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Abstract— In this work, the Multiple transmit antennas Mul-
tiple Access Channel is considered. A construction of a family
of distributed space-time codes for this channel is proposed. No
Channel Side Information at the transmitters is assumed and
users are not allowed to cooperate together. It is shown thatthe
proposed code achieves the Diversity Multiplexing Tradeoff of the
channel. As an example, we consider the two-user MIMO-MAC
channel. Simulation results show the significant gain offered by
the new coding scheme compared to an orthogonal transmission
scheme,e.g. time sharing.

I. I NTRODUCTION

Multiantenna Multiple Access Channel (MIMO-MAC) has
recently received a great interest but optimal and practical
design of space-time codes for this channel is still missing.
After introducing the diversity-multiplexing tradeoff (DMT)
of a MIMO channel in [1], Tseet al. introduced the DMT of
the MAC in [2]. It is a fundamental limit of the channel at high
SNR that can be used to evaluate the performance of different
transmission schemes. Still in [2], they proved that this DMT is
achievable for sufficiently long codes by considering a family
of Gaussian random codes. However, these Gaussian codes
don’t have any structure which makes their efficient encoding
and decoding impractical.

Nam and El Gamal proposed in [3], a class of structured
multiple access lattice space-time codes. They proved thattheir
scheme, based on lattice decoding, achieves the optimal DMT
of the MAC but they did not give any constructive example.
This fact lets us think that, as it was the case for the MIMO
channel [5], the construction of such lattice codes for the MAC
should use large alphabets with prime cardinality.

In [6], Gärtner and Bölcskei presented a detailed anal-
ysis of the MAC based on the different error types that
can be encountered in this channel (see [9]). They derived
a space-time code design criterion for multiantenna MACs
and presented a structured coding scheme of length4 for 2
transmit users with two transmit and two receive antennas.
This code results from a simple concatenation of two Alamouti
codewords with a columns swapping for one user’s codeword
offering a minimum rank of three. This code highlights the
importance of the joint code design in the MAC, but does not
achieve the outage DMT of the channel. Gärtner and Bölcskei
further developped their work and presented in [7] important

results motivating the construction of space-time codes for the
MIMO-MAC. They showed that their code design criteria are
optimal with respect to the DMT of the channel and proved
that, for a MIMO-MAC, outage analysis allows a rigorous
characterization of the dominant error event regions. In other
words, outage and error probabilities have the same behaviors
at high SNR. This fundamental result will be of a major
importance in our work.

In this paper, we present a construction of a family of
distributed space-time codes for the MIMO-MAC with no
Channel Side Information at the transmitters (no CSIT) based
on the fundamental results in [7]. By analyzing the different
regimes of the DMT of the MIMO-MAC, we show that the
new codes achieve the outage DMT of the channel. Numerical
results finally show that the proposed codes outperform the
time sharing scheme and that the error probabilities of such
codes mimic the outage probability behavior of the MIMO-
MAC channel. In the sequel, we first present a general codes
construction,i.e. for the (K,nt, nr) MIMO-MAC. Then, as a
detailed example, we consider the two-user MAC case with
nt = 2.

II. T HE MULTI -ANTENNA MULTIPLE-ACCESSCHANNEL

A. System model

In this paper, we use boldface capital lettersM to denote
matrices.CN represents the complex Gaussian random vari-
able. [.]⊤ (resp. [.]†) denotes the matrix transposition (resp.
conjugated transposition) operation.

We consider aK-user multiple-access channel withnt

transmit antennas per user andnr receive antennas. We assume
that the channel matrices havei.i.d. zero-mean Gaussian
entries, i.e., hi,j ∼ CN (0, 1). We denoteT the temporal
codelength of the considered distributed space-time codeC.
Let X i be a(nt × T ) matrix denoting the codeword of user
i with normalized power, independent of codewords of the
other users since we assume no cooperation between users.
The received signal is

Y
(nr×T ) =

K
∑

i=1

H
(nr×nt)
i X

(nt×T )
i +W

(nr×T ) (1)
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where superscripts denote matrices dimensions.W is the
additive white Gaussian noise matrix withi.i.d. Gaussian unit
variance entries,i.e., W ∼ CN (0, 1).

B. Diversity-Multiplexing tradeoff interpretation

The diversity-multiplexing tradeoff (DMT) of multiple ac-
cess channels was introduced and fully characterized in [2].
A schemeC(SNR) is said to achieve multiplexing gainr and
diversity gaind if

lim
SNR→∞

R(SNR)

log SNR
= r and lim

SNR→∞

logPe(SNR)

log SNR
= −d

whereR(SNR) andPe(SNR) denote respectively the data
rate as a function ofSNR, measured in bits per channel
use (BPCU), and the block error probability. Tseet al. gave
in [2] the optimal achievable tradeoffd⋆(r) of the MAC
channel which corresponds to theSNR exponent of the outage
probability. The network is assumed to besymmetric, i.e.,
the diversity orders and the multiplexing gains per user are
identical (r and d). The authors distinguished two loading
regimes: the lightly loaded regime,i.e. r ≤ min(nt,

nr

K+1),
and the heavily loaded regime,i.e. r ≥ min(nt,

nr

K+1 ). In
the first regime, single-user performance is achieved, in other
words, the presence of other users does not influence the
channel performance, whereas in the second one, the system
is equivalent to a MIMO system as if theK users pooled up
their transmit antennas together. The global DMT is shown
to be the minimum DMT between these two regimes, that
is, the largest achievable symmetric diversity gain for fixed
symmetric multiplexing gain,

d∗sym(r) = min
k=1,...,K

d∗knt,nr
(kr) (2)

We have the following result1 illustrated in figure 1

d∗sym(r) =

{

d∗nt,nr
(r), r ≤ min(nt,

nr

K+1 )

d∗Knt,nr
(Kr), r ≥ min(nt,

nr

K+1 )
(3)

It is noteworthy, though, that while fornr ≥ (K+1)nt the
use of a code designed for the single-user MIMO channel is
optimal, a jointly designed code will be of major importance
in the case ofnr ≤ (K + 1)nt. In fact, depending on the
number of receive antennas, the antenna pooling regime may
or may not exist: ifnr ≥ (K +1)nt, single-user performance
is achieved for allr and optimal space-time codes designed for
the single-user MIMO channel achieve the outage DMT, else,
both the single user regime and the antenna pooling regime
occur and should be taken into account in the code design.

C. Code design criteria

Gärtner and Bölcskei [6], [7] used an error event analysis,
which was first introduced by Gallager in [9], to establish
the space-time code design criteria for the MAC. Such an
approach consists in defining different error events, say event

1In the sequel,d∗nt,nr
(r) denotes the outage DMT of ant × nr MIMO

Rayleigh point-to-point channel.
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Fig. 1. DMT of a multiple-access channel withK users withnt transmit
antennas each and a single receiver withnr antennas.

i , depending on the number of users in error2. Different error
regions are defined based on the users’ transmission rate. Rate
regions where single-user error events dominate can be treated
by using well known space-time codes designed for the single-
user case. However, the rate regions where the event of more
than one user being in error dominates, require a joint code
design.

It is interesting to recall the following result presented in
[6]: increasing the number of receive antennas results in a
reduction of the size of the region where all users are in
error and thus, decreases the importance of the joint code
design. Interestingly, this result confirms the previous DMT
interpretation.

The code design criteria that we use are derived in [6], based
on the dominant error regions, using a refined upper bounded
expression of the pairwise error probability (PEP) and can be
stated as follows

1) Rank criterion: For every codeword pair(Xk,Y k) with
Xk 6= Y k the rank of the corresponding codeword
difference matrix shall be maximized.

2) Eigenvalue criterion: For every codeword pair
(Xk,Y k) with Xk 6= Y k the product of the
nonzero eigenvalues of the corresponding codeword
difference matrix shall be maximized.

Authors further showed that their space-time code design
criteria are optimal with respect to the entire DMT and
concluded that, a rigorous characterization of the dominant
error event regions can be obtained by analysing the outage-
DMT of the MAC.

III. C ONSTRUCTION OF DISTRIBUTED SPACE-TIME CODES

FOR THEMIMO MAC

The general(K,nt, nr) MIMO MAC is considered in this
section. We construct a new family of space-time codes for
this channel following the same footsteps as the construction
of perfect space-time codes for parallel MIMO channels in

2Event i meansi users in error



[8]. We assume that the modulation used by both users is a
quadrature amplitude modulation (QAM).3

Code construction

Let F be a Galois extension of degreeK on Q(i) with
Galois group

Gal(F/Q(i)) = {τ1, τ2, . . . , τK}.
We denoteK a cyclic extension of degreent on F andσ the
generator of its Galois group,Gal(K/F). Let η be in F such
that η, η2, . . . , ηnt−1 are not norms inK. A cyclic division
algebra of degreent is constructed,A = (K/F, σ, η). To
remind the most relevant concepts about cyclic algebras and
how to use them to build space-time block codes, we let the
reader refer to [12]. We denoteΞ the matrix representation
of elements ofA which is ant × nt matrix and we construct
codewords as follows

Xk =
[

τ1(Ξk) τ2(Ξk) . . . τK(Ξk)
]

(4)

Each user sends its information by transmitting a matrix of
the same type as in (4), sayXk for userk. The equivalent
joint codeword matrix can be written as

X =











X1

X2

...
XK











(5)

Such a code usesK.n2
t information symbols per user. In

order to check the rank design criterion given in [6], we need
to insert in eq. (4) a carefully chosen matrixΓ so that the
transmitted codeword of (5) be of full rank. We propose the
new codeC(K,nt,Γ) where each user codeword is

Xk =
[

Γτ1(Ξk) Γτ2(Ξk) . . . τK(Ξk)
]

(6)

whereΓ is a multiplication matrix factor for thek − 1 first
matrices ofXk.

We chooseΓ ∈ A with entries in Q(i) and such that
det(X) 6= 0 for all Ξk 6= 0. With such a code, we can state,

Theorem 1: C(K,nt,Γ) achieves the outage DMT of the
MIMO-MAC

Proof: We give here a sketch of proof, details are omitted
for lenght constraint. The idea is to prove that by scaling
the size of the underlying QAM constellations by a factor
of SNRr, the exponent ofSNR in the asymptotic expression
of the error varies as the optimal DMT.

If only one user, sayk, is in error the receiver can cancel
signals it receives from the otherK − 1 users and the system
is equivalent to a single-usernt × nr MIMO system. In this
case, the transmitted codewordXk is given in (6). The code is
equivalent to well-known codes constructed on cyclic division
algebras and thus is DMT achieving, [13].

If all users are in error, the system is equivalent to anKnt×
nr MIMO channel and the transmitted codewords are given

3Generalization to hexagonal (HEX) modulation is straightforward.

in (5). In order to preserve the shaping of the code, matrix
Γ should be unitary. The DMT achievability is guaranteed by
the carefull choice ofΓ. For example, we can chooseΓ =
γInt

where γ is a transcendantal number. In that case, the
determinant of a codeword, which is a polynomial function of
γ with coefficients inK, is non zero. As it is proven in [7],
this result is sufficient to prove the outage DMT achievability.

IV. A N EXAMPLE: K = 2, nt = 2

A. Optimal DMT

As an example, we consider a two-user MAC with two
transmit antennas per user and three receive antennas,i.e.,
nt = 2 andnr = 3. Based on (2), we can write the optimal
DMT in this scenario as follows

d⋆(r) = min
{

d∗2,3(r), d
∗
4,3(2r)

}

(8)

This outage-DMT is illustrated in figure 2. Two outage events,
leading to the achievable region, are observed: event1 where
only one user is in outage, the other one being perfectly
decoded at the receiver and event2 when both users are
in outage.
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Fig. 2. DMT of the(K = 2, nt = 2, nr = 3) MAC

Our goal is to design distributed space-time codes for this
channel that are optimal in the sense of the DMT. In other
words, the error probability of the proposed scheme should
behave asymptotically as the outage probability of the channel.

B. Code construction

For the two-user MAC withnt = 2, we propose the follow-
ing code. Each user’s codeword is an2×2 matrix constructed
as follows. LetF = Q(ζ8) be an extension ofQ(i) of degree
K = 2, with ζ8 = e

iπ

4 and K = F(
√
5) = Q(ζ8,

√
5). As

explained in [8], such a design leads to construct the Golden
code [11] on the base fieldQ(ζ8) instead of the base field
Q(i). η = ζ8 has been proven in [8] not to be a norm, which
guarantees thatΞk has a non zero determinant.

Let θ = 1+
√
5

2 , σ : θ 7→ θ̄ = 1−
√
5

2 and the ring of integers
of K OK = {a + bθ|a, b ∈ Z[ζ8]}. Let α = 1 + i − iθ and
ᾱ = 1 + i− iθ̄. User’sk codewordXk is

Xk =
[

Ξk τ(Ξk)
]

(9)



Ξk =
1√
5

[

α.(sk,1 + sk,2ζ8 + sk,3θ + sk,4ζ8θ) α.(sk,5 + sk,6ζ8 + sk,7θ + sk,8ζ8θ)
ζ8ᾱ.(sk,5 + sk,6ζ8 + sk,7θ̄ + sk,8ζ8θ̄) ᾱ.(sk,1 + sk,2ζ8 + sk,3θ̄ + sk,4ζ8θ̄)

]

(7)

whereτ changesζ8 into −ζ8 andΞk defined in (7) withskj
denoting thejth QAM information symbol of useri. Finally,
we get the equivalent codeword matrix ofC(2,2,Γ)

X =

[

Ξ1 τ(Ξ1)
ΓΞ2 τ(Ξ2)

]

(10)

with

Γ =

[

0 1
i 0

]

. (11)

Theorem 2: C(2,2,Γ) achieves the outage DMT of theK =
2, nt = 2, nr MIMO MAC channel.

Proof: (sketch) If one of the users (say user2) is not in
error, then the receiver can cancel the signal it receives from
this user and the system is equivalent to a single-user2× nr

MIMO system. User1 transmitsX1 given in (9) which is
simply obtained by rotatingΞ1, hence, it is equivalent to the
Golden Code which is known to be a DMT achievable space-
time block code fornt = 2 transmit antennas andnr ≥ 2
receive antennas [11].

If both users are in error, the system is equivalent to a4×nr

MIMO channel and the transmitted codewords are given in
(10). Determinant of these codewords is

detX = det
(

τ (Ξ2)− ΓΞ2Ξ
−1
1 τ (Ξ1)

)

detΞ1

Since τ (Ξ2) − ΓΞ2Ξ
−1
1 τ (Ξ1) is in a division algebra, we

get detX = 0 iff

τ (Ξ2)− ΓΞ2Ξ
−1
1 τ (Ξ1) = 0

which gives
ΓΘ = τ(Θ) (12)

for someΘ = Ξ2Ξ
−1
1 ∈ A. One solution that does not

verify equation (12) is to chooseΓ to be a transcendantal
scalar as we explained in the general case. But we can easily
check that eq. (12) is also not verified forΓ given in eq. (11).
This condition is sufficient for our code to achieve the DMT
[7].

V. SIMULATIONS

In this section, we provide numerical results obtained by
Monte-Carlo simulations. We assume that the power is allo-
cated equally among all the users so that no a-priori advantage
is given to any transmitter-receiver link over another one.
We first present the outage performance of the considered
channel. The performance of the proposed coding scheme is
then measured by the word error rate (WER)vs receivedSNR
and compared to the time sharing scheme where the channel
is shared among the users in an orthogonal multiple-access
manner.

A. Decoding Algorithm

At the receiver side, we use a minimum mean-square
error decision feedback equalizer MMSE-DFE preprocessing
combined with lattice decoding as a way to tackle the problem
of the rank deficiency resulting fromnr being smaller than
K×nt. In [4], it is shown that an appropriate combination of
left, right preprocessing and lattice decoding, yields significant
saving in complexity with very small degredation with respect
to the ML performance. More precisely, left preprocessing
modifies the channel matrix and the noise vector such that
the resulting closest lattice point search has a much better
conditioned channel matrix. Moreover, right preprocessing is
used to change the lattice basis such that it becomes more
convenient for the searching stage.

B. Numerical results

We consider the two-user two-transmit antennas MAC with
nr = 3 receive antennas. Outage performances for different
spectral efficiencies are first illustrated in Figures 3 and 5
(4-BPCU and 8-BPCU, respectively). Coded schemes per-
formances are shown in Figures 4 and 6. Compared to the
time sharing scheme, the proposed code achieves the same
diversity order, 6, but offers a significant performance gain that
depends on the spectral efficiency,R. In order to highlight this
dependence onR, users information symbols are carved from
different QAM constellations,e.g. 4-QAM and a 16-QAM for
the coded scheme (16-QAM and 256-QAM, repectively for
the time-sharing scheme). At WER =10−4, a gain of6 dB is
observed when a 4-QAM constellation is considered. When we
increase the spectral efficiency (16-QAM), this gain increases
to 9 dB. Interestingly, compared to the outage performance of
the channel, the same behavior can be observed. This proves
numerically the optimality of the proposed coding scheme.

VI. CONCLUSION

In this paper, the multiantenna Multiple Access Channel
with no Channel Side Information at the transmitters is con-
sidered. We propose a new construction of distributed space-
time block codes that achieve the optimal DMT of theK-
user MIMO-MAC. As an example, we present the special
case of a two-user MAC with two transmit antennas per
user. In order to overcome the rank deficiency, source of
inefficiency of the well-known classical decoding approach,
we used the MMSE-DFE preprocessing combined with the
lattice decoding. Simulation results show that the new codes
offer a significant performance gain compared to the time
sharing scheme.
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