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Caching in Wireless Networks
Urs Niesen, Devavrat Shah, Gregory Wornell

Abstract

We consider the problem of delivering content cached in a wireless network ofn nodes randomly located on
a square of arean. In the most general form, this can be analyzed by considering the2n × n-dimensional caching
capacity region of the wireless network. We provide an innerbound on this caching capacity region, and, in the
high path-loss regime, a matching (in the scaling sense) outer bound. For large path-loss exponent, this provides
an information-theoretic scaling characterization of theentire caching capacity region. Moreover, the proposed
communication scheme achieving the inner bound shows that the problem of cache selection and channel coding
can be solved separately without loss of order-optimality.

I. INTRODUCTION

With the continued large-scale deployment of infrastructure, wireless networking continues to be an
area of active research. In this context, unicast and multicast traffic has been widely studied. The influence
of caches on the network performance, on the other hand, has received considerably less attention.
Nevertheless, the ability to replicate data at several places in the network is likely to significantly increase
supportable data rates. In this paper, we consider the problem of characterizing achievable rates with
caching in large wireless networks.

In its most general form, this problem can be formulated as follows. Consider a wireless network withn
nodes, and assume a nodew in the network requests a message available at the set of cachesU (a subset of
then nodes) at a certain rateλCA

U,w. The collection of all{λCA
U,w}U,w can be represented as a caching traffic

matrix λCA ∈ R
2n×n
+ . The question is then to characterize the set of achievable caching traffic matrices

ΛCA(n) ⊂ R
2n×n
+ . We answer this question by providing an approximate (i.e.,scaling) characterization

of this caching capacity regionΛCA(n) for large wireless networks (i.e., asn → ∞) under random node
placement and assuming large path-loss exponent. Our treatment is information-theoretic, i.e., we do not
make any assumptions on the communication protocol used.

While ΛCA(n) is a high-dimensional object (namely2n × n-dimensional), we show that feasibility of
a traffic matrix λCA can be efficiently evaluated. We also provide an explicit communication scheme
achieving (in the scaling sense) the entire caching capacity regionΛCA(n).

A. Related Work

Several aspects of caching in wireless networks have been investigated in prior work. In the computer
science literature, the wireless network is usually modeled as a graph induced by the geometry of the
node placement. This is tantamount to making a protocol model assumption (as proposed in [1]) about the
communication scheme used. The quantity of interest involves the distance from each node to the closest
cache that holds the requested message. The problem of optimal cache location for multicasting from a
single source has been investigated in [2], [3]. Optimal caching densities under uniform random demand
have been considered in [4], [5]. Several cache replacementstrategies are proposed, for example, in [6].

To the best of our knowledge, caching has not been directly considered in the information theory
literature. However, it can be seen that the problem of optimally transmitting messages held at several
caches to a destination is a special case of communicating correlated sources over a noisy network. Indeed,
we can consider that each cache has an identical message to send to the same destination. This more
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general problem of transmitting correlated sources has received considerable attention. Unlike the situation
with point-to-point communication, for network communication problems source-channel separation does
not hold in general [7]. Hence, the problem of source and channel coding have to be considered jointly.
While for some special cases optimal communication strategies for transmitting correlated sources over a
noisy network are known (for example, a single destination node requesting all the sources observed in
the network with independent network links [8], [9]), the general problem is unsolved.

Finally, a special case of the caching problem considered here, in which each destination has only a
single cache (i.e., standard unicast traffic), has been widely studied and is by now well understood. See,
for example, [1], [10]–[20].

B. Our Contribution

We consider the general caching problem from an information-theoretic point of view. Compared to
the prior work mentioned in the last section, there are several key differences. First, we do not make
a protocol channel model assumption, and instead allow the use of arbitrary communication protocols
over the wireless network. Second, we allow for general traffic demands, i.e., arbitrary number of caches,
and arbitrary demands from each destination. Third, we do not impose that each destination requests the
desired message from only the closest cache, nor do we imposethat the entire message has to be requested
from the same cache. Rather we allow parts of the same messageto be requested from distinct caches.

We present an achievable communication scheme for the caching problem, yielding an inner bound
on the caching capacity region. For large values of path-loss exponent, we provide a matching (in the
scaling sense) outer bound, proving the optimality (again in the scaling sense) of our proposed scheme.
Together, this provides a scaling description of the entirecaching capacity region of the wireless network
in the large path-loss regime. The proposed communication scheme solves the problem of optimal cache
selection and channel coding separately, showing that sucha separation is order-optimal.

C. Organization

The remainder of the paper is organized as follows. In Section II, we introduce the channel model as
well as notation. In Section III, we present the main resultsof the paper. Section IV contains proofs, and
Section V concluding remarks.

II. NETWORK MODEL AND NOTATION

Consider the square
A(n) , [0,

√
n]2

of arean, and letV (n) ⊂ A(n) be a set of|V (n)| = n nodes onA(n). We assume the following channel
model. The (sampled) received signal at nodev and timet is

yv[t] =
∑

u∈V (n)\{v}

hu,v[t]xu[t] + zv[t]

for all v ∈ V (n), t ∈ N, and where{xu[t]}u are the (sampled) signals sent by the nodes inV (n) at timet.
Here{zv[t]}v,t are independent and identically distributed (i.i.d.) circularly symmetric complex Gaussian
random variables with mean0 and variance1, and

hu,v[t] = r−α/2
u,v exp(

√
−1θu,v[t]),

for path-loss exponentα > 2, and whereru,v is the Euclidean distance betweenu and v. The phase
terms {θu,v[t]}u,v is assumed to be i.i.d. with uniform distribution on[0, 2π).1 We either assume that

1It is worth pointing out that recent results [20] suggest that, under certain assumptions on the location of scattering elements, forα ∈ (2, 3)
and very large values ofn, the channel model used here (in particular, the i.i.d. assumption of the phase terms, might yield results that are
too optimistic. However, in [21] the same authors show that,under different assumptions on the scatterers, the channelmodel used here is
still valid also forα ∈ (2, 3) and very large values ofn. This indicates that the issue of proper channel modeling inthe low path-loss regime
for very large networks is somewhat delicate and requires further investigation.
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Fig. 1. Subsquare{Ai,ℓ} with 0 ≤ ℓ ≤ 2, i.e., with L(n) = 2. The subsquare at levelℓ = 0 is the areaA(n) itself. The subsquares at
level ℓ = 1 are indicated by dashed lines, the subsquares at levelℓ = 2 by dotted lines. Assume for the sake of example that the subsquares
are numbered from left to right and then from bottom to top (the precise order of numbering is immaterial). ThenV0,1(n) are all the nodes
V (n), V1,1(n) are the nine nodes in the lower left corner (delineated by dashed lines), andV2,1(n) are the three nodes in the lower left
corner (delineated by dotted lines).

{θu,v[t]}t is stationary and ergodic as a function oft which is calledfast fadingin the following, or we
assume{θu,v[t]}t is constant as a function oft, which is calledslow fadingin the following. In either
case, we assume full channel state information (CSI) is available at all nodes, i.e., each node knows all
{hu,v[t]}u,v at time t.2 We also impose an average power constraint of1 on the signal{xu[t]}t for every
nodeu ∈ V (n).

PartitionA(n) into 4ℓ subsquares{Aℓ,i(n)}4ℓi=1 of sidelength2−ℓ
√
n, and letVℓ,i(n) be the nodes in

Aℓ,i(n). The integer parameterℓ varies between0 andL(n) defined as3

L(n) ,
1

2
log(n)

(
1− log−1/2(n)

)
.

The partitions at various levelsℓ form a dyadic decomposition ofA(n) as illustrated in Figure 1.
A caching traffic matrixis an elementλCA ∈ R

2n×n
+ . ConsiderU ⊂ V (n) andw ∈ V (n). Assume a

message that is requested at destination nodew is available at all of the cachesU . λCA
U,w denotes then the

rate at which nodew wants to obtain the message from the cachesU . Note that we do not impose that
any particular cacheu ∈ U providesw with the desired message, rather multiple of the nodes inU could
provide parts of the message. Note also thatλU,w and λeU,w could both be strictly positive forU 6= Ũ ,
i.e., the same destination could request more than one message from different collection of caches. We
assume that messages for different(U,w) pairs are independent. Thecaching capacity regionΛCA(n) of
the wireless networkV (n) is the set of all achievable caching traffic matricesλCA ∈ R

2n×n
+ .

Example 1. ConsiderV (n) = {vi}4i=1 with n = 4. Assume thatv1 requests a messagem{v3,v4},v1 available
at the cachesv3, andv4 at rate1 bit per channel use, and an independent messagem{v3},v1 available only
at v3 at a rate of2 bits per channel use. Nodev2 requests a messagem{v3,v4},v2 available at the cachesv3
andv4 at a rate of4 bits per channel use. The messagesm{v3,v4},v1 , m{v3},v1 , andm{v3,v4},v2 are assumed
to be independent. This traffic pattern can be described by a caching traffic matrixλ ∈ R

16×4
+ with

λ{v3,v4},v1 = 1, λ{v3},v1 = 2, λ{v3,v4},v2 = 4, andλU,w = 0 otherwise. Note that in this example nodev1 is
destination for two (independent) caching messages, and node v3 and v4 serve as caches for more than
one message (but these messages are again assumed independent). ♦

To simplify notation, we will assume when necessary that large reals are integers and omit⌈·⌉ and⌊·⌋
operators. For the same reason, we suppress dependence onn within proofs whenever this dependence is

2We make the full CSI assumption in all the converse results inthis paper. Achievability can be shown to hold under weaker assumptions
on the availability of CSI. In particular, forα ≥ 3, no CSI is necessary, and forα ∈ (2, 3), a 2-bit quantization of the channel state
{θu,v[t]}u,v available at all nodes at timet is sufficient.

3Throughoutlog and ln represent the logarithms with respect to base2 ande, respectively.
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Fig. 2. Construction of the tree graphG. We consider the same nodes as in Figure 1 withL(n) = 2. The leaves ofG are the nodesV (n)
of the wireless network. They are always at levelℓ = L(n) + 1 (i.e., 3 in this example). At level0 ≤ ℓ ≤ L(n) in G, there are4ℓ nodes.
The tree structure is induced by the decomposition ofV (n) into subsquares{Vℓ,i(n)}ℓ,i, delineated by dashed and dotted lines. Level0
contains the root node ofG.

clear from the context. We use bold font to denote matrices whenever the matrix structure is of importance.
We use the† symbol to denote the complex conjugate of a matrix.

III. M AIN RESULTS

We now present the main results of this paper. In Section III-A, we provide an inner and, for large
path-loss exponentsα > 6, a matching (in the scaling sense) outer bound on the capacity regionΛCA(n).
In Section III-B, we discuss computational aspects. In Section III-C, we introduce the communication
scheme achieving the inner bound onΛCA(n). We analyze several example scenarios in Section III-D.

A. Caching Capacity Region

Let G = (VG, EG) be an undirected capacitated graph, constructed as follows. G is a tree with leaf
nodesV (n) ⊂ VG. Leaf nodes inG share the same parent node inG if they fall within the same subsquare
at levelL(n) in A(n). Nodes at levelℓ in the treeG share the same parent node if all the leaf nodes that
descend from it fall in the same subsquare at levelℓ − 1 in A(n). Note that through this construction,
each setVℓ,i(n) for ℓ ∈ {0, . . . , L(n)}, i ∈ 4ℓ is represented by exactly one internal node inG. This
construction is illustrated in Figure 2. Assign to each edgee ∈ EG at levelℓ in G (i.e., between nodes at
levelsℓ and ℓ− 1) a capacity

ce ,

{
(4−ℓn)2−min{3,α}/2 if 1 ≤ ℓ ≤ L(n),

1 if ℓ = L(n) + 1.

With slight abuse of notation, we let for(u, v) = e ∈ EG

cu,v , ce.

As we shall see in the following, the caching capacity regionΛCA(n) is closely related to the following
quantity:

Λ̂CA(n) ,

{
λCA ∈ R

2n×n
+ :

∑

U⊂S∩V (n)

∑

w∈V (n)\S

λCA
U,w ≤

∑

(u,v)∈EG:
u∈S,v/∈S

cu,v ∀S ⊂ VG

}
.

The regionΛ̂CA(n) is described by various subsetsS ⊂ VG. Each such subset can be understood as acut
in the graphG. For every cutS ⊂ VG, the sum-rate

∑

U⊂S∩V (n)

∑

w∈V (n)\S

λCA
U,w

between nodes inS andSc (i.e., across the cut) is bounded by the sum-capacity
∑

(u,v)∈EG:
u∈S,v/∈S

cu,v
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b2(n)bΛCA(n)

ΛCA(n)

b1(n)bΛCA(n)

λCA
{v1,v2},v3

λCA
{v1},v2

Fig. 3. Forα > 6, the setbΛCA(n) approximates the caching capacity regionΛCA(n) of the wireless network in the sense thatb1(n)bΛCA(n)
(with b1(n) ≥ n−o(1)) provides an inner bound toΛCA(n) andb2(n)bΛCA(n) (with b2(n) ≤ no(1)) provides an outer bound tobΛCA(n). The
figure shows two dimensions (namelyλUC

{v1},v2
andλUC

{v1,v2},v3
) of the 2n × n-dimensional setsΛCA(n) and bΛCA(n).

of edges betweenS andSc. Note that we only count trafficλCA
U,w such that all cachesU are contained in

S.
The first result states that, for allα > 2, Λ̂CA(n) is an approximate inner bound to the caching capacity

regionΛCA(n).

Theorem 1. Under either fast or slow fading, for anyα > 2, there existsb1(n) ≥ n−o(1) such that

b1(n)Λ̂
CA(n) ⊂ ΛCA(n)

with probability 1− o(1) as n → ∞.

We point out that Theorem 1 holds only with probability1− o(1) for different reasons in the fast and
slow fading case. For fast fading, the theorem holds only fornode placements that are “regular” enough.
A random node placement satisfies these regularity conditions with high probability asn → ∞. For slow
fading, Theorem 1 holds under the same regularity conditions on the node placement, but moreover only
holds for almost all realizations of the channel gains.

The next result states that, for allα > 6, Λ̂CA(n) is also an approximate matching outer bound to
ΛCA(n).

Theorem 2. Under either fast or slow fading, for anyα > 6, there existsb2(n) ≤ no(1) such that

ΛCA(n) ⊂ b2(n)Λ̂
CA(n)

with probability 1− o(1) as n → ∞.

As Theorem 1, Theorem 2 holds only with high probability due to regularity conditions on the node
placement. However, unlike Theorem 1, Theorem 2 holds for all realizations of channel gains also for the
slow fading case.

Comparing Theorems 1 and 2, we see that, forα > 6, the caching capacity regionΛCA(n) is approxi-
mately equal tôΛCA(n) in the sense that

n−o(1)Λ̂CA(n) ⊂ ΛCA(n) ⊂ no(1)Λ̂CA(n).

In other words, forα > 6, Λ̂CA(n) scales as the caching capacity regionΛ(n). This is illustrated in Figure
3.
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B. Computational Aspects

Since we are interested in large networks, computational aspects are a concern. Note that the approximate
caching capacity region̂ΛCA(n) is described in terms of essentiallyΘ(4n) cuts S ⊂ VG. We show in
Example 3 in Section III-D that a description with significantly fewer cuts is not possible. In other
words, even an approximate descriptionΛ̂CA(n) of the caching capacity regionΛCA(n) is computationally
intractable for large values ofn.

On the other hand, consider the simpler problem of testing membership ofλCA in Λ̂CA(n). We now
argue that this problem can be approximately solved in an efficient manner. More precisely, we show that
λCA ∈ Λ̂CA(n) can be checked approximately in polynomial time in the description complexity ofλCA.
Combined with Theorems 1 and 2, this shows that, forα > 6, approximate membershipλCA ∈ ΛCA(n)
can be checked efficiently as well.

Formally, define for any caching traffic matrixλCA ∈ R
2n×n
+

ρ̂λCA(n) , sup{ρ ≥ 0 : ρλCA ∈ Λ̂CA(n)}.

MembershipλCA ∈ Λ̂CA(n) can then be evaluated by checking ifρ̂λCA(n) ≤ 1. Let φλCA(n) to be the
solution to the following linear program

max φ

s.t.
∑

p∈PU,w

fp,U,w ≥ φλCA
U,w ∀ U ⊂ V (n), w ∈ V (n),

∑

p∈P :e∈p

∑

U⊂V (n)

∑

w∈V (n)

fp ≤ ce ∀ e ∈ EG,

fp,U,w ≥ 0 ∀ U ⊂ V (n), w ∈ V (n), p ∈ PU,w,

(1)

wherePu,w is the path inG from nodeu to nodew (sinceG is a tree, there is only one such path), and
where

PU,w ,
⋃

u∈U

Pu,w,

P ,
⋃

U⊂V (n)

⋃

w∈V (n)

PU,w.

Note that the linear program (1), and hence alsoφλCA(n), can be evaluated in polynomial time in the
description length ofλCA (i.e., in polynomial time in the length of the “input” of the linear program) by
setting the flow variablesfp,U,w to zero wheneverλCA

U,w = 0 andp ∈ PU,w. Moreover, using a primal-dual
algorithm, (1) can be solved efficiently in a distributed manner (see, for example, [22, Chapter 3.7]).

The following theorem shows thatφλCA(n) is a good approximation toρλCA(n).

Theorem 3. Under either fast or slow fading, for anyα > 2, there existsb3 ≥ n−o(1) such that for any
n and caching traffic matrixλCA

R
2n×n
+

b3(n)ρ̂λCA(n) ≤ φλCA(n) ≤ ρ̂λCA(n).

As argued above,φλCA(n) can be computed in polynomial time in the description lengthof λCA. Hence
Theorem 3 shows that testing membershipλCA ∈ Λ̂CA(n) can be done approximately in polynomial time in
the description length ofλCA. Combined with Theorems 1 and 2 this implies that, forα > 6, approximate
achievability of a traffic matrixλCA (i.e., testing membershipλCA ∈ ΛCA(n)) can be checked efficiently
and in a distributed fashion.
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C. An Efficient Content Delivery Protocol

Theorem 1 provides an inner bound to the caching capacity region of a wireless network. Here we
describe the communication scheme achieving the inner bound. The matching outer bound shows that,
for α > 6, this scheme is optimal in the scaling sense.

Our proposed communication scheme consists of three layers, similar to a protocol stack. From high
to low level of abstraction, these layers will be denoted byrouting layer, cooperation layer, andphysical
layer.

From the view of the routing layer, the wireless network consists of the noiseless capacitated tree
graphG defined in Section III-A (see Figure 2 there). To send a message available at the cachesU to its
destinationw, the routing layer routes the message overG. The optimal requests of message parts from
the caches inU (i.e., optimal cache selection) are found by solving the linear program (1). As pointed
out in Section III-B, this optimal cache selection can be performed efficiently by a distributed algorithm.

The cooperation layer provides the tree abstractionG to the routing layer. Sending a message up or
down an edge in the treeG in the routing layer corresponds in the cooperation layer todistributing or
concentrating the same message in the wireless network. Recall that the leaf nodes ofG are the nodes
V (n) of the wireless network and that each internal node ofG represents some subsquareVℓ,i(n) of V (n).
To send a message from a child node to its parent inG (i.e., towards the root node ofG), the message at
the wireless nodes inV (n) represented by the child node inG is distributed (over the wireless channel)
evenly among all nodes inV (n) represented by the parent node inG. This distribution is performed by
splitting the message at each node inV (n) represented by the child note inG into equal size parts, and
transmitting one part to each node inV (n) represented by the parent node inG. To send a message from
a parent node to a child node inG (i.e., away from the root node ofG), the message at the wireless nodes
in V (n) represented by the parent node inG is concentrated on the wireless nodes inV (n) represented
by the child node inG. This concentration is performed be collecting at each nodein V (n) corresponding
to the child node inG the message parts of the previously split up message locatedat the nodes inV (n)
corresponding to the parent node inG.

Finally, the physical layer performs this concentration ordistribution of messages. Note that the kind
of traffic resulting from the operation of the cooperation layer is regular in the sense that within each
subsquare all nodes receive data at the same rate. Uniform traffic of this sort is well understood. Depending
on the path-loss exponentα, we use either hierarchical cooperation [17], [18] (forα ∈ (2, 3]) or multi-hop
communication (forα > 3). It is this operation of each edge in the physical layer thatdetermines the
edge capacity of the graphG as seen from the routing layer.

The next example illustrates the operation of this three-layer scheme. For more details on this archi-
tecture (in particular the cooperation and physical layers), we refer the reader to [19].

Example 2. Consider the three layers of the proposed communication architecture depicted in Figure 4.
From top to bottom in the figure, these are the routing layer, the cooperation layer, and the physical layer.
In this example, we consider a single(U,w) pair. The set of cachesU consists of a single node{u} in
the wireless network shown at the bottom left, and its destinationw is in the top right of the network. At
the routing layer, the optimal choice of caches is in this case trivial (since there is just one cacheu). The
optimal route betweenu andw chosen at the routing layer is indicated in black dashed lines. Consider
now the second edge along the path inG from u to w. The middle plane in the figure shows the induced
behavior from using this edge in the cooperation layer. The bottom plane in the figure shows (part of)
the corresponding actions induced in the physical layer. ♦

D. Example Scenarios

Here we provide three examples illustrating various aspects of the caching capacity region. Example 3
shows that the capacity region for caching is inherently more complicated than the ones resulting from
unicast or multicast traffic. Example 4 shows that the strategy of always selecting the nearest cache can
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u

w

Fig. 4. Example operation of the three layer architecture.

be arbitrarily bad. Example 5 analyzes the impact of complete caches on the performance of the wireless
network.

Example 3. (Insufficiency of edge cuts)
For unicast traffic and multicast traffic, it is shown in [19] that it is sufficient to consideredge cutsin

G, i.e, cuts that result if we remove a single edge fromG. By construction,G has at most2n edges, and
hence there are at most2n such edge cuts. This contrasts with the situation for caching traffic, for which
Theorems 1 and 2 indicate that we have to consider general cuts, i.e., arbitrary subsetsS of VG. Indeed,
the approximate capacity region̂ΛCA(n) is expressed in terms of essentiallyΘ(4n) cuts. Comparing these
two results, one might suspect that a simpler characterization in terms of edge cuts can be found for the
caching capacity region as well. This example shows that this is not possible. In other words, the caching
capacity region is inherently more complicated than the unicast or multicast capacity regions of a wireless
network.

AssumeV2,1(n) andV2,2(n) are subsets ofV1,1(n), and consider two nodesu1 ∈ V2,1(n), u2 ∈ V2,2(n).
Construct

λCA
U,w ,

{
ρ(n) if U = {u1, u2}, w ∈ V1,2(n),

0 else,

for someρ(n) ≥ 0. This is illustrated in Figure 5.

e

︸ ︷︷ ︸
V1,2(n)u1 u2

Fig. 5. Caching traffic pattern for Example 3.

The best edge cut results from removing edgee in Figure 5. The cut capacity isce =
(
1
4
n
)2−min{3,α}/2

and the sum-rate across the cut is|V1,2(n)|ρ(n). By Theorem 2 and forα > 6, this shows thatρ∗(n), the
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largest achievable value ofρ(n), is upper bounded as

ρ∗(n) ≤ |V1,2(n)|−1n2−min{3,α}/2+o(1) = n1−min{3,α}/2+o(1)

with high probability.
On the other hand, consider the general node cutS , {u1, u2} ⊂ VG. The cut capacity here is2 and

the sum-rate across the cut is again|V1,2(n)|ρ(n). Moreover, it is easily checked thatS is the bottle neck
cut in G. Thus, forα > 2, Theorem 1 shows thatρ∗(n) is lower bounded with high probability as

ρ∗(n) ≥ |V1,2(n)|−1n−o(1) = n−1−o(1), (2)

and, forα > 6, Theorem 2 shows that
ρ∗(n) ≤ n−1+o(1).

In this example, it can be shown that the correct scaling ofρ∗(n) is actually

ρ∗(n) = n−1±o(1)

for all α > 2 (not justα > 6 as suggested by Theorem 2). Note that this differs substantially from the
upper bound (2) obtained from the best edge cut. ♦

Example 4. (Nearest-neighbor cache selection)
A reasonable strategy of selecting caches is to request the entire message from the nearest available

cache. In fact, this is the strategy implicitly assumed in most of the prior work considering caching in
wireless networks cited in Section I-A. This example shows that this strategy can be arbitrarily bad.

AssumeV2,1(n) andV2,2(n) are subsets ofV1,1(n), andV2,3(n) is a subset ofV1,2(n). Consider a node
u∗ ∈ V2,2(n), and label the nodes inV2,1(n) = {w1, w2, . . .} and inV2,3(n) = {u1, u2, . . .}. Construct

λCA
U,w ,

{
ρ(n) if U = {u∗, ui}, w = wi for somei,

0 else,

for someρ(n) ≥ 0. This is illustrated in Figure 6.

︸︷︷︸
V2,1(n)

︸︷︷︸
V2,3(n)u∗

Fig. 6. Caching traffic pattern for Example 4.

For everywi, the nearest cache isu∗. It can be shown that requesting the entire message from this
nearest cache results in a per-node rate of at most

ρ(n) ≤ n−1+o(1)

for all α > 2.
Assume now eachwi uses only the more distant cacheui. This achieves a value ofρ(n) of

ρ(n) ≥ n1−min{3,α}/2−o(1) ≫ n−1+o(1).

Applying Theorem 1 yields the samen1−min{3,α}/2−o(1) value ofρ(n), and Theorem 2 confirms that, for
α > 6, no scheme can achieve a better scaling. Hence

ρ∗(n) = n1−min{3,α}/2±o(1)
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for α > 6, and, as in the previous example, it can be shown that this is the correct scaling ofρ∗(n) also
for α ∈ (2, 6]. This shows that the strategy of always selecting the nearest cache can result in a scaling
exponent that is considerably worse than what is achievablewith optimal cache selection. ♦

Example 5. (Complete caches)
Assume we randomly picknβ caches forβ ∈ [0, 1), each holding a complete copy of all the messages.

More precisely, letting̃W = {wi}nβ

i=1 be the collection of caches, we consider a caching traffic matrix
λCA ∈ R

2n×n
+ of the form

λCA
W,v =

{
ρ(n) if W = W̃ ,
0 else,

for someρ(n) ≥ 0. In this setup, choosing the nearest cache strategy (as discussed in Example 4) results
in a per-node rate of

ρ(n) ≥ nβ−1−o(1)

with probability 1 − o(1) asn → ∞. The three-layer architecture proposed in Theorem 1 achieves the
same rate, and Theorem 2 shows that, forα > 6, for any communication scheme

ρ(n) ≤ nβ−1+o(1).

Hence, forα > 6,
ρ∗(n) = nβ−1±o(1),

and it can be shown, as in the previous two examples, that thisis the correct scaling ofρ∗(n) also for
α ∈ (2, 6].

This example illustrates that in situations in which the traffic demand and location of caches are regular
enough, the strategy of selecting the nearest cache (as analyzed also in Example 4, and which is shown
there to be arbitrarily bad in general) can actually be closeto optimal. ♦

IV. PROOFS

This section contains the proofs of Theorems 1, 2, and 3. We start in Section IV-A with some auxiliary
results. Sections IV-B, IV-C, and IV-D contain the proofs ofTheorems 3, 1, and 2, respectively.

A. Auxiliary Results

In this section, we define several quantities and recall someauxiliary results needed in several of the
proofs.

We first introduce a “dual” description of the various regions. Recall that for any caching traffic matrix
λCA ∈ R

2n×n
+

ρ̂λCA(n) , sup
{
ρ ≥ 0 : ρλCA ∈ Λ̂CA(n)

}
,

and define similarly
ρλCA(n) , sup

{
ρ ≥ 0 : ρλCA ∈ ΛCA(n)

}
.

Consider a caching traffic matrixλCA ∈ R
2n×n
+ for the wireless network and note thatλCA can equivalently

be treated as a traffic matrix between the leaf nodes of the graph G introduced in Section III. Let
ΛCA

G (n) ⊂ R
2n×n
+ be the collection of such caching traffic matricesλCA ∈ R

2n×n
+ that can be routed over

G. Note thatφλCA(n) as defined through the linear program (1) is equal to

φλCA(n) = sup
{
φ ≥ 0 : φλCA ∈ ΛCA

G (n)
}
.

It can be shown that the regionsΛCA(n), Λ̂CA(n), andΛCA
G (n) are convex, and hence knowledge ofρλCA(n),

ρ̂λCA(n), andφλCA(n) for everyλCA ∈ R
2n×n
+ is sufficient to completely describe them.
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To analyze caching traffic in wireless networks, we shall make use of known results for unicast traffic
in such networks. Formally, aunicast traffic matrixλUC for V (n) is an element ofRn×n

+ , associating with
each pair(u, w) ∈ V (n)× V (n) the rateλUC

u,w at which nodeu wants to transmit a message to nodew.
We define theunicast capacity regionΛUC(n) ⊂ R

n×n
+ to be the collection all achievable unicast traffic

matricesλUC ∈ R
n×n
+ . In analogy to the caching case, defineΛUC

G (n) ⊂ R
n×n
+ as the collection of unicast

traffic matricesλUC ∈ R
n×n
+ that can be routed over the tree graphG.

We now introduce some regularity conditions that are satisfied with high probability by a random
node placement. DefineV(n) to be the collection of all node placementsV (n) that satisfy the following
conditions:

ru,v > n−1 for all u, v ∈ V (n),
∣∣Vℓ,i(n)

∣∣ ≤ log(n) for ℓ =
1

2
log(n) and all i ∈ {1, . . . , 4ℓ},

∣∣Vℓ,i(n)
∣∣ ≥ 1 for ℓ =

1

2
log

( n

2 log(n)

)
and all i ∈ {1, . . . , 4ℓ},

∣∣Vℓ,i(n)
∣∣ ∈ [4−ℓ−1n, 4−ℓ+1n] for all ℓ ∈

{
1, . . . ,

1

2
log(n)

(
1− log−5/6(n)

)}
, i ∈ {1, . . . , 4ℓ}.

The first condition is that the minimum distance between nodepairs is not too small. The second condition
is that all squares of area1 contain at mostlog(n) nodes. The third condition is that all squares of area
2 log(n) contain at least one node. The fourth condition is that all squares up to level1

2
log(n)

(
1 −

log−5/6(n)
)

contain a number of nodes proportional to their area.
The next lemma states that a random node placement satisfies these conditions with high probability.

Lemma 4.
P
(
V (n) ∈ V(n)

)
≥ 1− o(1)

as n → ∞.

Proof. See [19, Lemma 5].

B. Proof of Theorem 3

We first prove the upper bound, i.e.,
φλCA ≤ ρ̂λCA . (3)

Note that ifλCA ∈ ΛCA
G then there exists a strategy to route traffic at ratesλCA overG. This implies that

the flow across each cutS ⊂ VG must be less than the capacity of that cut. The flow across sucha cut
S contains at least all those requested messages that only contain caches inS, i.e.,

∑

U⊂S∩V (n)

∑

w∈V (n)\S

λCA
U,w.

On the other hand, the capacity of the cutS is equal to
∑

(u,v)∈EG:
u∈S,v/∈S

cu,v.

Therefore ∑

U⊂S∩V (n)

∑

w∈V (n)\S

λCA
U,w ≤

∑

(u,v)∈EG:
u∈S,v/∈S

cu,v

for all S ⊂ V , and henceλCA ∈ ΛCA
G implies λCA ∈ Λ̂CA. Thus,ΛCA

G ⊂ Λ̂CA, from which (3) follows.
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G G̃

. . .

=⇒

Fig. 7. Construction of the directed grapheG from the undirected graphG.

We now prove the lower bound, i.e., we show that there existsb3(n) ≥ n−o(1) such that for anyλCA

φλCA ≥ b3(n)ρ̂λCA . (4)

Pick anyλCA. Since for anyb > 0,

φbλCA =
1

b
φλCA ,

ρ̂bλCA =
1

b
ρ̂λCA ,

we may assume without loss of generality that
∑

(U,w)

λCA
U,w = 1. (5)

Recall thatG is anundirectedcapacitated graph. Construct adirectedcapacitated graph̃G = (V eG, E eG)
as follows. Take the undirected graphG and turn it into a directed graph by splitting each edgee ∈ EG

into two directed edges each with the same capacity ase. Add 2n additional nodes toVG, one for each
subsetU ⊂ V . Connect the new nodẽu corresponding toU ⊂ V to each nodeu ∈ U by a (directed)
edge(ũ, u) with cũ,u = ∞. This procedure is illustrated in Figure 7. We call the directed version ofG
that is contained iñG as a subgraph itscore. Note that if some flows can be routed throughG then the
same flows can be routed through the core ofG̃, and if some flows can routed through the core ofG̃ then
at least half of each flow can be routed throughG. Hence, for scaling purposes, the two are equivalent.

Now, assume we are given a caching traffic matrixλCA for G. Construct aunicast traffic matrix λ̃UC

for G̃ by making for each(U,w) pair in G (i.e., U ⊂ V , w ∈ V ) the nodeũ in G̃ corresponding toU a
source forw with rate

λ̃UC
ũ,w , λCA

U,w.

Denote byΛUC
eG

the set of feasible unicast traffic matrices forG̃, and set

φ̃λ̃UC , sup
{
φ ≥ 0 : φλ̃UC ∈ ΛUC

eG

}
.

By construction ofG̃ from G, and by the above argument relatingG to the core ofG̃, we have

φλCA ≥ 1

2
φ̃λ̃UC. (6)

We are thus left with the problem of analyzing unicast trafficover G̃. Two difficulties arise. First,̃G
is a directed graph. While unicast traffic over undirected graphs withm nodes are well understood and
O(log(m)) approximation results for the capacity region of such graphs in terms of cut-set bounds are



13

known [23], the best known approximation result for generaldirected graphs is (up to polylog factors)
O(m11/23) [24]. Second, the graph̃G is exponentially big inn. More precisely,|V eG| ≥ 2n. Hence even a
logarithmic (in the sizem of the graph) approximation result will only yield a polynomial approximation
in n. Nonetheless, as we shall see, the special structure ofG̃ can be used to obtainlog(n) approximation
results ofΛUC

eG
.

We use an idea from [25], namely that the unicast traffic problem can be reduced to a maximum
sum-rate problem. More precisely, for a subsetF̃ ⊂ V eG × V eG of (u, w) pairs in G̃, define themaximum
sum-rateas

σ̃ eF , sup
{∑

(u,w)∈ eF λ̃
UC
u,w : λ̃UC ∈ ΛUC

eG

}
.

We now argue that for every unicast traffic matrixλ̃UC there existsF̃ such that̃σ eF is not too much bigger
than φ̃λ̃UC .

First, note that̃φλ̃UC is the solution to the following linear program

maximize φ

subject to
∑

p∈ ePu,w
fp ≥ φλ̃UC

u,w ∀ u, w ∈ V eG,∑
p∈ eP :e∈p fp ≤ ce ∀e ∈ E eG,

fp ≥ 0 ∀ p ∈ P̃ ,

(7)

whereP̃u,w is the collection of all paths iñG from nodeu to nodew, and

P̃ ,
⋃

(u,w)∈V eG
×V eG

P̃u,w.

The corresponding dual linear program is

minimize
∑

e∈E eG
ceme

subject to
∑

e∈pme ≥ du,w ∀ u, w ∈ V eG, p ∈ P̃u,w,∑
u,w∈V eG

du,wλ̃
UC
u,w ≥ 1

me ≥ 0 ∀ e ∈ E eG,
du,w ≥ 0 ∀ u, w ∈ V eG.

(8)

Since the all-zero solution is feasible for the primal program (7), strong duality holds.
Second,̃σ eF is the solution to the linear program

maximize
∑

(u,w)∈ eF

∑
p∈ ePu,w

fp
subject to

∑
p∈ eP :e∈p fp ≤ ce ∀e ∈ E eG,

fp ≥ 0 ∀ p ∈ P̃ ,

and its dual is
minimize

∑
e∈E eG

ceme

subject to
∑

e∈pme ≥ du,w ∀ u, w ∈ V eG, p ∈ P̃u,w,

du,w ≥ 1 ∀ (u, w) ∈ F̃ ,
me ≥ 0 ∀ e ∈ E eG,
du,w ≥ 0 ∀ u, w ∈ V eG.

(9)

Again strong duality holds.
Let {m∗

e}e∈E eG
, {d∗u,w}u,w∈V eG

be a minimizer for the dual (8) of the unicast traffic problem.We now
show how{m∗

e}, {d∗u,w} can be used to construct a solution to the dual (9) of the maximum sum-rate
problem. Note that we can assume without loss of optimality that

d∗u,w =

{
0 if λ̃UC

u,w = 0,

minp∈ ePu,w

∑
e∈pm

∗
e else.

(10)
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Now, sincece = ∞ whenevere ∈ E eG \EG, we havem∗
e = 0 for those edges. Since, in addition,λ̃UC

u,w > 0
only if u ∈ V eG \ VG and if w is a leaf node ofG, this implies that{d∗u,w}u,w∈V eG

can take at mostn2

different nonzero values. Order these values in decreasingorder

d∗1 > d∗2 > . . . > d∗K > d∗K+1 = 0

with K ≤ n2, and define
λ̃UC
k ,

∑

u,w∈V eG
:d∗u,w=d∗

k

λ̃UC
u,w.

We now argue thatd∗k ≤ n2 for all k ∈ {1, . . . , K}. In fact, assumed∗1 > n2, then by (10) there exists
at least one edgẽe such thatm∗

ẽ > n. Hence
∑

e∈E eG

cem
∗
e ≥ cẽm

∗
ẽ > n

sincece ≥ 1 for all e ∈ E eG. On the other hand, letme = 1 for all edges between the leave nodes and
parent nodes in the core of̃G, and letme = 0 for all other edges. Setdu,w as in (10) but with respect
to this choice of{me}. Since all paths between node pairs(u, w) such thatλ̃UC

u,w > 0 include at least
one edge between the aforementioned leave and parent nodes,we havedu,w ≥ 1 whenever̃λUC

u,w > 0, and
therefore ∑

u,w∈V eG

du,wλ̃
UC
u,w ≥

∑

u,w∈V eG

λ̃UC
u,w = 1,

by the normalization assumption (5). Thus{me}, {du,v} is feasible for the dual (8), and has value
∑

e∈E eG

ceme = n <
∑

e∈E eG

cem
∗
e,

contradicting the optimality of{m∗
e}, {d∗u,v}. Henced∗k ≤ d∗1 ≤ n2 for all k.

We now argue that at least oned∗k is not too small. Letk1 < k2 < . . . < kI be such that

{ki}Ii=1 =
{
k : λ̃UC

k ≥ 1

2n4

}
. (11)

Note thatI ≥ 1 since otherwise

∑

u,w∈V eG

λ̃UC
u,w =

K+1∑

k=1

λ̃UC
k

< (K + 1)
1

2n4

≤ n2 + 1

2n4

≤ 1,

contradicting the normalization assumption (5). Finally,define

si ,

i∑

j=1

λ̃UC
kj

.
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Using that{d∗k} is feasible for the dual (8), thatd∗k ≤ n2, and thatK ≤ n2, we have

I∑

i=1

d∗kiλ̃
UC
ki

≥ 1−
∑

k:λ̃UC
k

<1/2n4

d∗kλ̃
UC
k

≥ 1− 1

2n4
Kn2

≥ 1

2
. (12)

We argue that this implies existence ofi such that

d∗ki ≥
1

2si(1 + ln(2n4))
. (13)

Indeed, assume (13) is false for alli. Then

I∑

i=1

d∗kiλ̃
UC
ki

<
1

2(1 + ln(2n4))

I∑

i=1

λ̃UC
ki

si

=
1

2(1 + ln(2n4))

(
1 +

I∑

i=2

si − si−1

si

)
(14a)

≤ 1

2(1 + ln(2n4))

(
1 +

I∑

i=2

(
ln(si)− ln(si−1)

))
(14b)

=
1

2(1 + ln(2n4))

(
1 + ln(sI/λ̃

UC
k1

))
)

≤ 1

2(1 + ln(2n4))

(
1 + ln(2n4)

)
(14c)

=
1

2
,

where we have used thatI ≥ 1 in (14a), that1− x ≤ − ln(x) for everyx ≥ 0 in (14b), and thatsI ≤ 1
by (5) andλ̃UC

k1
≥ 1

2n4 in (14c). This contradicts (12), showing that (13) must holdfor somei. Consider
this value ofi in the following.

Now, consider the following set̃F of (u, w) pairs:

F̃ ,
{
(u, w) : d∗u,w ≥ d∗ki

}
.

Note that, by (10),F̃ contains only pairs(u, w) such thatu ∈ V eG \ VG andw ∈ V ⊂ V eG (i.e., nodes in
G̃ corresponding to leaf nodes inG). Set

du,w ,
d∗u,w
d∗ki

,

me ,
m∗

e

d∗ki
.

Note that for(u, w) ∈ F̃ ,

du,w =
d∗u,w
d∗ki

≥ 1,
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and that for allu, w ∈ V eG, p ∈ P̃u,w

∑

e∈p

me =
1

d∗ki

∑

e∈p

m∗
e

≥ 1

d∗ki
d∗u,w

= du,w,

by feasibility of {d∗u,w} and{m∗
e} for the dual (8). Hence, for this̃F , the choice of{me} and{du,w} is

feasible for the dual (9). By weak duality

σ̃ eF ≤
∑

e∈E eG

ceme

=
1

d∗ki

∑

e∈E eG

cem
∗
e.

By (13),

d∗ki ≥
1

2si(1 + ln(2n4))
,

and, sinced∗kj ≥ d∗ki for all j ≤ i,

si =
i∑

j=1

λ̃UC
kj

=

i∑

j=1

∑

(u,w):d∗u,w=dk∗
j

λ̃UC
u,w

≤
∑

(u,w):d∗u,w≥d∗
ki

λ̃UC
u,w

=
∑

(u,w)∈ eF

λ̃UC
u,w

, λ̃UC
eF
.

Therefore
σ̃ eF ≤ 2λ̃UC

eF
(1 + ln(2n4))

∑

e∈E eG

cem
∗
e.

Since{m∗
e} is optimal for the dual (8), and by strong duality, we also have

∑

e∈E eG

cem
∗
e = φ̃λ̃UC,

and hence
φ̃λ̃UC ≥ 1

2(1 + ln(2n4))

σ̃ eF

λ̃UC
eF

. (15)

We are thus left with analyzing maximum sum-ratesσ̃ eF in G̃. Now notice that, since the edges in
E eG \ EG have infinite capacity, and since for(u, w) ∈ F̃ we haveu ∈ V eG \ VG andw ∈ V ⊂ VG ⊂ V eG,
this analysis can be done by considering only the core ofG̃. More precisely, for a collection of node
pairs F̃ in G̃ as above, we construct a collection of node pairsF in G as follows. For each(ũ, w) ∈ F̃
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with ũ connected byG̃ with nodesU ⊂ VG ⊂ V eG, add (u, w) to F for eachu ∈ U . Denote byσF the
maximum sum-rate forF in G. SinceG is the undirected version of the core ofG̃, we have

σ̃ eF ≥ σF . (16)

For a collection of node pairsF in G, we call a set of edgesM a multicut for F if in the graph
(VG, EG \M) each pair inF is disconnected. For a subsetM ⊂ EG, define

cM ,
∑

e∈M

ce.

It is shown in [26, Theorem 8] that ifG is an undirected tree, then for everyF ∈ VG × VG there exists a
multicut M for F such that

σF ≥ 1

2
cM . (17)

Combining (15), (16), and (17), we obtain that for everyλ̃UC there exists a collection of node pairs̃F in
G̃, and a multicutM for the correspondingF in G such that

φ̃λ̃UC ≥ 1

4(1 + ln(2n4))

cM

λ̃UC
eF

. (18)

We now show how the edge cutM ⊂ EG can be transformed into a node cutS ⊂ VG. Denote by{Si}
the connected components of(VG, EG \M). We can assume without loss of generality that

M =
⋃

i

(Si × Sc
i ) ∩ EG,

since otherwise we can remove the additional edges fromM to create a smaller multicut forF . We
therefore have

cM =
1

2

∑

i

c(Sc
i×Si)∩EG

, (19)

since every edge inM appears exactly twice in the sum on the right-hand side. Define for S ⊂ VG

λCA
S,Sc ,

∑

U⊂S∩V

∑

w∈V \S

λCA
U,w.

M is a multicut forF induced byF̃ , and hence for every(u, w) ∈ F̃ and the corresponding pair(U,w),
M separatesw from all the nodes inU . Therefore, for each such(U,w) pair, there exists aSi such that
w ∈ Si, U ⊂ Sc

i . This shows that
λ̃UC

eF
≤

∑

i

λCA
Sc
i ,Si

. (20)

Equations (18), (19), and (20) imply that there existsj such that

φ̃λ̃UC ≥ 1

8(1 + ln(2n4))

∑
i c(Sc

i×Si)∩EG∑
i λ

CA
Sc
i ,Si

≥ 1

8(1 + ln(2n4))

c(Sc
j×Sj)∩EG

λCA
Sc
j ,Sj

≥ 1

8(1 + ln(2n4))
min
S⊂VG

c(S×Sc)∩EG

λCA
S,Sc

=
1

8(1 + ln(2n4))
ρ̂λCA .

(21)
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Combined with (6), this shows that for

b3(n) ,
1

16(1 + ln(2n4))
≥ n−o(1)

we have
φλCA ≥ b3(n)ρ̂λCA ,

proving the lower bound in Theorem 3.

C. Proof of Theorem 1

In this Section, we provide the proof of Theorem 1. Instead ofproving the theorem directly, it will be
convenient to work with the dual descriptionsρλCA(n) and ρ̂λCA(n) of ΛCA(n) and Λ̂CA(n) introduced in
Section IV-A. The next theorem is the dual version of Theorem1.

Theorem 5. Under either fast or slow fading, for anyα > 2, there existsb1 = n−o(1) such that with
probability 1− o(1) as n → ∞ for any n and caching traffic matrixλCA ∈ R

2n×n
+

b1(n)ρ̂λCA(n) ≤ ρλCA(n).

Proof. The same arguments as in [19, Theorem 1] show that there exists b(n) ≥ n−o(1) such that if a
caching traffic matrixλCA can be routed overG, then b(n)λCA can be communicated reliably over the
wireless network. Formally, ifV ∈ V then under fast fading

b(n)φλCA ≤ ρλCA , (22)

and the same results holds for slow fading for a collection ofchannel gainsH (not dependent onλCA)
with

P({hu,v}u,v∈V ∈ H) ≥ 1− o(1)

asn → ∞.
Combining (22), with Theorem 3 and Lemma 4, we obtain that with probability

P({hu,v} ∈ H, V ∈ V) ≥ 1− o(1)

asn → ∞, we have for any caching traffic matrixλCA

ρλCA ≥ b(n)φλCA

≥ b(n)b3(n)ρ̂λCA .

Setting
b1(n) , b(n)b3(n),

and recalling thatb3(n) ≥ n−o(1) andb(n) ≥ n−o(1) both uniformly inλCA, concludes the proof of Theorem
5.
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D. Proof of Theorem 2

In this Section, we prove Theorem 2. As before, it will be convenient to work with the dual description
ρλCA(n) and ρ̂λCA(n) of ΛCA(n) and Λ̂CA(n) as introduced in Section IV-A. The next theorem is the dual
version of Theorem 2

Theorem 6. Under either fast or slow fading, for anyα > 2, there existsb2 ≤ no(1) such that with
probability 1− o(1) as n → ∞ for any n and caching traffic matrixλCA ∈ R

2n×n
+

ρλCA(n) ≤ b2(n)ρ̂λCA(n).

We start with some auxiliary lemmas. For a subsetsS1, S2 ⊂ V (n), denote byC(S1, S2) the MIMO
capacity between the nodes inS1 andS2. Denote bySk

2 the nodes inS2 that are at distance betweenk
andk + 1 from S1, i.e.,

Sk
2 , {v ∈ S2 : min

u∈S1

ru,v ∈ [k, k + 1)}.

Lemma 7. Under either fast or slow fading, for everyα > 6, there exists a constantK1 such that for all
V (n) ∈ V(n) and all S ⊂ V (n)

C(S, Sc) ≤ K1 log
4(n)

log(n)∑

k=0

|Sk
2 |.

Proof. SetS1 , S andS2 , Sc, and note that

S2 =
∞⋃

k=0

Sk
2 ,

Let
HS1,S2 , [hu,v]u∈S1,v∈S2

be the matrix of channel gains between the nodes inS1 andS2. Under fast fading

C(S1, S2) , max
Q(H)≥0:

E(qu,u)≤P ∀u∈S1

E

(
log det

(
I+H

†
S1,S2

Q(H)HS1,S2

))
,

and under slow fading

C(S1, S2) , max
Q≥0:

qu,u≤P ∀u∈S1

log det
(
I+H∗

S1,S2
QHS1,S2

)
.

Applying the generalized Hadamard inequality, we obtain that under either fast or slow fading

C(S1, S2) ≤ C(S1,∪log(n)
k=0 Sk

2 ) + C(S1,∪k>log(n)S
k
2 ). (23)

Now, for the first term in (23), using Hadamard’s inequality once more, yields

C(S1,∪log(n)
k=0 Sk

2 ) ≤
log(n)∑

k=0

∑

v∈Sk
2

C(S1, {v})

≤
log(n)∑

k=0

∑

v∈Sk
2

C({v}c, {v}).

By Lemma 7 in [19],
C({v}c, {v}) ≤ K log(n)
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for some constantK, and thus

C(S1,∪log(n)
k=0 Sk

2 ) ≤ K log(n)

log(n)∑

k=0

|Sk
2 |. (24)

For the second term in (23), we have the following upper boundfrom (slightly adapting) Theorem 2.1
in [11]:

C(S1,∪k>log(n)S
k
2 ) ≤

∑

k>log(n)

∑

v∈Sk
2

( ∑

u∈S1

r−α/2
u,v

)2

.

For v ∈ Sk
2 , the (open) disk of radiusk aroundv does not contain any node inS1 (by definition ofSk

2 ).
Moreover, sinceV ∈ V, there are at mostlog(n) nodes inside every subsquare ofA of sidelength one.
Thus

∑

u∈S1

r−α/2
u,v log(n)

∞∑

k̃=k

8π(k̃ + 2)k̃−α/2

≤ K̃ log(n)k2−α/2,

for some constant̃K independent ofS1 andk. Therefore,

C(S1,∪k>log(n)S
k
2 ) ≤

∑

k>log(n)

|Sk
2 |K̃2 log2(n)k4−α. (25)

Consider now somev ∈ Sk
2 with k > log(n), and letu∗ be the closest point inS1 to v. Sincev ∈ Sk

2 ,
we must have

ru∗,v ∈ [k, k + 1).

Consider the (open) disk of radiusru∗,v aroundv and the disk of radiuslog(n) aroundu∗. Sinceu∗ is
the closest node tov in S1, all nodes in the disk aroundv are inS2. Moreover, the intersection of the
two disks has an area of at leastπ

4
log2(n). SinceV ∈ V, this implies that this intersection must contain

at least one point, saỹv, and by construction

ṽ ∈
log(n)⋃

k̃=0

S k̃
2 .

This shows that for every nodev in Sk
2 there exists a nodẽv in ∪log(n)

k̃=0
S k̃
2 such that

rv,ṽ ∈ [k − log(n), k + 1).

Now, sinceV ∈ V, for every nodẽv, there are at most

2π(k + 1)(log(n) + 5) log(n) ≤ K ′k log2(n)

nodes at distance[k − log(n), k + 1). Hence the number of nodes inSk
2 is at most

|Sk
2 | ≤ K ′k log2(n)

log(n)∑

k̃=0

|S k̃
2 |. (26)
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Combining (26) with (25) yields

C(S1,∪k>log(n)S
k
2 ) ≤

∑

k>log(n)

|Sk
2 |K̃2 log2(n)k4−α

≤ K ′K̃2 log4(n)
( log(n)∑

k̃=0

|S k̃
2 |
) ∑

k>log(n)

k5−α

= K ′′ log4(n)

log(n)∑

k̃=0

|S k̃
2 |,

(27)

for some constantK ′′, and where we have used thatα > 6. Finally, plugging (24) and (27) into (23)
shows that

C(S1, S2) ≤ (K +K ′′) log4(n)

log(n)∑

k=0

|Sk
2 |,

which proves the lemma with
K1 , K +K ′′.

The next lemma shows that, for large path-loss exponents (α > 6), every cut is approximately achievable,
i.e., for every cut there exists an achievable unicast traffic matrix that has a sum-rate across the cut that
is not much smaller than the cut capacity.

Lemma 8. Under fast fading, for everyα > 6, there existsb4(n) ≤ no(1) and λUC ∈ ΛUC(n) such that
for any n, V (n) ∈ V(n), andS ⊂ V (n),

C(S, Sc) ≤ b4(n)
∑

u∈S

∑

w/∈S

λUC
u,w. (28)

Moreover, there exists a collection of channel gainsH(n) such that

P
(
{hu,v}u,v∈V (n) ∈ H(n)

)
≥ 1− o(1)

as n → ∞, and such that for{hu,v}u,v ∈ H(n), (28) holds for slow fading as well.

Proof. By Lemma 7, forV ∈ V
C(S, Sc) ≤ K1 log

4(n)|{v ∈ Sc : rS,v < log(n) + 1}|, (29)

where
rS,v , min

u∈S
ru,v.

Construct a unicast traffic matrixλUC ∈ R
n×n
+ as

λUC
u,w ,

{
ρ(n) if ru,w < log(n) + 1,

0 else,

for some functionρ(n). We now argue that forρ(n) = Θ(log−2(n)) there exists̃b(n) ≥ n−o(1) such that
b̃(n)λUC ∈ ΛUC. This follows from [19, Theorem 1] (see also Section IX.C there), once we show that for
everyℓ ∈ {1, . . . , L(n)} and i ∈ {1, . . . , 4ℓ} we have

∑

u∈Vℓ,i

∑

w/∈Vℓ,i

λUC
u,w ≤ (4−ℓn)2−min{3,α}/2,

∑

u/∈Vℓ,i

∑

w∈Vℓ,i

λUC
u,w ≤ (4−ℓn)2−min{3,α}/2,
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and for allw ∈ V
∑

u 6=w

λUC
u,w ≤ 1,

∑

u 6=w

λUC
w,u ≤ 1.

Since we assume thatV ∈ V, we have for allw ∈ V
∑

u 6=w

λUC
u,w ≤ K log2(n)ρ(n),

∑

u 6=w

λUC
w,u ≤ K log2(n)ρ(n),

for some constantK. By the locality of the traffic matrixλUC, it can be shown that this is sufficient for
[19, Theorem 1] to apply withρ(n) = 1

K
log−2(n). Henceb̃(n)λUC ∈ ΛUC for fast fading, and the same

holds for slow fading for someH with

P
(
{hu,v}u,v∈V ∈ H

)
≥ 1− o(1)

asn → ∞.
Combined with (29), this implies that

C(S, Sc) ≤ K log6(n)

b̃(n)

∑

u∈S

∑

w/∈S

λUC
u,w,

proving the lemma.

We are now ready for the proof of the outer bound onΛCA(n).

Proof of Theorem 6.Consider a cutS ⊂ V in the wireless network. Assume we allow the nodes on each
side of the cut to cooperate without any restriction — this can clearly only increaseρλCA . The total amount
of traffic that needs to be transmitted across the cut is then

∑

U⊂S

∑

w/∈S

λCA
U,w.

The maximum achievable sum-rate (with the aforementioned node cooperation) is given byC(S, Sc), the
MIMO capacity between the nodes inS and inSc. Therefore

ρλCA ≤ min
S⊂V

C(S, Sc)∑
U⊂S

∑
w/∈S λ

CA
U,w

. (30)

We proceed by relating the cutS in the wireless network to a cut̃S in G. By Lemma 8, forV ∈ V,
there existsλUC ∈ ΛUC such that for fast fading

C(S, Sc) ≤ b4(n)
∑

u∈S

∑

w/∈S

λUC
u,w, (31)

and (31) holds also for slow fading if{hu,v}u,v ∈ H (with H defined as in Lemma 8). By [19, Theorem
1] (see again the discussion in Section IX.C there), forα > 5 and V ∈ V, there existsK such that if
λUC ∈ ΛUC thenK log−6(n)λUC ∈ ΛUC

G , whereG is the tree graph defined in Section III-A.
Now, consider anỹS ⊂ VG such thatS̃ ∩ V = S. Note thatS̃ is a cut inG separatingS from V \ S.

SinceK log−6(n)λUC ∈ ΛUC
G , we thus have

∑

u∈S

∑

w/∈S

K log−6(n)λUC
u,w ≤

∑

(u,v)∈EG:

u∈eS,v/∈eS

cu,v,
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and by minimizing over the choice of̃S such thatS̃ ∩ V = S, we obtain
∑

u∈S

∑

w/∈S

K log−6(n)λUC
u,w ≤ min

eS:eS∩V=S

∑

(u,v)∈EG:

u∈eS,v/∈eS

cu,v. (32)

Combining (31) and (32) shows that

C(S, Sc) ≤ b4(n)

K
log6(n) min

eS:eS∩V=S

∑

(u,v)∈EG:

u∈eS,v/∈eS

cu,v.

Together with (30), and using Lemmas 4 and 8, this yields thatwith probability

P({hu,v}u,v ∈ H, V ∈ V) ≥ 1− o(1)

asn → ∞, we have for any caching traffic matrixλCA

ρλCA ≤ min
S⊂V

C(S, Sc)∑
U⊂S

∑
w/∈S λ

CA
U,w

≤ b2(n)min
S⊂V

min
eS∈VG:eS∩V=S

∑
(u,v)∈EG:

u∈eS,v/∈eS

cu,v

∑
U⊂eS∩V

∑
w∈V \eS λ

CA
U,w

= b2(n) min
eS⊂VG

∑
(u,v)∈EG:

u∈eS,v/∈eS

cu,v

∑
U⊂eS∩V

∑
w∈V \eS λ

CA
U,w

= b2(n)ρ̂λCA ,

with

b2(n) ,
b4(n)

K
log6(n) ≤ no(1).

V. CONCLUSIONS

We analyzed the influence of caching on the performance of wireless networks. Our approach is
information theoretic, yielding an inner bound on the caching capacity region for all valuesα > 2
of path-loss exponent, and a matching (in the scaling sense)outer bound forα > 6. Thus, in the high
path-loss regimeα > 6, this provides a scaling characterization of the complete caching capacity region.
Even though this region is2n×n-dimensional (i.e., exponential in the number of nodesn in the wireless
network), we present an algorithm that checks approximate feasibility of a particular caching traffic matrix
efficiently (in polynomial time in the description length ofthe caching traffic matrix). Achievability is
proved using a three-layer communication architecture achieving the entire caching capacity region in the
scaling sense forα > 6. The three layers deal with optimal selection of caches, choice of amount of
necessary cooperation, noise and interference, respectively. The matching (in the scaling sense) converse
proves that addressing these questions separately is without loss of order-optimality in the high path-loss
regime.
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