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Abstract—We derive the capacity region of the Gaussian Gaussian vector of the same covariance matrix may result in
version of Willems'’s two-user MAC with conferencing encodes. g Gaussian vector that violates the Markovity condition.
This setting differs from the classical MAC in that, prior to each  \ye als0 consider an additional scenario where the received
terggﬁ rr(;ltisg:3r(])vbel?%l;iégirgobﬁrt?;;rgslttggzi(\:lzr;] zzﬁgﬁ?e'g?te \th signal is also_cor_rupted by an additive Gaussian interfaxen

The derivation requires a new technique for proving the Seduence which is non-causally known to both encoders but
optimality of Gaussian input distributions in certain mutual not to the decoder. We show that, even though the decoder
information maximizations under a Markov constraint. is non-informed, the interference can be perfectly camtcele

_We also consider a Costa-type extension of the Gaussian MAC in the sense that the capacity region of the setting without
with conferencing encoders. In this extension, the channelan be o farence is achievable also in this setting with ireezfce.

described as a two-user MAC with Gaussian noise and Gaussian Wi td ibe the ch | del isel d
interference where the interference is known non-causallyo the € next describe the channel models more precisely an

encoders but not to the decoder. We show that as in Costa's then proceed to state our results. .
setting the interference sequence can be perfectly cancdlei.e., The goal of the transmission is that Transmitters 1 and
that the capacity region without interference can be achieed. 2 convey their message%/; and M, to the receiver. The
messaged\/; and M, are assumed to be independent and
|. INTRODUCTION uniformly distributed over the setdt; = {1,..., " |}

_ nR -
We consider a communication scenario known as the MA?‘PdM? ={L,..., [""2]}. Heren denotes t.he.bloc.:k length,
d R, and R, denote the rates of transmission in nats per

with conferencing encoders where two transmitters wish
channel use.

transmit independent messages to a single receiver. Rrior .
P 9 9 Prior to each block of: channel uses, the two encoders

each transmission block, the two encoders are allowed to . . .
. : : hold a conference, i.e., they exchange information éveses

hold aconferencei.e., they can communicate with each other ) .
of the pipes. The pipes are assumed to be

over noise-free bit-pipes of given capacities. Speciaksas . . L
PP 9 b P « perfect in the sense that any input symbol to a pipe is

are the classical multiple-access setting, where the amsod iable i diatel d ¢ h ¢ th
are ignorant of each others messages (both bit-pipes of zero g}/r?el'aanedlmme lately and error-free at the output of the

ities); the fully- ti tti both bitgdpof 7 .
capacities); the fully-cooperative setting (bo Mo « oOf limited throughputsCi2 and Cs;, in the sense that

infinite capacities); and the asymmetric message setsigetti ) . .
where one of the encoders is fully cognizant of the message when thek inputs to the pipe from Transmitter 1 to Trans-

the other encoder intends to send (the pipe from the coghizan mltter 2 tal;]e va_llue? n th_l? Setsl’.l’ - .2,V1,kTand th?k 1
transmitter to the non-cognizant transmitter of zero capac Inputs to t € pipe lrom ransmitter 2 to Transmitter
take values in the sefs; ;,..., V2, then

and the other pipe of infinite capacity).
The MAC with conferencing encoders was introduced by k k

Willems in [1], who also derived the capacity region for D logViel <nCiz and ) log Vel < nCor. (1)

the discrete memoryless setting. Here we derive the cgpacit ‘=1 =1

region for the Gaussian setting under average power cdifre and throughout all logarithms are natural logarithms.

straints. The achievability part is very similar to the ome i Note thatthe communication over the pipes is assumed to be

[1]. The converse, however, requires a novel tool first aeriv N€ld in a conferencing way, so that theh inputsVi , € V1,

in [4] for proving that Gaussian distributions maximizetegr andVz,¢ € V2, can depend on the respective messages as well

mutual information expressions under a Markovity-coristra @S 0N the past observed pipe-outputs:

For s_suchhmaximiz?tionf%oblems tgle trsdi_tionatl) appr;l?;/h of Vie=fie(My,Van,...,Vau_1), 2)

proving the optimality of Gaussian distributions by em _

the Max-Entropy Theoreni [3, Theorem 12.1.1.] or a condi- Var = foe (Mo, Vit Vi), )

tional version thereof]5] fails. The reason is that repigc  for some given sequences of encoding functipfis; };_, and

non-Gaussian vector satisfying the Markovity conditionay {,fQ,g}lgzl where

: XVo1X...XVayp 1 — V 4
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We define an(n,C2, C21)-conferenceto be the collec- Thus, we assume an additional additive Gaussian inteideren
tion of an integer numbek, two sets of input alphabetssequence which is non-causally known to both transmitters

M, Vigrand{Va1,..., V2 }, and two sets of encod- but not to the receiver. There exist two different scenarios
ing functions{fi1,..., fix} and{f21,..., f2x} as in [4) one could envision. A scenario where the transmitters learn
and [5), wheren, C12,C21,k, and the setV1,...,V1,} the interference sequenbeforethe conference, and thus the
and{Vs1,..., Va2 } satisfy [3). inputs to the bit-pipes can depend also on the interference;
After the conference, Transmitter 1 is cognizant of the sef a scenario where the transmitters learn the interference
guenceV, = (V5 1,..., V2 ) and Transmitter 2 is cognizantonly after the conference. It turns out that the presented
of the sequenc®'y = (Vi 1,..., V1 k). The channel input se- results do not depend on which of the two scenarios is
quencesX; = (X1,1,...,X1,) andXy = (X21,...,X2.,) considered. The converse we present holds also for thagetti
can then be described with encoding functig®’ andy{™  where the transmitters know the interference alrebdfore
as the conference; and the encoding scheme applies also to the
(n) setting where the transmitters know the interference aftisr
X1 =@ (M, Va), (6)  the conference. In the following we will focus on the setting
Xy = goé”)(Mg,Vl), (7) where the transmitters learn the interference sequentes af

the conference.
For the setting with interference we need to modify the
gpﬁ") : My x Va1 X...x Vo — R", (8) definitions of the channel if_(11) and the encoding functions
(n) R" 9 in (@) and [9); the decoding function remains as[inl (12).
P2 MaxVipx..x Ve — RY © For given inputsr;; andzs; the channel output is given

where

Additionally, we impose an average block power constraibly
on both channel input sequences:

lE lz (X,)?| <P, ve{l,2}. (10) where the noise sequeng, } is defined as before, and where
[ it the interference sequeng&,} is an IID zero-mean Gaussian
The multiple-access channel is described as follows. Feduence of variangg and independent of the noise sequence

given discrete-time and channel inputs; ¢, z2; € R, the and of the messages.
time ¢ channel output; is Denoting the interference sequence ®y= (S1,...,5),

the channel input sequenc&s and X, are described as

Yo = mis+x2:+ St + Zy, (15)

Yi = w1+ x4+ 2y, (11) )
. . . X1 = ¥, IF(M17V27S)7
where {Z;} models the noise corrupting the channel and is )
given by a sequence of independent and identically digibu X2 = ¢y (M2, V1, 8),
(IID) zero-mean Gaussian random variables of variante-
0. for some encoding func:tlon,s1 ran 902 |F of the form
Based on the output sequendé = (Y1,...,Y,) the <P§n|)F Mi xVoq X ... x Vo xR* — R",
decoder applies a decoding functiof®), )
PaIF * MQXV171X...XV17]€XR"—>R”.
(;S(") 0 R" =5 My x Mo, (12) :
o - The input sequences are subject to the power constriifts (10
to produce the message estimalés and M, i.e., The probability of error, achievable rate pairs, and cayaci
(]\7[1,]\?[2) _ (b(n)(Y)' (13) regionCe for this new setting are defined as before.
An error occurs whenevei\V,, M) # (M, Ms). Il. MAIN RESULTS

A rate pair (R, R2) is said to beachievableover the  Definition 1: Define the region

Gaussian MAC with conferencing encoders if there exist a
sequence of{(n, Ci2,Cy1)}-conferences, two sequences of (g £ U {(Rl,RQ) :
encoding functions{x{™, x{”} as in [8) and [(9), and a 0<B1,82<1
sequence of decoding functiod®(™} as in [I2) such that 1 ﬁl |
the probability of error tends to 0 as the block-lengthends LIS 51 1+ + Ciz,
to infinity, i.e., 1 ﬁng
o 2 < ¢ + Coy,

lim Pr[(Ml,MQ) £ (N, M) | = 0. (14) 21

e 1 1P1 + B2 Ps
The capacity regionC is defined as the closure of the set of /&1 + 2 < S log (1 + ) + C12 + Ca,
all achievable rate pairs.

We also consider an extension of the setting at hand @31 + Ry llog 14 P+ P +2\/P1P25152 (16)

the sense of Costa’s “Writing on Dirty Paper” chanrel [2]. 2 ’



wheref; =1 — 6, and By = 1 — Bs. Definition 2: For a given distributiomx,y x, (-, -, -) on the
Theorem 1:The capacity regior of the Gaussian MAC random tripleX, U, X, define
with conferencing encoders is equaldg,
g a 9 RConf(Xla U7 XQ)

C=Cg. ) 2 {(RI,RQ) . Ry <I(Xy;Y|XoU) + Cha,
Remark 1:The main step in the proof (see Sectlon TlI-A) Ry < I(X2;Y|X1U) + Ca,
is to show that under the Markov conditiot, ——U —o—X» Ry + Ry < I(X1X2;Y|U) + Cia + Coy,
the regionRconi( X1, U, X2) (Definition[2) is maximized by .
choosing jointly Gaussian distributions o, U, X5). A Rit Ry <I(X1X5Y) }’

subset of the mutual information expressions which chafhere the mutual informations are  computed

acterize the regiorRconi(X1,U, X3) can be found in the with respect to the law pyx,x,y(u,21,22,y) =

characterization of an achievable region for the MAC with \ (2, . 2.)p(y|21, 22), wherep(y|z:, z2) denotes the

perfect feedback proposed by Cover and Leung [6] and #hannel law.

the characterization of the capacity region of the MAC with pefinition 3: Define the region

common messages derived by Slepian and Wolf [7]. Again, in

both characterizations the tripl&; ——U——X, is required Cout = U Reoni(X1,U, X2),  (21)

to be Markov, and the same tools as in Seckion 1II-A can be X ——U—o—X;

used to prove that for Gaussian channels also the CovergLeun EX7|<pi B[ X3]<P,

region and the Slepian-Wolf region are maximized by cha@sifvhere the union is over all joint distributions (not necetpa

jointly Gaussian distributions oX'; ——U ——X> [4]. Gaussian) for whict; ——U ——X, is Markov and for which
Theorem 2:The capacity regiodr of the Gaussian MAC E[)(l?] < P andE[X%} < Py

with conferencing encoders and additive Gaussian intemfa Lemma 1: The regiorCoy is an outer bound on the capacity

sequence non-causally known at both encoders equals fégion of the Gaussian MAC with conferencing encoders,
capacity regiorC of the setting without interference

C C Cout (22)
=C. 18 . . e
Cr =C (18) Proof: Requires only a slight modification of the outer
Note that Costa’s resul[2] on “Writing on Dirty Paper” and?ound in [1] to account for the power constraints. =
Gel'fand and Pinsker’s result][8] on “Multi-access Writing ~ Lemma 2:The regionCg in (I6) can be expressed as
Dirty Paper” are special cases of Theorem 2. Co = U Reon( X9, U9, X5), (23)
I1l. PROOF OFTHEOREM] XY —o—U9—o—X3

E[(Xlg)2] <P, E[(ng)z} <P,
The achievability ofCg, i.e., o o o
where the superscrigf is used to indicate that the union is
Cg CC, (19) taken only over Gaussian Markov distributions satisfyihg t
) ) . ~second moment constraints.
follows by applying the scheme described in [1] with a  proof: Follows by evaluating the various mutual informa-

Gaussian input distribution. The details are omitted. tion terms in the definition oRcon for Gaussian distributions
on X;—o—-U——Xo. |
A. Converse The right hand-sides of (1) an@{23) differ only with
To prove the converse, i.e., respect to the set of distributions over which the unions are
taken. Therefore, in order to conclude the proof of the cosere
¢ c (g, (20) (@0), by Lemmdll and Equation§ {21) andl(23), it suffices

. . to show that there is no loss in optimality if the union in
we first outer bound by Coyt (LemméLl). The converse ISthendZI]) is taken only over Gaussian Markov triples fulfilling

established by ghom_r@gut_:_Cg. To this end,_m LemmE]Z_we the second moment constraints. This is established by the
express the regioflg in a similar form toCoy, i.€., as a union following Lemmal3
of regions where the union is taken over certain distrimgio Lemn?a 3 Eor an' Markov tripleX: —o —o—X- fulfillin
satisfying a Markov condition and power constraints. WentheE[Xg] < P and é[XQ} < g tilere exists 2a Gaus%ian

1 = 1 2 = 2

notice thatCo,t and Cg differ only with respect to the set : G Gi Gr e e
of distributions over which the unions are taken (se€d (2 arkov triple Xy’ —o—V’ X3" fulfilling the power con-

- N i Gx)? )2

and [23)): forCou the union is taken oveall distributions S ralntsE[(Xl ) } =h a”dE{(X2 ) } < Py, such that
satisfying the Markov condition and the power constraints, G 1, G «

and forCg the union is only over those that aBaussian We Reont(X1,U, X2) € Reont( X1, V7", X57).  (24)

conclude the proof by showing that G it is sufficient to  Wwe postpone the proof of Lemnfid 3 and first state a sequence
take the union only over Gaussian distributions (Leniiha 3)of definitions and lemmas.



Lemma 4:For any (not necessarily Markov) random triple  Proof of Lemma&]3: Let
X1,U, X» of finite second moments,
1 & Az oL V 2 E[X,|U] - E[X4], (29)

Reonf(X1,U, X3) € Reont( X{, U9, X5) . . N
G Ong( o ) onf( X o2 and define the tripleX?*, V9% X§J* to be zero-mean jointly
where (X7,U%, X3') is a centered Gaussian vector whosgayssian with the same covariance matrix as the triple

covariance mairix is equal to that oK1, U, Xs). X1,V,X>. To conclude the proof we shall show that
Proof: Follows by a conditional version of the Max-Xlg*_o_Vg*_o_ng* forms a Markov chain and that Con-

Entropy Theorem [3, Theorem 12.1.1], see also [5]. B jtion (22) is satisfied. That the tripla9* ——V9* —o—xJ*
Definition 4: Define g as the set o8 x 3 positive semi- t5rms a Markov chain follows by the Gaussianity of

definite matrices X9* v9+ XJ* and by Lemma5, because by Lemih 6
K — (Zg i Z;j) (25) the covariance matrix of{y,V, X; is in Kg and thus, by
ki k23 kas construction, also the covariance matrix &% *, V9* X5~
satisfying one of the two conditions is in KCg. Note that the tripleX;,V, X5, even though its
1) ka2 # 0 andkigkas = ki2kas; covariance matrix is inKg, does not necessarily form a
2) kog = k1o = k13 = ka3 = 0. Markov chain in this order, because it is not restricted to be
Lemma 5:A Gaussian triple is Markov if, and only i, its Gaussian. . o _
covariance matrix is ifCg. That Condition [(2K) is satisfied follows by the following
Proof: The “if” direction follows because the law of S€quence of inclusions:
a Gaussian triple is fully characterized by its mean and its Reont(X1,U, X2) € Reont( X1, V, Xo)

covariance matrix and by noting that for any covariance ixatr

G* Gx* Gx*
K € Kg we can construct a Gaussian Markov triple of € Reom(X7™, V77, X57), (30)

covariance matriX<. The proof of the later is omitted. where the first inclusion follows by Lemnia 6 and the second
For the proof of the “only if” direction we assume ajnclusion follows by Lemmal4. m

triple A——B——C which forms a Markov chain in this

order. We distinguish between two casdar(B) = 0 and IV. PROOF OFTHEOREMIZ

Var(B) # 0. If Var(B) = 0, then B is deterministic  The “converse”

and the Markov chaild——B——C implies thatA and C CeCC (31)

are independent. The covariance matrix 4fB, C is then

diagonal, and Conditior(]2) is satisfied.\far(B) # 0, then Tollows becauseC outer bounds the capacity region of the
definedo £ A —E[A], By 2 B —E[B], andCy £ C — E[C] channel with interference even when the interference is als

and compute known at the receiver. It remains to prove the “direct part

E[AoCo] = E[E[A¢Co|Bo]] = E[E[Ao| Bo] E[Co|By)] C < Cr, (32)

_ | El40Bo] BOE[BOCO]BO _ E[AoBo] E[BoCo] (26) 1€, that every rate pair if is achievable in the presence of
Var(By)  Var(By) E[BZ] interference. This follows by Lemmas 7 8 ahead.
Here, the second equality follows by the Markovity and the Definition 5: Define the region

third equality by the Gaussianity. By multiplying_{(26) with
E[BZ] = Var(B) Condition[1) is obtained. [ ] Rach = U {(R1, Ry) :
Lemma 6:Consider a Markov tripleX; ——U ——X2 with 0<p1,82<1
X, and X, of finite second moments. Let 1 ( ﬁlpl)
Ry < -log |1+ + Cha, (33)
V =E[X1|U] - E[X4]. (27) °
Then, the covariance matrix of the tripl&’;, V, X5) is in Kg, R, < %log (1 n ﬁlQPl)
and g
Reont(X1,U, Xa) € Reont( X1, V, Xa). (28) L ioe (14 WBPL A VB Py) (34)
Proof: The inclusion [(2B) follows by the following two 2 % PP+ BoPo 02 )
observations. Exchanging by a deterministic function of/ 1 Bo Py
increases all mutual information expressionsigqns which Ry < 9 log (1 + o2 ) + Ca, (35)
are conditional onU. And changingU does not change 1 By Py
the joint distribution ofX;, X5, and hence the unconditional Ry < 3 log (1 +— )
mutual information expression remains the same. 7 _ _
That the covariance matrix of the tripleXy,V, X5) is —|—llo <1+ (V1P + [32P2)2> (36)
in g follows because[(27) and the Markov condition 98 B1PL+ BaPo+ 02 |’

X1——U——X5 imply that

1 B1P1 + BaPo
Cov[V, Xa] = Cov[X1, X5] and Cov[V, X,] = Var(V). m T FT2=glog (1 Rl— ) +C+ O, (37)



decoding the common message based on nearest neighbor
~ ~ decoding as in[[9], while treating the sequences which the
wheref; =1 — 3y andfz = 1 — fa. transmitters produced for the private messages as adalition
Lemma 7:The capacity regioifr includesRach: noise. Then, the receiver subtracts (or “strips off") theated
common-message codeword from the channel outputs and pro-
CiF 2 Rach. (39)  ceeds to decode the private message of Transmitter 1. (Here,
Proof: See Sectiofl [V=A. the “common—message codeword” is not the r_esulting.seuwenc
of the dirty-paper code, but the codeword in the bin of the
common message which was selected during the encoding
procedure of the dirty-paper code.) To decode the private

1 Py + Py + 2/ P Py 31 i i i
Ri+ Ry < §log (1+ 1+ o+ : 1 25152) }7 (38) The receiver performs successive decoding. It starts by
g

Lemma 8:The achievable regioRacn equals the capacity
regionC of the Gaussian MAC with conferencing encoders,

Rach = C. message of Transmitter 1, the receiver again uses nearest
_ _ o neighbor decoding and treats the sequence which Transiitte
A. Coding Technique Achievir@ach produced for its private message as additional noise. Iirital
In this section we sketch a coding technique that achiev@4ptracts the decoded Transmitter 1-private-messagevoode
the regionRach. The analysis is omitted. and decodes the private message of Transmitter 2.

The two transmitters first create a common message byRemark 2:To encode the different messages the transmit-
communicating over the pipes as inl [1]. Thus, after th€rS use dirty-paper codes for scaled versions of the atterf
conference Transmitter 1 is cognizant of the common mess&jie S. The reason for this is that the codewords that the
and of an independent private message. It allocates pok@geiver subtracts depend on the interference sequgnaed
(1 — B1)P, to the common message and powkt; to the the resulting channel seen in subsequent decoding phases is
private message. Similarly for Transmitter 2. interfered by a scaled version 8t .

The coding technique involves time-sharing between two Remark 3:Our coding scheme is different from Willems's
schemes. Both schemes apply successive decoding at s[ﬁléeme[l]_(forthe setting W|thou.t.|nterfer(.ance). In hisesoe .
receiver, where the receiver first decodes the common messH§ transmitters apply superposition coding and the receiv
followed by the private messages. But they differ in the déPPplies joint decoding. Our approach has two advantages: It
coding order of the private messages. We describe the sche&ifeplifies the analysis, and it achieves the same resultiiso
where the decoding of the common message is follow& noise sequencgeZ, } is not IID Gaussian but any arbitrary
by the decoding of the private message of Transmitter 8[90diC process of second momerit However, our approach
and only thereafter by the decoding of the private messal§&ds to the additional constrainks (34) ahd (36). Forelgat
of Transmitter 2. The other scheme where the decoding ®¥ Lémmal8, these additional constraints don't shrink the
the common message is followed by the private message'®$ulting region.
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