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Abstract—We derive the capacity region of the Gaussian
version of Willems’s two-user MAC with conferencing encoders.
This setting differs from the classical MAC in that, prior to each
transmission block, the two transmitters can communicate with
each other over noise-free bit-pipes of given capacities.

The derivation requires a new technique for proving the
optimality of Gaussian input distributions in certain mutu al
information maximizations under a Markov constraint.

We also consider a Costa-type extension of the Gaussian MAC
with conferencing encoders. In this extension, the channelcan be
described as a two-user MAC with Gaussian noise and Gaussian
interference where the interference is known non-causallyto the
encoders but not to the decoder. We show that as in Costa’s
setting the interference sequence can be perfectly canceled, i.e.,
that the capacity region without interference can be achieved.

I. I NTRODUCTION

We consider a communication scenario known as the MAC
with conferencing encoders where two transmitters wish to
transmit independent messages to a single receiver. Prior to
each transmission block, the two encoders are allowed to
hold aconference, i.e., they can communicate with each other
over noise-free bit-pipes of given capacities. Special cases
are the classical multiple-access setting, where the encoders
are ignorant of each others messages (both bit-pipes of zero
capacities); the fully-cooperative setting (both bit-pipes of
infinite capacities); and the asymmetric message sets setting,
where one of the encoders is fully cognizant of the message
the other encoder intends to send (the pipe from the cognizant
transmitter to the non-cognizant transmitter of zero capacity
and the other pipe of infinite capacity).

The MAC with conferencing encoders was introduced by
Willems in [1], who also derived the capacity region for
the discrete memoryless setting. Here we derive the capacity
region for the Gaussian setting under average power con-
straints. The achievability part is very similar to the one in
[1]. The converse, however, requires a novel tool first derived
in [4] for proving that Gaussian distributions maximize certain
mutual information expressions under a Markovity-constraint.
For such maximization problems the traditional approach of
proving the optimality of Gaussian distributions by employing
the Max-Entropy Theorem [3, Theorem 12.1.1.] or a condi-
tional version thereof [5] fails. The reason is that replacing a
non-Gaussian vector satisfying the Markovity condition bya
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Gaussian vector of the same covariance matrix may result in
a Gaussian vector that violates the Markovity condition.

We also consider an additional scenario where the received
signal is also corrupted by an additive Gaussian interference
sequence which is non-causally known to both encoders but
not to the decoder. We show that, even though the decoder
is non-informed, the interference can be perfectly canceled
in the sense that the capacity region of the setting without
interference is achievable also in this setting with interference.

We next describe the channel models more precisely and
then proceed to state our results.

The goal of the transmission is that Transmitters 1 and
2 convey their messagesM1 and M2 to the receiver. The
messagesM1 and M2 are assumed to be independent and
uniformly distributed over the setsM1 = {1, . . . , ⌊enR1⌋}
andM2 = {1, . . . , ⌊enR2⌋}. Heren denotes the block-length,
andR1 andR2 denote the rates of transmission in nats per
channel use.

Prior to each block ofn channel uses, the two encoders
hold a conference, i.e., they exchange information overk uses
of the pipes. The pipes are assumed to be

• perfect in the sense that any input symbol to a pipe is
available immediately and error-free at the output of the
pipe; and

• of limited throughputsC12 and C21, in the sense that
when thek inputs to the pipe from Transmitter 1 to Trans-
mitter 2 take values in the setsV1,1, . . . ,V1,k and thek
inputs to the pipe from Transmitter 2 to Transmitter 1
take values in the setsV2,1, . . . ,V2,k, then

k
∑

ℓ=1

log |V1,ℓ| ≤ nC12 and
k
∑

ℓ=1

log |V2,ℓ| ≤ nC21. (1)

Here and throughout all logarithms are natural logarithms.
Note that the communication over the pipes is assumed to be

held in a conferencing way, so that theℓ-th inputsV1,ℓ ∈ V1,ℓ

andV2,ℓ ∈ V2,ℓ can depend on the respective messages as well
as on the past observed pipe-outputs:

V1,ℓ = f1,ℓ (M1, V2,1, . . . , V2,ℓ−1) , (2)

V2,ℓ = f2,ℓ (M2, V1,1, . . . , V1,ℓ−1) , (3)

for some given sequences of encoding functions{f1,ℓ}kℓ=1 and
{f2,ℓ}kℓ=1 where

f1,ℓ : M1 × V2,1 × . . .× V2,ℓ−1 −→ V1,ℓ, (4)

f2,ℓ : M2 × V1,1 × . . .× V1,ℓ−1 −→ V2,ℓ. (5)
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We define an(n,C12, C21)-conferenceto be the collec-
tion of an integer numberk, two sets of input alphabets
{V1,1, . . . ,V1,k} and{V2,1, . . . ,V2,k}, and two sets of encod-
ing functions{f1,1, . . . , f1,k} and {f2,1, . . . , f2,k} as in (4)
and (5), wheren,C12, C21, k, and the sets{V1,1, . . . ,V1,k}
and{V2,1, . . . ,V2,k} satisfy (1).

After the conference, Transmitter 1 is cognizant of the se-
quenceV2 = (V2,1, . . . , V2,k) and Transmitter 2 is cognizant
of the sequenceV1 = (V1,1, . . . , V1,k). The channel input se-
quencesX1 = (X1,1, . . . , X1,n) andX2 = (X2,1, . . . , X2,n)

can then be described with encoding functionsϕ
(n)
1 andϕ(n)

2

as

X1 = ϕ
(n)
1 (M1,V2), (6)

X2 = ϕ
(n)
2 (M2,V1), (7)

where

ϕ
(n)
1 : M1 × V2,1 × . . .× V2,k −→ R

n, (8)

ϕ
(n)
2 : M2 × V1,1 × . . .× V1,k −→ R

n. (9)

Additionally, we impose an average block power constraint
on both channel input sequences:

1

n
E

[

n
∑

t=1

(Xν,t)
2

]

≤ Pν , ν ∈ {1, 2}. (10)

The multiple-access channel is described as follows. For
given discrete-timet and channel inputsx1,t, x2,t ∈ R, the
time t channel outputYt is

Yt = x1,t + x2,t + Zt, (11)

where{Zt} models the noise corrupting the channel and is
given by a sequence of independent and identically distributed
(IID) zero-mean Gaussian random variables of varianceσ2 >

0.
Based on the output sequenceY = (Y1, . . . , Yn) the

decoder applies a decoding functionφ(n),

φ(n) : R
n → M1 ×M2, (12)

to produce the message estimatesM̂1 andM̂2, i.e.,

(M̂1, M̂2) = φ(n)(Y). (13)

An error occurs whenever(M1,M2) 6= (M̂1, M̂2).
A rate pair (R1, R2) is said to beachievableover the

Gaussian MAC with conferencing encoders if there exist a
sequence of{(n,C12, C21)}-conferences, two sequences of
encoding functions{ϕ(n)

1 , ϕ
(n)
2 } as in (8) and (9), and a

sequence of decoding functions{φ(n)} as in (12) such that
the probability of error tends to 0 as the block-lengthn tends
to infinity, i.e.,

lim
n→∞

Pr
[

(M1,M2) 6= (M̂1, M̂2)
]

= 0. (14)

The capacity regionC is defined as the closure of the set of
all achievable rate pairs.

We also consider an extension of the setting at hand in
the sense of Costa’s “Writing on Dirty Paper” channel [2].

Thus, we assume an additional additive Gaussian interference
sequence which is non-causally known to both transmitters
but not to the receiver. There exist two different scenarios
one could envision. A scenario where the transmitters learn
the interference sequencebeforethe conference, and thus the
inputs to the bit-pipes can depend also on the interference;
or a scenario where the transmitters learn the interference
only after the conference. It turns out that the presented
results do not depend on which of the two scenarios is
considered. The converse we present holds also for the setting
where the transmitters know the interference alreadybefore
the conference; and the encoding scheme applies also to the
setting where the transmitters know the interference onlyafter
the conference. In the following we will focus on the setting
where the transmitters learn the interference sequences after
the conference.

For the setting with interference we need to modify the
definitions of the channel in (11) and the encoding functions
in (8) and (9); the decoding function remains as in (12).

For given inputsx1,t andx2,t the channel output is given
by

Yt = x1,t + x2,t + St + Zt, (15)

where the noise sequence{Zt} is defined as before, and where
the interference sequence{St} is an IID zero-mean Gaussian
sequence of varianceQ and independent of the noise sequence
and of the messages.

Denoting the interference sequence byS = (S1, . . . , Sn),
the channel input sequencesX1 andX2 are described as

X1 = ϕ
(n)
1,IF(M1,V2,S),

X2 = ϕ
(n)
2,IF(M2,V1,S),

for some encoding functionsϕ(n)
1,IF, ϕ

(n)
2,IF of the form

ϕ
(n)
1,IF : M1 × V2,1 × . . .× V2,k × R

n −→ R
n,

ϕ
(n)
2,IF : M2 × V1,1 × . . .× V1,k × R

n −→ R
n.

The input sequences are subject to the power constraints (10).
The probability of error, achievable rate pairs, and capacity

regionCIF for this new setting are defined as before.

II. M AIN RESULTS

Definition 1: Define the region

CG ,
⋃

0≤β1,β2≤1

{

(R1, R2) :

R1 ≤ 1

2
log

(

1 +
β1P1

σ2

)

+ C12,

R2 ≤ 1

2
log

(

1 +
β2P2

σ2

)

+ C21,

R1 +R2 ≤ 1

2
log

(

1 +
β1P1 + β2P2

σ2

)

+ C12 + C21,

R1 +R2 ≤ 1

2
log

(

1 +
P1 + P2 + 2

√

P1P2β̄1β̄2

σ2

)}

, (16)



whereβ̄1 = 1− β1 and β̄2 = 1− β2.
Theorem 1:The capacity regionC of the Gaussian MAC

with conferencing encoders is equal toCG ,

C = CG . (17)

Remark 1:The main step in the proof (see Section III-A)
is to show that under the Markov conditionX1⊸−−U⊸−−X2

the regionRConf(X1, U,X2) (Definition 2) is maximized by
choosing jointly Gaussian distributions on(X1, U,X2). A
subset of the mutual information expressions which char-
acterize the regionRConf(X1, U,X2) can be found in the
characterization of an achievable region for the MAC with
perfect feedback proposed by Cover and Leung [6] and in
the characterization of the capacity region of the MAC with
common messages derived by Slepian and Wolf [7]. Again, in
both characterizations the tripleX1⊸−−U⊸−−X2 is required
to be Markov, and the same tools as in Section III-A can be
used to prove that for Gaussian channels also the Cover-Leung
region and the Slepian-Wolf region are maximized by choosing
jointly Gaussian distributions onX1⊸−−U⊸−−X2 [4].

Theorem 2:The capacity regionCIF of the Gaussian MAC
with conferencing encoders and additive Gaussian interference
sequence non-causally known at both encoders equals the
capacity regionC of the setting without interference

CIF = C. (18)

Note that Costa’s result [2] on “Writing on Dirty Paper” and
Gel’fand and Pinsker’s result [8] on “Multi-access Writingon
Dirty Paper” are special cases of Theorem 2.

III. PROOF OFTHEOREM 1

The achievability ofCG , i.e.,

CG ⊆ C, (19)

follows by applying the scheme described in [1] with a
Gaussian input distribution. The details are omitted.

A. Converse

To prove the converse, i.e.,

C ⊆ CG , (20)

we first outer boundC by COut (Lemma 1). The converse is then
established by showingCOut = CG . To this end, in Lemma 2 we
express the regionCG in a similar form toCOut, i.e., as a union
of regions where the union is taken over certain distributions
satisfying a Markov condition and power constraints. We then
notice thatCOut and CG differ only with respect to the set
of distributions over which the unions are taken (see (21)
and (23)): forCOut the union is taken overall distributions
satisfying the Markov condition and the power constraints,
and forCG the union is only over those that areGaussian. We
conclude the proof by showing that forCOut it is sufficient to
take the union only over Gaussian distributions (Lemma 3).

Definition 2: For a given distributionpX1UX2
(·, ·, ·) on the

random tripleX1, U,X2, define

RConf(X1, U,X2)

,

{

(R1, R2) : R1 ≤ I(X1;Y |X2U) + C12,

R2 ≤ I(X2;Y |X1U) + C21,

R1 +R2 ≤ I(X1X2;Y |U) + C12 + C21,

R1 +R2 ≤ I(X1X2;Y )
}

,

where the mutual informations are computed
with respect to the law pUX1X2Y (u, x1, x2, y) =
pX1UX2

(x1, u, x2)p(y|x1, x2), wherep(y|x1, x2) denotes the
channel law.

Definition 3: Define the region

COut ,
⋃

X1⊸−−U⊸−−X2

E[X2

1 ]≤P1, E[X2

2 ]≤P2

RConf(X1, U,X2), (21)

where the union is over all joint distributions (not necessarily
Gaussian) for whichX1⊸−−U⊸−−X2 is Markov and for which
E
[

X2
1

]

≤ P1 andE
[

X2
2

]

≤ P2

Lemma 1:The regionCOut is an outer bound on the capacity
region of the Gaussian MAC with conferencing encoders,

C ⊆ COut. (22)

Proof: Requires only a slight modification of the outer
bound in [1] to account for the power constraints.

Lemma 2:The regionCG in (16) can be expressed as

CG =
⋃

XG
1
⊸−−UG

⊸−−XG
2

E
h

(XG
1 )

2
i

≤P1, E
h

(XG
2 )

2
i

≤P2

RConf(X
G
1 , U

G , XG
2 ), (23)

where the superscriptG is used to indicate that the union is
taken only over Gaussian Markov distributions satisfying the
second moment constraints.

Proof: Follows by evaluating the various mutual informa-
tion terms in the definition ofRConf for Gaussian distributions
on X1⊸−−U⊸−−X2.

The right hand-sides of (21) and (23) differ only with
respect to the set of distributions over which the unions are
taken. Therefore, in order to conclude the proof of the converse
(20), by Lemma 1 and Equations (21) and (23), it suffices
to show that there is no loss in optimality if the union in
(21) is taken only over Gaussian Markov triples fulfilling
the second moment constraints. This is established by the
following Lemma 3.

Lemma 3:For any Markov tripleX1⊸−−U⊸−−X2 fulfilling
E
[

X2
1

]

≤ P1 and E
[

X2
2

]

≤ P2, there exists a Gaussian
Markov tripleXG∗

1 ⊸−−V G∗⊸−−XG∗
2 fulfilling the power con-

straintsE
[

(

XG∗
1

)2
]

≤ P1 andE
[

(

XG∗
2

)2
]

≤ P2, such that

RConf(X1, U,X2) ⊆ RConf(X
G∗
1 , V G∗, XG∗

2 ). (24)

We postpone the proof of Lemma 3 and first state a sequence
of definitions and lemmas.



Lemma 4:For any (not necessarily Markov) random triple
X1, U,X2 of finite second moments,

RConf(X1, U,X2) ⊆ RConf(X
G
1 , U

G , XG
2 )

where (XG
1 , U

G , XG
2 ) is a centered Gaussian vector whose

covariance matrix is equal to that of(X1, U,X2).
Proof: Follows by a conditional version of the Max-

Entropy Theorem [3, Theorem 12.1.1.], see also [5].
Definition 4: DefineKG as the set of3 × 3 positive semi-

definite matrices

K =

(

k11 k12 k13

k12 k22 k23

k13 k23 k33

)

(25)

satisfying one of the two conditions
1) k22 6= 0 andk13k22 = k12k23;
2) k22 = k12 = k13 = k23 = 0.
Lemma 5:A Gaussian triple is Markov if, and only if, its

covariance matrix is inKG .
Proof: The “if” direction follows because the law of

a Gaussian triple is fully characterized by its mean and its
covariance matrix and by noting that for any covariance matrix
K ∈ KG we can construct a Gaussian Markov triple of
covariance matrixK. The proof of the later is omitted.

For the proof of the “only if” direction we assume a
triple A⊸−−B⊸−−C which forms a Markov chain in this
order. We distinguish between two cases:Var(B) = 0 and
Var(B) 6= 0. If Var(B) = 0, then B is deterministic
and the Markov chainA⊸−−B⊸−−C implies thatA and C

are independent. The covariance matrix ofA,B,C is then
diagonal, and Condition 2) is satisfied. IfVar(B) 6= 0, then
defineA0 , A−E[A] , B0 , B−E[B], andC0 , C −E[C]
and compute

E[A0C0] = E[E[A0C0|B0]] = E[E[A0|B0]E[C0|B0]]

= E
[

E[A0B0]

Var(B0)
B0

E[B0C0]

Var(B0)
B0

]

=
E[A0B0]E[B0C0]

E[B2
0 ]

. (26)

Here, the second equality follows by the Markovity and the
third equality by the Gaussianity. By multiplying (26) with
E
[

B2
0

]

= Var(B) Condition 1) is obtained.
Lemma 6:Consider a Markov tripleX1⊸−−U⊸−−X2 with

X1 andX2 of finite second moments. Let

V = E[X1|U ]− E[X1] . (27)

Then, the covariance matrix of the triple(X1, V,X2) is in KG ,
and

RConf(X1, U,X2) ⊆ RConf(X1, V,X2). (28)

Proof: The inclusion (28) follows by the following two
observations. ExchangingU by a deterministic function ofU
increases all mutual information expressions inRConf which
are conditional onU . And changingU does not change
the joint distribution ofX1, X2, and hence the unconditional
mutual information expression remains the same.

That the covariance matrix of the triple(X1, V,X2) is
in KG follows because (27) and the Markov condition
X1⊸−−U⊸−−X2 imply that

Cov[V,X2] = Cov[X1, X2] and Cov[V,X1] = Var(V ) .

Proof of Lemma 3: Let

V , E[X1|U ]− E[X1] , (29)

and define the tripleXG∗
1 , V G∗, XG∗

2 to be zero-mean jointly
Gaussian with the same covariance matrix as the triple
X1, V,X2. To conclude the proof we shall show that
XG∗

1 ⊸−−V G∗⊸−−XG∗
2 forms a Markov chain and that Con-

dition (24) is satisfied. That the tripleXG∗
1 ⊸−−V G∗⊸−−XG∗

2

forms a Markov chain follows by the Gaussianity of
XG∗

1 , V G∗, XG∗
2 and by Lemma 5, because by Lemma 6

the covariance matrix ofX1, V,X2 is in KG and thus, by
construction, also the covariance matrix ofXG∗

1 , V G∗, XG∗
2

is in KG . Note that the tripleX1, V,X2, even though its
covariance matrix is inKG , does not necessarily form a
Markov chain in this order, because it is not restricted to be
Gaussian.

That Condition (24) is satisfied follows by the following
sequence of inclusions:

RConf(X1, U,X2) ⊆ RConf(X1, V,X2)

⊆ RConf(X
G∗
1 , V G∗, XG∗

2 ), (30)

where the first inclusion follows by Lemma 6 and the second
inclusion follows by Lemma 4.

IV. PROOF OFTHEOREM 2

The “converse”
CIF ⊆ C (31)

follows becauseC outer bounds the capacity region of the
channel with interference even when the interference is also
known at the receiver. It remains to prove the “direct part”

C ⊆ CIF, (32)

i.e., that every rate pair inC is achievable in the presence of
interference. This follows by Lemmas 7 and 8 ahead.

Definition 5: Define the region

RAch =
⋃

0≤β1,β2≤1

{

(R1, R2) :

R1 ≤ 1

2
log

(

1 +
β1P1

σ2

)

+ C12, (33)

R1 ≤ 1

2
log

(

1 +
β1P1

σ2

)

+
1

2
log

(

1 +
(
√

β̄1P1 +
√

β̄2P2)
2

β1P1 + β2P2 + σ2

)

, (34)

R2 ≤ 1

2
log

(

1 +
β2P2

σ2

)

+ C21, (35)

R2 ≤ 1

2
log

(

1 +
β2P2

σ2

)

+
1

2
log

(

1 +
(
√

β̄1P1 +
√

β̄2P2)
2

β1P1 + β2P2 + σ2

)

, (36)

R1 +R2 ≤ 1

2
log

(

1 +
β1P1 + β2P2

σ2

)

+ C12 + C21, (37)



R1 +R2 ≤ 1

2
log

(

1 +
P1 + P2 + 2

√

P1P2β̄1β̄2

σ2

)}

, (38)

whereβ̄1 = 1− β1 and β̄2 = 1− β2.
Lemma 7:The capacity regionCIF includesRAch:

CIF ⊇ RAch. (39)

Proof: See Section IV-A.
Lemma 8:The achievable regionRAch equals the capacity

regionC of the Gaussian MAC with conferencing encoders,

RAch = C.

A. Coding Technique AchievingRAch

In this section we sketch a coding technique that achieves
the regionRAch. The analysis is omitted.

The two transmitters first create a common message by
communicating over the pipes as in [1]. Thus, after the
conference Transmitter 1 is cognizant of the common message
and of an independent private message. It allocates power
(1 − β1)P1 to the common message and powerβ1P1 to the
private message. Similarly for Transmitter 2.

The coding technique involves time-sharing between two
schemes. Both schemes apply successive decoding at the
receiver, where the receiver first decodes the common message
followed by the private messages. But they differ in the de-
coding order of the private messages. We describe the scheme
where the decoding of the common message is followed
by the decoding of the private message of Transmitter 1
and only thereafter by the decoding of the private message
of Transmitter 2. The other scheme where the decoding of
the common message is followed by the private message of
Transmitter 2 is analogous.

We first describe the encoding of the common mes-
sage. Before transmission begins, the transmitters agree
on a (single-user) dirty-paper code for powerP0 ,
(

√

(1− β1)P1 +
√

(1 − β2)P2

)2

, noise variance(β1P1 +

β2P2 + σ2), and interferenceS. Transmitter 1 encodes the
common message using this dirty-paper code and scales the

resulting sequence by
√

(1−β1)P1√
P0

. Transmitter 2 encodes the
common message with the same code, but scales the resulting

sequence by
√

(1−β2)P2√
P0

. (The channel will coherently com-
bine the two sequences.)

Independently of the common message, the transmit-
ters encode the private messages. Transmitter 1 encodes
its private message using a dirty-paper code for power
β1P1, noise varianceσ2 + β2P2, and interferenceS1 ,
(

1−
“√

(1−β1)P1+
√

(1−β2)P2

”

2

P1+P2+2
√

(1−β1)(1−β2)P1P2+σ2

)

S. Transmitter 2 en-

codes its private message with a dirty-paper code for
power β2P2, noise varianceσ2, and interferenceS2 ,
(

1− β1P1

β1P1+β2P2+σ2

)

S1. Each transmitter sends the sum of
the two sequences produced for the common message and for
its private message.

The receiver performs successive decoding. It starts by
decoding the common message based on nearest neighbor
decoding as in [9], while treating the sequences which the
transmitters produced for the private messages as additional
noise. Then, the receiver subtracts (or “strips off”) the decoded
common-message codeword from the channel outputs and pro-
ceeds to decode the private message of Transmitter 1. (Here,
the “common-message codeword” is not the resulting sequence
of the dirty-paper code, but the codeword in the bin of the
common message which was selected during the encoding
procedure of the dirty-paper code.) To decode the private
message of Transmitter 1, the receiver again uses nearest
neighbor decoding and treats the sequence which Transmitter 2
produced for its private message as additional noise. Finally, it
subtracts the decoded Transmitter 1-private-message codeword
and decodes the private message of Transmitter 2.

Remark 2:To encode the different messages the transmit-
ters use dirty-paper codes for scaled versions of the interfer-
enceS. The reason for this is that the codewords that the
receiver subtracts depend on the interference sequenceS, and
the resulting channel seen in subsequent decoding phases is
interfered by a scaled version ofS.

Remark 3:Our coding scheme is different from Willems’s
scheme [1] (for the setting without interference). In his scheme
the transmitters apply superposition coding and the receiver
applies joint decoding. Our approach has two advantages: It
simplifies the analysis, and it achieves the same result alsoif
the noise sequence{Zt} is not IID Gaussian but any arbitrary
ergodic process of second momentσ2. However, our approach
leads to the additional constraints (34) and (36). Fortunately,
by Lemma 8, these additional constraints don’t shrink the
resulting region.
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