Hence, gi(ei) = ciwi and the separability criterion (3) is
fulfilled. Each path in the trellis of C uniquely maps to a code
word, and we can apply the theorems of Section III replacing∑

P by
∑

c. Applying BAYES’ rule to (10),

EC

[(
cwT

)m |r, ci = x
]

=

∑
c∈C:ci=x

(
cwT

)m
P (r|c)∑

c∈C:ci=x

P (r|c)
, (11)

and comparing with Definition 5 we observe that Theorems 1
and 3 hold, and hence these moments can be calculated in the
trellis according to Theorem 4 as the symbol moments

EC

[(
cwT

)m |r, ci = x
]

= Ω̄(m)
i (x).

Analogously, when omitting the code bit constraint ci = x,
the moments are given by

EC

[(
cwT

)m |r
]

=
∑
c∈C

(
cwT

)m · P (c|r) = θ̄(m)(T).

For w = r, m = 1 and gi(e) = ciri we can thus calculate
the conditional entropies

H(C|r) =
∑
c∈C

H(c|r) · P (c|r) = K1 + K2 · θ̄(1)(T)

and

H(Ci(x)|r) =
∑

c∈C:ci=x

H(c|r) · P (c|r) = K1 + K2 · Ω̄(1)
i (x)

of the code C and the sub-code Ci(x) = {c ∈ C : ci = x}
given r, respectively. While H(C|r) can also be calculated
with the classical BCJR algorithm as∑
c∈C

crT · P (c|r) =
n∑

i=1

∑
c∈C

ciri · P (c|r)

=
n∑

i=1

ri ·

∑
c∈C:
ci=1

P (c|r)−
∑
c∈C:

ci=−1

P (c|r)

 ,

this does not hold for the conditional entropy of Ci(x).

V. CONCLUSIONS

A trellis represents a general distribution which can be
marginalized, e.g., with respect to edge labels. An algorithm
for the computation of moments in the trellis was presented. It
was derived by generalizing the forward/backward recursion
known from the BCJR algorithm. The results were transferred
to the concrete problem of computing the moments of the
correlation between a block code and some given word. The
algorithm is a requirement for efficient implementation of the
discriminated belief propagation algorithm in [2]. It can also
be used to calculate the conditional entropy of a code or sub-
code. The asymptotic complexity of the algorithm is the same
as for the BCJR algorithm.

REFERENCES

[1] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol. 20,
pp. 284 – 287, March 1974.

[2] U. Sorger, “Discriminated belief propagation,” October 2007.
http://arxiv.org/abs/0710.5501.

[3] A. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” IEEE Trans. Inf. Theory, vol. 13, pp. 260
– 269, April 1967.

[4] G. Forney, Jr., “Review of random tree codes,” Appendix A of Final
Report on Contract NAS2-3637, NASA CR73176, NASA Ames Res.
Ctr., CA, Dec. 1967.

[5] J. Wolf, “Efficient maximum-likelihood decoding of linear block codes
using a trellis,” IEEE Trans. Inf. Theory, vol. 24, pp. 76–80, Jan. 1978.

[6] R. McEliece, “On the BCJR trellis for linear block codes,” IEEE Trans.
Inf. Theory, vol. 42, pp. 1072 – 1092, July 1996.

[7] S. Aji and R. McEliece, “The generalized distributive law,” IEEE Trans.
Inf. Theory, vol. 46, pp. 325–343, March 2000.

[8] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Trans. Inf. Theory, vol. 47, pp. 498–519, Feb.
2001.

