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Abstract—We provide a natural formulation of information  own rate, have an incentive to implement such a strategy?
theoretic games on interference channels. We analyze this. gameWe study such a case, where each user individually chooses
on a class of det_erministic intt_arference channels re_cently intro- 5 encoding/decoding scheme in order to maximize his own
duced to approximate Gaussian channels in the interference- . . .
limited regime. Our main result is a complete and simple transmission ra.te. The two users can then be_ viewed as glayin
characterization of the subset of the interference channel cagzity @ Non-cooperative game. We want to determine the set of Nash
region that can be achieved as Nash equilibria. We show that for equilibria (NE) of this game and compare the performance at
all parameter value; of the int.er.feren.ce channel, there are alway/ these equilibria to the (cooperative) capacity region.a@ye
Nash _equilib_ria which are efficient, i.e. on the boundary of the the rates at any NE has to be in the capacity region, but the
capacity region. L . . . .

guestion is how many of the points in the capacity region are
Nash equilibria. Our focus is on a “one-shot” game model in

Interference is a central phenomenon in both wireless andiich each player has full information, i.e. both playerswkn
wireline communication. The canonical information theimre all of the channel gains, and the actions chosen by eachrplaye
model for studying this phenomenon is the two-user Gaussias well as their pay-off function.
interference channel, where two point-to-point communica Other game theoretic approaches for the Gaussian inter-
tion links interfere with each other through cross-talkclEa ference channel have been studied before [5], [6]. However,
transmitter has an independent message intended onlydor titere are two key assumptions in these works: 1) the class of
corresponding receiver. The capacity region of this chikisne encoding strategies are constrained to use random Gaussian
the set of all simultaneously achievable rate paRs, R2) in  codebooks; 2) the decoders are restricted to treat thefénter
the two interfering links. This characterizes the fundatakn ence as Gaussian noise and are hence sub-optimal. Because
tradeoff between the performance achievable on the twe linkf these restrictions, the formulation in these works are no
in the face of interference. information-theoretic in nature.

Though there has been an extensive literature on this chanin this paper, we make two contributions. First, we give
nel, its capacity region is still unknown. Recently theres haan information theoretic formulation of games on general
been some progress in this direction. In [1], it is shown thaiterference channels, where the users are allowed to use
a very simple version of a scheme due to Han and Kobayasny encoding and decoding strategies. Second, we take an
[2] results in an achievable region that is within one bihtermediate step toward the goal of solving this game fer th
of the capacity region for all values of channel parameterGaussian interference channel, by analyzing the correspgon
This result is particularly relevant in the high SNR regimegroblem on the two-user deterministic interference chhnne
where the noise is small and the achievable rates are hiflom [3]. Our main result is a simple characterization of
Furthermore, it is shown in [3] that the high SNR behavior ahe set of all rates achievable as NE inside the deterministi
the two-user Gaussian interference channel is in fact cegptuchannel’s capacity region. We also provide explicit coding
by adeterministicinterference channel, for which the capacitgchemes that achieve each rate pair as a NE. Somewhat
region can be computed exactly. (This type of deterministiurprisingly, we find that in all cases, there are always Nash
model was first proposed in [4] for Gaussian relay networkssjuilibria that areefficient i.e. they lie on the maximum sum-

Unlike the classic strategy of treating interference asgsauate boundary of the capacity region. In particular, forroiels
sian noise, information theoretic optimal or near-optimatith symmetrical channel gains, the symmetric rate point on
strategies require coordination between the two users. Fbe capacity region boundary is always a NE.
example, the Han-Kobayashi scheme requires the users to
split their information into two streams, a common stream
and a private stream. The common stream is encoded sdhet us now formally define the communication situation
that it can be decoded at the other user's receiver and feo general interference channels. Communication starts a
reduce the interference seen by that user. A natural questione 0. User ¢ communicates by coding over blocks of
is: would selfish users, interested only in maximizing thelength N; symbols,i = 1,2. Transmitteri sends on block
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k information bitsbz(.'f),...,bfgi by transmitting a codeword and userj does not change her strategy, then usererror
denoted byx™ = [x{¥(1),...,x®(N;)]. Al the informa- Probability must be greater than Similarly, a strategy pair
tion bits are equally probable and independent of each .othi: s3) is ann-Nash equilibrium (;-NE) of an e-game if

Receiveri observes on each block an output sequence Neither user can unilaterally deviate and improve their-@ihy

y(k) _ [y(k>(1)7 o ,y(k)(N,-)] through the interference chan-Py more tham, i.e. if for each uset, there is no other strategy

nel, which specifies a stochastic mapping from the inpgit SUch thatr(s;, s7) > mi(s;, s7) +n. Note that when a user
sequences of user 1 and 2 to the output sequences of aselr deviates, it does not care about the reliability of the othsar
2. Given the observed sequences up to b|chy(m>}k ) but only its own reliability. So in the above definitiogs;, s7)

* 7 m=11

receiveri generates a gueds!’ for each information bit. '° (r;gt neces§arllg1t;e)-rel|aplte. o of the interf
Without loss of generality, we assume that this is done vi |ver|1 f"lmt/; = I, € Cafp?ﬁ' y retglof I? te inter er}e{nce
maximum-likelihood decoding on each bit. channel is the closure of the set of all rate paif?, Ry)

. L L such that for every € (0,€), there exists g1 — ¢)-reliable
Note that this communication scenario is more general thg{}ategy pais,, 5») that achieves the rate paiRy, Ry). The

the one usually used in multiuser information theory, as e L . : .
. ash equilibrium regio®ng of the interference channel is the
allow the two users to code over different block lengths.FSuc .
osure of the set of rate paif&;, R2) such that for every) >

P . cl
generality is necessary here, since even though the. tws u e’ there exists & > 0 (dependent om) so that ife € (0, ),
may agreea priori on a common block length, a selfish use . . : .

. . : here exists 41 —¢)-reliable strategy paifs;, s2) that achieves
may unilaterally decide to choose a different block leng . .

) . he rate-pair( R, R2) and is an-NE. Clearly,Cxg C C. The

during the actual communication process. . L
rest of the paper is devoted to derividgg.

A strategys; of useri is defined by its message enc_oding, First, we make a few comments about the definitiogof..
which we assume to be the same on every block and mvolvcﬁ.e parametet is introduced so thatl — ¢)-reliable strategy

« the number of information bit€; and the block length Pairs need only exist for “small enough” values ©fin the

N; of the codewords, definition of C this is not needed, i.e. the region is equally
« the codebook’; employed by transmitter; well defined by requiring the given conditions to hold for any
. the encoderf; : {1,...,2L1} x Q; — C;, that maps on € > 0 (since, clearly if a pair of strategies afe— ¢)-reliable,

each blockk the messagenﬁ’” — (bz(-lf)7---b§kL).) to a they are alsq(1 — é)-reliable for allé > ¢). However, when

. K k k defining Cnxg, this condition is important. In particular a pair
transmitted codeworat;"” = f;(m;" (")) € C;, of stratgegies can be apNE for arrl)e—game, bEt not am;—NIg

+ the rate of the codelf;(s;) = Li/Ni. for an é-game foré > ¢, since increasing enlarges the set of

A strategys; of userl ands, of user2 jointly determines possible deviations an agent may make.
the probabilities of errop!" := A POY #60)), i = Next, we turn to our use of-NE. A more natural approach
1,2. Note that if the two users use different block lengths, thgould be to defineCxr to be the closure of the rate pairs
error probability could vary from block to block even thougf(Rl,RQ) such that for any small enough, that there exists a
each user uses the same encoding for all the blocks. (1 — €)-reliable strategy paifs;, s2) which achieves the rate-

The encoder of each transmittemay employ a stochastic pair (R, R;) and is aNE of a e-game. The difficulty with
mapping from the message to the transmitted codewostlis is that to determine such a NE requires one to find a
wz(k) € ), represents the randomness in that mapping. [articular scheme that achieves the optimal rate for a given
assume that this randomness is independent between the éwor probability. Finding such a scheme is extremely diffic
transmitters and across different blocks and is only knotvn @and in general an open problenBy introducing the slack,
the respective transmitter and not at any of the receivers. these difficulties are removed.

For a given error probability threshold> 0, we define an  Finally, we comment on the use of different block lengths.
e-interference channel game as follows. Each usehooses It can argued that if there is @ — ¢)-reliable strategy pair
a strategys;, ¢ = 1,2, and receives a pay-off of;(s1,s2) = (s1,s2) that achieves a rate pdiR;, R>) using codes of block
R(s;) if pgk)(sl,SQ) < e, for all k; otherwise,r;(s1,s2) = 0. lengths Ny, Ny, then there exists @l — ¢) strategy pair that
In other words, a user’s pay-off is equal to the rate of theecodchieves the same rate pair but with each user using the same
provided that the probability of error is no greater thamA  block length. This follows by considering using “super¢ks”
strategy paif(s, s2) is defined to be1 — ¢)-reliable provided of length N, where NV is the least common multiple oV,
that they result in an error probability? (s;, s2) of less than and N,. Over these super-blocks the users can be viewed as
e fori=1,2 and all k. using two equal-length codes. The error probabilitiesndei

For ane-game, a strategy pafs}, s3) is aNash equilibrium the average bit error probabilities now across longer tdpck
(NE) if neither user can unilaterally deviate and improwveith remain less thaa. This means that in computing the capacity
pay-off, i.e. if for each usei = 1, 2, there is no other strategyregionC, we can without loss of generality assume both users
s; such that m;(s;,s%) > m(s},s%). If useri attempts to

7 1797 2 . . . .
. . . - . In the game theoretic literature, this is often referred toaas:-Nash
transmit at a higher rate than what he is receiving in a NE iiprium or simply ane-equilibrium for a game [7, page 143,

SMoreover, it is not even clear if there exists such a scheraeaischeme
1we use the convention thatalways denotes the other user fram that achieves the supremum of the rates oveil all e reliable schemes.
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Fig. 1. The deterministic model for the point-to-point Gaasschannel.
Each bit of the input occupies a signal level. Bits of lowagndficance are — —

lost due to noise. Fig. 2. At left is a deterministic interference channel. Therencompact
figure at right shows only the signals as observed at theversei

use the same block lengths. Likewise, in-AlE, we can make
this assumption (although each user is allowed to deviatgyusthe noise floor truncated. The observed signal at each exceiv
a strategy of a different block length). is the modulo 2 sum of the elements on each level.

IIl. DETERMINISTIC CHANNEL MODEL IV. MAIN RESULTS

Let us now focus on a specific interference channel model:To begin, we give the capacity regioé, of our two-user
a deterministic channel model analogous to the Gaussi@terministic interference channel. This region is given b
channel, introduced in [4]. We first describe the deterntimis Theorem 1 in [8], which applies to a larger class of deter-
channel model for the point-to-point AWGN channel (seministic interference channels. For our model, the resglti
Figure 1). The real-valued channel input is written in bagegion becomes the set of non-negative rates satisfying:
2; the signal—a vector of bits—is interpreted as occupying a

succession of levels: = 0.b;bybsbybs . .. . The most signifi- Ri < mii, =1, 2+ @
cant bit coincides with the highest level, the least sigaiftc Ry + Ry < (n11 — n21)™ + max(naz, na1) 3
bit with the lowest level. The levels attempt to capture the Ry + Ry < (ngo — n12)t + max(niy, nio) (4)
_notion ofsign_al scale a level corresponds to a unit of power Ry + Ry < max(nya, (1, — n21)™)
in the Gaussian channel, measured on the dB scale. Noise is " 5
modeled by truncation. Bits of smaller order than the noise +max(na1, (n22 — n12) )+ ®)
are lost. Note that the number of bits above the noise floor 2Ry + Ry < max(ni1, m2) + (n11 — na1)
correspond tdog,, S_NR, Wher¢SNR is the signal-to-noise ratio + max(na1, (nag — n12)™) (6)
of the correspond{ng Gaussian cha.mr?el.- Ry + 2Ry < max(nao, na1) + (ngs — nyz) ™
We proceed with the deterministic interference channel "
+ max(ni2, (11 — n21)™). @)

model (Fig. 2). There are two transmitter-receiver pairke),
and as in the Gaussian case, each transmitter wants to comy
municate only with its corresponding receiver. The sign%t1
from transmitteri, as observed at receivgr is scaled by a
nonnegative integer gain;; = 2" (equivalently, the input
column vector is shifted up by;;). At each timet, the input
and output, respectively, at linkare x;(t),y;(¢t) € {0,1}9, B={(Ri,Rs):L; <R; <U;,Vi=1,2},
whereq = max;; n;;. Note thatn;; corresponds tdog, SNR; )
andn;; corresponds tdog, INR;;, whereSNR; is the signal- where for each useir= 1,2, L; = (ns —ny;)™, and
to-noise ratio of linki and INRj; is the interference-to-noise {
U, =

ur main result, stated in Theorem 1 below is to completely
aracterizeCyg for the two-user deterministic interference
channel model. This characterization is in termsCoand a
“box” B in R? given by

. L o . ng — min(L;, ng, if ng; <mng;
ratio at receiverj from transmitteri in the corresponding " (L, mis), v

Gaussian interference channel. To model the super-positio

of signals at each receiver, the bits received on each leeel a Theorem 1:Cy = CNB. MoreoverCy g always contains
addedmodulo two The channel output at receiveris then 4t |east one efficient point and is either equalRar is the

given by intersection of3 with the simplex corresponding to the sum-
4\ Qa—ni q—niz rate constraint foc.
yilt) =S xi(t)+8 xa(t), @) First let us interpret the bounds, Lo, Uy, Us. The number

where summation and multiplication are in the binary field; is the number of levels at receivar that never see
andS is aq x ¢ shift matrix (e.g. see [4]). any interference from usej. These are always the most

In our analysis, it will be helpful to consult a different ity significant bits of useli’s signal. In the example in Fig. 2,
of figure, as shown on the right-hand side of Fig. 2. This
shows only the perspective of each receiver. Each incomingThe boundaries of the region in [8] is given in terms of comwdil

. . . . entropies that must be maximized over any product distribuiiothe channel
signal is shown as a column vector, with the highest eleme

A v i > uts. For our model the optimizing input distribution forceabound is
corresponding to the most significant bit and the portiolwel always uniform over the input alphabet. The given boundiiol

8

min((nij — Lj)+, nii), if Nij > Ny



Fay Py that all points insideZ N B can be achieved as NE. The proof

of this is based on first noting that sin€eand B are convex
polytopes, their intersection must also be a convex pogitop
CNB We first explicitly construct strategies which show that the
corner points o N B are inCxg. In these strategies each user
Ry either transmits only un-coded bits or uses a repetitiorecod
across levels (but no coding over time) and in fact achieves
perfect reliability. Since® N B is a convex polytope, any point
can be expressed as a convex combination of the corner points
Using this and a time-sharing argument, we can then show that
the remaining points i€ N B are also inCyg. The additional
properties ofCxg given in Theorem 1 then directly follow.
In the following, we focus on the first step in this argument,
namely showing that the corner points ©f B are inCyg.
Fig. 3. Examples ofng = C N B for a symmetric interference channel A Pair of strategies(s,,s;) are defined to be partial
with normalized cross gain.. Bernoulli pair if: (i) Fori = 1,2, useri’s transmitted signal at
each channel use contaiig < min(n;;,n;;) i.i.d. Bernoulli-

1/2 bits which create interference for useés received signal
these correspond to the top level for transmittefL, = 1) (the remaining bits of usei's signal can be arbitrary values
and the t0p3 levels for transmittep (L2 = 3) The number possib|y dependent on thegg |eve|s); and |() each usern
U, is the number of levels at receiverthat receive signals transmits at rateR; = n;; — ki‘with zero probability of error.
from transmitteri but are free of interference from the tdg  The first property in this definition states that each yssees
levels from transmittey. In Fig. 2, these correspond to thenterference of maximum entropy dr levels. Intuitively, on
top level at received (U; = 1) and the top three levels atthese levels, each user can not reliably convey any inféomat
receiver2 (U = 3). This leaves the user with;; — k; levels. The second property

Intuitively, it is clear that at any)-NE, useri should have states that each user is transmitting at maximum rate oeseth
rate at |eaStLi: these levels are interference-free and userremaining |eve|s; this requires the user to essentianlyshmit

can always send information at the maximum rate on theggcoded bits on these levels. The next lemma shows why these
levels. This will create interference of maximum entropyaat Strategies are useful in Characterisz.

certain subset of levels at receiyeand render them un-usable | emma 1:If there exists a partial Bernoulli pair of strate-
for user;j. The rate for usey is bounded by the number of gies that achieves the rate péR;, R.) then(R;, R») € Cxg.
remaining levels that it can use. This is precisely the upperThe proof of this is based on using Fano's inequality to
boundU;. What Theorem 1 says is that any rate pair in thgound the pay-off a user can receive from deviating from a

capacity regior€ subject to these natural constraints i€i:.  partial Bernouli pair of strategies. The next two lemmasnsho
To illustrate this result, consider a symmetric interf@en that three corners of are always inCyg.

O<a<% ! %<a<

RQ; RQ\

[STIN]

cnB cnB

R
2ca<l Tt l<a<2

channel in whichiy = ngy andniy = noi. Let o= nji/nii Lemma 2: The rate pairgU, L), and(L1, Us) are always
be the normalized cross gain. Four examplesCoand B in Cyp.
corresponding to different ranges af are shown in Fig. 3. Proof: Without loss of generality, consider the pair

For0 < a < 3, Cng = B is a single point, which lies at (¢7,, 1,). This can be achieved by the following strategy pair
the symmetric sum-rate point @f. For § < a < %, again (see Fig. 4):i) User2 transmits uncoded information on ifs

Cne = B. Cng contains a single efficient point (the symmetrignost significant levels and nothing on the remaining ley@ls.
sum-rate point inC), but now there are additional interioryser1 transmits uncoded information on every level that is not
points ofC which may be achieved as a Nash equilibriffor  interfered with by use’s signal and transmits i.i.d. Bernouli-

2 < a <1, Cyg is a the intersection of the simplex formedi/2 noise on all remaining levels that are received above the

by the sum-rate constraint ¢fand 5. In this case, there areppjse floor aitherreceiver. It can be seen that this is a partial

multiple efficient points; in fact, the entire sum-rate fafeC  Bernoulli pair and sqUy, Ly) € Cng. u

is included inCyg. Forl < a < 2, C C B and soCyg = C. By a similar argument we have:

For 2 < a (not shown)C = B and so agairlyg = C. Note Lemma 3:The rate paif Ly, L) is in Cxg.

that in all cases, the symmetric rate point isCi. In general, the equilibrium strategies in Lemma 2 are not
V. ANALYSIS efficient, e.g. for both examples in Fig. 4, the maximum

m-rate obtainable i@ is 6, which is not obtained by these

. . ., S
B To pro:/r-i) The?]r.em t’fl we flrslt\lzhoTV\;] th?tt p(t).mtsbm;]t.ageﬂ% rategies. This efficiency loss is due to the random noise or
cannot be achievaple as a - 'he intuttion benin IRink” that user 1 is transmitting on the levels marked with

result was discussed in the previous section. We then sh W3 The overall system performance can be improved by

5In a slight abuse of terminology, we say that pointsdng can be better gtjlizing these “junk Ievels.”. Since u;er 1is almad
“achieved as a NE." transmitting at the upper bound, it cannot improve its own



Fig. 4. Two examples of the equilibrium strategies used in Ler@n@n Fig. 5. Examples of the efficient strategies for the two irexfice channels
the left is the pair of strategies achievigi, L2) = (3,2); on the right is from Fig. 4. Note that on the right user 1 transmits two copiﬁsslgo

the pair of strategies achievin@/1, L2) = (4,1). Here a level labeled with

Ii indicates that thésth uncoded information bit of user is sent on that

level; a level labeled with & indicates that the user sends noise (junk) on . . . .
that level. On other levels a user does not transmit. that (i) appear above the noise floor at ugsrreceiverand

(ii) at useri’s own receiver are either interfered with by user

j's guaranteed levels or appear below the noise floor. These
rate (in a NE) by changing its strategy. However, if the ratgre levels where usercannot send information for itself but
pair (U1, L») is not efficient, user 1 can change its strategy amay be useful for helping user In Fig. 4, the “junk” levels
only the junk levels so that there is a new NE in which user 2¢f yser 1 correspond to his open levels. Finally, tizemless
rate is increased without decreasing user 1's rate. Moreovevels of user are the non-guaranteed levels that do not create
the resulting rate pair will meet the sum-rate bound’aind interference at receivet Useri’s signal on his harmless levels
so is efficient. This provides the remaining corner<af B.  does not effect usef’'s performance. On the left-hand side of

Let us see how this improvement can be done for thEg. 4, each user's two least significant levels are harmless

examples in Fig. 4. In the left example, user 1 has two jurfor ; = 1,2, let O; denote uset’s open levels andd; his
levels that it can release to improve user 2’'s rate. The lomgsrmless levels.
junk level appears below the noise floor at receiver 2 so what| emma 4: The rate pairgU;, Lo+min(Oy, Ho)) and(L;+
user 1 does there is immaterial. The upper junk level appeaiisn(0,, H,), U,) are always irCyg. Furthermore, these rate
at the bottom level at receive®. If user 1 sends nothing pairs always satisfy the sum-rate bound fowith equality.
instead of junk at that level, then usercan send 1 more ACKNOWLEDGMENT

bit of information by using the bottom level. This additibna , )

signal from usee is appearing below noise floor at receiter 1S Work has benefited from convergence on a common

and therefore will not deteriorate usels rate (see Fig. 5, game-thgoretlc formulation for interference channels &tso

left). Thus, we can now achievs,3), which is efficient. 2PPears in [10].

Moreover, the strategies remain a partial Bernoulli paid an

therefore(S, 3) € CnE [1] R. Etkin, D. Tse, filnd H. Wang, “Gaussian Interferencer@ied Capacity
Now, consider the right example in Fig. 4, where user 1 hgs 10 itin One Bi; submited WECE Trans, on o, TreongOor,

a single junk level. If user 1 turns off the junk level, userahic interference channel/EEE Trans. on Info. Theoryol. 27, pp. 49-60,

transmit on the third level and gain one extra bit. But untte Jan. 1981.

previous example, this extra signal is harmful to user lesinE] G- Bresler and D. Tse, “The Two-User Gaussian InterfeeeGhannel:

. . . A Deterministic View,” to appeatr.

it causes interference at the receiver of ubet the second 4] s. Avestimehr, S. Diggavi, and D. Tse, “Wireless Networkformation

level from the bottom. The problem here is that the bottom Flow,” in Allerton Conference on Communication, Control, and Comput

level of user2 is actually harmless to usér but it is currently 5] gg'lz(thlficr)\ntfel:g' iljl-g}eiﬁpgenn;bgr T2§e07;,spectrum Sharing in iterised

being interfered with by an information bit from user 1 and 5% Bands”, IEEE Journal on Selected Areas of Communicatieai. 25, no.

is not usable. But we can get around this problem by having 3, pp. 517-528, April 2007.

userl, instead of transmitting nothing on the junk level, sen§! S: T- Chung, S. J. Kim, J. Lee, and J.M. Cioffi, A game-théiore
approach to power allocation in frequency-selective Ganssterference

a copy of this interfering information bit (see Flg 5, rljght channels,"Proc. of IEEE ISITpp. 316-316, June 2003.
This way, user2 can see that bit on level 3, subtract it froni7] R. Myserson,Game Theory: Analysis of conflicHarvard University

the received signal at the bottom level and free that level fp Press, Cambnidge M, o e Capacity Region of a Class of

tra_nsmitting itS_ own bit. Again thi.S will be a partigI-Bembu Deterministic Interference Channel$ZEE Transactions on Information
pair of strategies, and the resulting rates are efficient. Theory Vol. 1T-28, No. 2, pp. 343-346, March 1982.

We can generalize this construction as follows. Themost 9] Té(_ﬁ“:.sGallager,lnformation Theory and Reliable Communicatidfiley,
significant levels of each usérare defined to be that user's;;g) r. Yates, D. Tse and Z. Li, "Secret Communication on Ireehice
guaranteed level€Each user can always transmit uncoded bits Channels”, submitted to ISIT 2008.
on each of these levels regardless of the other user’s gyrate
Let useri’s open levelsbe that user’s non-guaranteed levels
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