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Abstract

We consider the problem of delivering content cached in &less network of: nodes randomly located on
a square of area. In the most general form, this can be analyzed by consigehie2™ x n-dimensional caching
capacity region of the wireless network. We provide an inm@und on this caching capacity region, and, in the
high path-loss regime, a matching (in the scaling senserdagund. For large path-loss exponent, this provides
an information-theoretic scaling characterization of #rgire caching capacity region. Moreover, the proposed
communication scheme achieving the inner bound shows ligaptoblem of cache selection and channel coding
can be solved separately without loss of order-optimality.

. INTRODUCTION

With the continued large-scale deployment of infrastreestwireless networking continues to be an
area of active research. In this context, unicast and nasiticaffic has been widely studied. The influence
of caches on the network performance, on the other hand, dw@sved considerably less attention.
Nevertheless, the ability to replicate data at severalgslac the network is likely to significantly increase
supportable data rates. In this paper, we consider the goloif characterizing achievable rates with
caching in large wireless networks.

In its most general form, this problem can be formulated #evic. Consider a wireless network with
nodes, and assume a naden the network requests a message available at the set cdsldfa subset of
then nodes) at a certain rate,,. The collection of all{ A/} } 1., can be represented as a caching traffic
matrix A € R3"*". The question is then to characterize the set of achievaiibing traffic matrices
A% (n) c RZ™"™. We answer this question by providing an approximate (8ealing) characterization
of this caching capacity regioh“*(n) for large wireless networks (i.e., as— oc) under random node
placement and assuming large path-loss exponent. Oumieeais information-theoretic, i.e., we do not
make any assumptions on the communication protocol used.

While A°A(n) is a high-dimensional object (namely x n-dimensional), we show that feasibility of
a traffic matrix \° can be efficiently evaluated. We also provide an explicit camication scheme
achieving (in the scaling sense) the entire caching capaegion A“A(n).

A. Related Work

Several aspects of caching in wireless networks have beestigated in prior work. In the computer
science literature, the wireless network is usually madlele a graph induced by the geometry of the
node placement. This is tantamount to making a protocol messaimption (as proposed in [1]) about the
communication scheme used. The quantity of interest imsthe distance from each node to the closest
cache that holds the requested message. The problem ofabmathe location for multicasting from a
single source has been investigated in [2], [3]. Optimahaoag densities under uniform random demand
have been considered in [4], [5]. Several cache replacestategies are proposed, for example, in [6].

To the best of our knowledge, caching has not been directhsidered in the information theory
literature. However, it can be seen that the problem of agitintransmitting messages held at several
caches to a destination is a special case of communicatimglated sources over a noisy network. Indeed,
we can consider that each cache has an identical messagaddos¢éhe same destination. This more
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general problem of transmitting correlated sources haswed considerable attention. Unlike the situation
with point-to-point communication, for network commurtica problems source-channel separation does
not hold in general [7]. Hence, the problem of source and mbkooding have to be considered jointly.
While for some special cases optimal communication strasef@r transmitting correlated sources over a
noisy network are known (for example, a single destinatiodenrequesting all the sources observed in
the network with independent network links [8], [9]), thengeal problem is unsolved.

Finally, a special case of the caching problem considered, lie which each destination has only a
single cache (i.e., standard unicast traffic), has beenlygtadied and is by now well understood. See,
for example, [1], [10]-[20].

B. Our Contribution

We consider the general caching problem from an informatti@oretic point of view. Compared to
the prior work mentioned in the last section, there are s¢very differences. First, we do not make
a protocol channel model assumption, and instead allow $eeafi arbitrary communication protocols
over the wireless network. Second, we allow for generafitralemands, i.e., arbitrary number of caches,
and arbitrary demands from each destination. Third, we dampose that each destination requests the
desired message from only the closest cache, nor do we intipaistihe entire message has to be requested
from the same cache. Rather we allow parts of the same metsdgerequested from distinct caches.

We present an achievable communication scheme for the ngaghoblem, yielding an inner bound
on the caching capacity region. For large values of path-tdgonent, we provide a matching (in the
scaling sense) outer bound, proving the optimality (agaithe scaling sense) of our proposed scheme.
Together, this provides a scaling description of the em@ehing capacity region of the wireless network
in the large path-loss regime. The proposed communicatibarse solves the problem of optimal cache
selection and channel coding separately, showing that awsdparation is order-optimal.

C. Organization
The remainder of the paper is organized as follows. In Sedflowe introduce the channel model as

well as notation. In Section]ll, we present the main resaftthe paper. Section IV contains proofs, and
SectionY concluding remarks.

II. NETWORK MODEL AND NOTATION
Consider the square
A(n) £[0,vn)?
of arean, and letV/(n) C A(n) be a set ofV'(n)| = n nodes onA(n). We assume the following channel
model. The (sampled) received signal at nedaend timet is

Yolt] = Z P o[ty [t] + 20 [t]
ueV(n)\{v}
forall v € V(n),t € N, and where{z,[t]}, are the (sampled) signals sent by the nodeg (in) at timet.
Here {z,[t]},. are independent and identically distributed (i.i.d.) eiecly symmetric complex Gaussian
random variables with meah and variancel, and

huo[t] = r;fjﬂ exp(vV—10,,[t]),

for path-loss exponent > 2, and wherer, , is the Euclidean distance betweenand v. The phase
terms {0, ,[t|}., IS assumed to be i.i.d. with uniform distribution c@@;%)ﬂ We either assume that

11t is worth pointing out that recent results [20] suggest,thader certain assumptions on the location of scattefiEmgents, for € (2, 3)
and very large values of, the channel model used here (in particular, the i.i.d.ragsion of the phase terms, might yield results that are
too optimistic. However, in [21] the same authors show thater different assumptions on the scatterers, the chanoéél used here is
still valid also fora € (2, 3) and very large values of. This indicates that the issue of proper channel modelirtpériow path-loss regime
for very large networks is somewhat delicate and requirethdu investigation.



Fig. 1. SubsquardA;,} with 0 < ¢ < 2, i.e., with L(n) = 2. The subsquare at levél= 0 is the areaA(n) itself. The subsquares at
level ¢ = 1 are indicated by dashed lines, the subsquares at fevel by dotted lines. Assume for the sake of example that the suzbsg
are numbered from left to right and then from bottom to tog (tinecise order of numbering is immaterial). THéy: (n) are all the nodes
V(n), Vi,1(n) are the nine nodes in the lower left corner (delineated byethdines), and/ 1(n) are the three nodes in the lower left
corner (delineated by dotted lines).

{0...,[t]}: is stationary and ergodic as a functiontoivhich is calledfast fadingin the following, or we
assume{d,,[t]}: is constant as a function @f which is calledslow fadingin the following. In either
case, we assume full channel state information (CSI) islabai at all nodes, i.e., each node knows all
{hup[t]}uo at time¢f We also impose an average power constraint oh the signalz,[{]}, for every
nodeu € V(n).

Partition A(n) into 4° subsquareq A,;(n)}X, of sidelength2=*\/n, and letV,;(n) be the nodes in
Ayi(n). The integer parametérvaries betweei) and L(n) defined

L(n) & %log(n)(l —log™'(n)).

The partitions at various levelsform a dyadic decomposition od(n) as illustrated in Figurg]1.

A caching traffic matrixis an element\®A € RY *". ConsiderU C V(n) andw € V(n). Assume a
message that is requested at destination nod available at all of the caché€s. )\Sﬁu denotes then the
rate at which nodev wants to obtain the message from the cadtiedNote that we do not impose that
any particular cache € U providesw with the desired message, rather multiple of the nodéds gould
provide parts of the message. Note also that, and A5, could both be strictly positive fot/ # U,
i.e., the same destination could request more than one gee$san different collection of caches. We
assume that messages for differéfitw) pairs are independent. Tlaching capacity regio\“A(n) of
the wireless network/(n) is the set of all achievable caching traffic matricéd e R3"*".

Example 1. ConsiderV (n) = {v;};_, with n = 4. Assume that, requests a message,, .,}.,, available
at the caches;, andv, at ratel bit per channel use, and an independent messagg,,, available only
atvs at a rate of2 bits per channel use. Node requests a messagey,, .}, available at the caches
andv, at a rate of4 bits per channel use. The messages, .,},0., M{vs},0,, ANAMyy, 4,10, are assumed
to be independent. This traffic pattern can be described bgchimg traffic matrix\ € R with
Afvgwitor = L Augtor = 20 Afugoatee = 4, @nd Ay, = 0 otherwise. Note that in this example nodgis
destination for two (independent) caching messages, add moand v, serve as caches for more than
one message (but these messages are again assumed ind8pende O

To simplify notation, we will assume when necessary thajdaeals are integers and omit and |- |
operators. For the same reason, we suppress dependenceithin proofs whenever this dependence is

2\We make the full CSI assumption in all the converse resulthimpaper. Achievability can be shown to hold under weaksumptions
on the availability of CSI. In particular, forx > 3, no CSI is necessary, and for € (2,3), a 2-bit quantization of the channel state
{6uv[t]}u,o available at all nodes at timeis sufficient.

3Throughoutlog andIn represent the logarithms with respect to basend e, respectively.



Fig. 2. Construction of the tree gragh We consider the same nodes as in Fidure 1 With) = 2. The leaves of7 are the noded’ (n)
of the wireless network. They are always at lever L(n) + 1 (i.e., 3 in this example). At leveD < £ < L(n) in G, there aret’ nodes.
The tree structure is induced by the decompositiori’¢f:) into subsquaregV; ;(n)}.,:, delineated by dashed and dotted lines. Lével
contains the root node af.

clear from the context. We use bold font to denote matricesnetier the matrix structure is of importance.
We use thef symbol to denote the complex conjugate of a matrix.

Il. M AIN RESULTS

We now present the main results of this paper. In Sedtiod\|llwe provide an inner and, for large
path-loss exponents > 6, a matching (in the scaling sense) outer bound on the cgpagton A“*(n).
In Section[III-B, we discuss computational aspects. In i8ad¢Hl-C] we introduce the communication
scheme achieving the inner bound 6f*(n). We analyze several example scenarios in Se¢fion]lll-D.

A. Caching Capacity Region

Let G = (Vg, Eg) be an undirected capacitated graph, constructed as folléWs a tree with leaf
nodesV (n) C V. Leaf nodes inG share the same parent nodgirnif they fall within the same subsquare
at level L(n) in A(n). Nodes at level in the treeG share the same parent node if all the leaf nodes that
descend from it fall in the same subsquare at lével1 in A(n). Note that through this construction,
each setl,;(n) for ¢ € {0,...,L(n)}, i € 4° is represented by exactly one internal nodeGin This
construction is illustrated in Figuié 2. Assign to each edgeF at level/ in G (i.e., between nodes at
levels¢ and ¢ — 1) a capacity

- (4-tn)2-min(3al/2 if 1< ¢ < L(n),
e — 1 |f€:L(n)+1

With slight abuse of notation, we let fai, v) = e € Eg

A
Cup = Ce-

As we shall see in the following, the caching capacity regi6f(n) is closely related to the following

quantity:
KCA(n) 2 {)\CA c R?:X” . Z Z Agﬁv < Z Cu,w VS C V(;}
UcsSnV(n) weV(n)\S (u,v)EEG:
u€eS,v¢S

The regionACA(n) is described by various subsefsc V. Each such subset can be understood esta
in the graphG. For every cutS C Vg, the sum-rate

>, 2
U,w
UcsSnV(n) weV(n)\S
between nodes i¥ and S¢ (i.e., across the cut) is bounded by the sum-capacity

E Cuv

(u,v)eEg:
ueS,vg¢sS
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Fig. 3. Fora > 6, the setA®(n) approximates the caching capacity regibff'(n) of the wireless network in the sense thatn)A* (n)
(with by (n) > n~°M") provides an inner bound t“*(n) andbs(n)A*(n) (with by(n) < n°")) provides an outer bound ®*(n). The
figure shows two dimensions (namelyy , ,, andA?S . ) of the 2" x n-dimensional set“*(n) and A“*(n).

of edges betweely and S¢. Note that we only count traﬁiagﬁu such that all cache§ are contained in
S.

The first result states that, for all > 2, A*(n) is an approximate inner bound to the caching capacity
region AA(n).

Theorem 1. Under either fast or slow fading, for any > 2, there exist$;(n) > n=°") such that
by (n)AA(n) € A% (n)
with probability 1 — o(1) asn — cc.

We point out that Theoreild 1 holds only with probability- o(1) for different reasons in the fast and
slow fading case. For fast fading, the theorem holds onlynfmite placements that are “regular” enough.
A random node placement satisfies these regularity comditrgth high probability as — oo. For slow
fading, Theoreni]l holds under the same regularity conditammthe node placement, but moreover only
holds for almost all realizations of the channel gains.

The next result states that, for all > 6, A°*(n) is also an approximate matching outer bound to
A®A(n).

Theorem 2. Under either fast or slow fading, for any > 6, there exists,(n) < n°") such that
ACA(n) C by(n)A®(n)
with probability 1 — o(1) asn — cc.

As Theorenill, Theorem 2 holds only with high probability daeregularity conditions on the node
placement. However, unlike Theorérn 1, Theofém 2 holds faealizations of channel gains also for the
slow fading case.

Comparing Theorenis 1 adl 2, we see that,dor 6, the caching capacity regioh“*(n) is approxi-
mately equal ta\“*(n) in the sense that

nWACA(R) c A% (n) c n®WACA(n).

In other words, forw > 6, KCA(n) scales as the caching capacity regiom). This is illustrated in Figure

3.



B. Computational Aspects

Since we are interested in large networks, computatiomeas are a concern. Note that the approximate
caching capacity region®(n) is described in terms of essentialy(4") cuts S C V. We show in
Example[8 in Sectiof III-D that a description with signifitignfewer cuts is not possible. In other
words, even an approximate descriptidt’*(n) of the caching capacity regioh“*(n) is computationally
intractable for large values of. N

On the other hand, consider the simpler problem of testingibeeship ofA\“* in AA(n). We now
argue that this problem can be approximately solved in aoieffi manner. More precisely, we show that
ACA € ACA(n) can be checked approximately in polynomial time in the dpion complexity of \“A.
Combined with Theorenls 1 amd 2, this shows that,dar 6, approximate membershiF* € AA(n)
can be checked efficiently as well.

Formally, define for any caching traffic matr¥* € R <"

prea(n) £ sup{p > 0: pA®* € A% (n)}.

MembershipA\®® € ACA(n) can then be evaluated by checkingpifea(n) < 1. Let ¢yca(n) to be the
solution to the following linear program

max 10}
s.t. S fovw Z0XH,  YUCV(n),weV(n),
e 1)

> D> Db < Ve e Eg,

pEP:e€pUCV (n) weV(n)

forw >0 VUCV(n),weV(n),p€ Py,

where P, ,, is the path inG from nodeu to nodew (sinceG is a tree, there is only one such path), and

where
U P

uelU

re ) U P

UCV(n)weV(n)

>

PU,w

Note that the linear progranii(1), and hence alse.(n), can be evaluated in polynomial time in the

description length oA®A (i.e., in polynomial time in the length of the “input” of th@kar program) by

setting the flow variableg), ., to zero wheneveA,, = 0 andp € Py,,. Moreover, using a primal-dual

algorithm, [1) can be solved efficiently in a distributed men(see, for example, [22, Chapter 3.7]).
The following theorem shows that,ca(n) is a good approximation tpyca(n).

Theorem 3. Under either fast or slow fading, for any > 2, there exists; > n=°") such that for any
n and caching traffic matrixACAR2" <"

bs(n)paca(n) < rea(n) < pyea(n).

As argued abovey,ca(n) can be computed in polynomial time in the description lerafth“A. Hence
TheoreniB shows that testing memberskfip € A°A(n) can be done approximately in polynomial time in
the description length of“A. Combined with Theorenid 1 afdl 2 this implies that,dor 6, approximate
achievability of a traffic matrix\“* (i.e., testing membership®* € AA(n)) can be checked efficiently
and in a distributed fashion.



C. An Efficient Content Delivery Protocol

Theorem[L provides an inner bound to the caching capacitypnmegf a wireless network. Here we
describe the communication scheme achieving the innerdolime matching outer bound shows that,
for a > 6, this scheme is optimal in the scaling sense.

Our proposed communication scheme consists of three lag®endar to a protocol stack. From high
to low level of abstraction, these layers will be denoteddoyting layer, cooperation layerandphysical
layer.

From the view of the routing layer, the wireless network dstissof the noiseless capacitated tree
graphG defined in Sectiof III=A (see Figutéd 2 there). To send a messagilable at the cachés to its
destinationw, the routing layer routes the message oterThe optimal requests of message parts from
the caches iU (i.e., optimal cache selection) are found by solving thedinprogram[{1). As pointed
out in Sectior 1II-B, this optimal cache selection can befqgrened efficiently by a distributed algorithm.

The cooperation layer provides the tree abstract@ibto the routing layer. Sending a message up or
down an edge in the tre@ in the routing layer corresponds in the cooperation layedistributing or
concentrating the same message in the wireless networlallRkat the leaf nodes off are the nodes
V(n) of the wireless network and that each internal nodé aépresents some subsqu&jg(n) of V(n).

To send a message from a child node to its parerdt {fne., towards the root node ©f), the message at
the wireless nodes ifr (n) represented by the child node @ is distributed (over the wireless channel)
evenly among all nodes il (n) represented by the parent node(n This distribution is performed by
splitting the message at each nodéelifrn) represented by the child note & into equal size parts, and
transmitting one part to each nodelif{n) represented by the parent node(in To send a message from
a parent node to a child node dn (i.e., away from the root node @f), the message at the wireless nodes
in V(n) represented by the parent nodenis concentrated on the wireless nodes/ifr) represented
by the child node inG. This concentration is performed be collecting at each rindé(n) corresponding

to the child node inG the message parts of the previously split up message loaeatde nodes iV (n)
corresponding to the parent nodedGh

Finally, the physical layer performs this concentrationdastribution of messages. Note that the kind
of traffic resulting from the operation of the cooperatiogdais regular in the sense that within each
subsquare all nodes receive data at the same rate. Unifaffin tf this sort is well understood. Depending
on the path-loss exponent we use either hierarchical cooperation [17], [18] (o€ (2, 3]) or multi-hop
communication (forae > 3). It is this operation of each edge in the physical layer thetermines the
edge capacity of the grapl as seen from the routing layer.

The next example illustrates the operation of this thrgedacheme. For more details on this archi-
tecture (in particular the cooperation and physical layexe refer the reader to [19].

Example 2. Consider the three layers of the proposed communicatidmtaoture depicted in Figuig 4.
From top to bottom in the figure, these are the routing layer,cdooperation layer, and the physical layer.
In this example, we consider a singl€, w) pair. The set of cachel consists of a single nodgu} in

the wireless network shown at the bottom left, and its dastnw is in the top right of the network. At
the routing layer, the optimal choice of caches is in thisedaisial (since there is just one cachg The
optimal route betweem andw chosen at the routing layer is indicated in black dashedsli@onsider
now the second edge along the pathiGrirom « to w. The middle plane in the figure shows the induced
behavior from using this edge in the cooperation layer. To#om plane in the figure shows (part of)
the corresponding actions induced in the physical layer. O

D. Example Scenarios

Here we provide three examples illustrating various aspetthe caching capacity region. Example 3
shows that the capacity region for caching is inherentlyenmymplicated than the ones resulting from
unicast or multicast traffic. Examplé 4 shows that the siratef always selecting the nearest cache can



Fig. 4. Example operation of the three layer architecture.

be arbitrarily bad. Examplg 5 analyzes the impact of comnepteches on the performance of the wireless
network.

Example 3. (Insufficiency of edge cyts

For unicast traffic and multicast traffic, it is shown in [18ft it is sufficient to consideedge cutsn
G, i.e, cuts that result if we remove a single edge frémBy construction(z has at mos®n edges, and
hence there are at moat such edge cuts. This contrasts with the situation for cactraffic, for which
Theorems 11 anfl] 2 indicate that we have to consider genesliceit arbitrary subsets of V4. Indeed,
the approximate capacity regiort”(n) is expressed in terms of essentiafdy4™) cuts. Comparing these
two results, one might suspect that a simpler charactesizatt terms of edge cuts can be found for the
caching capacity region as well. This example shows thatishinot possible. In other words, the caching
capacity region is inherently more complicated than theastior multicast capacity regions of a wireless
network.

Assumel,(n) andV;4(n) are subsets of; ;(n), and consider two nodes € V1(n), us € Vao(n).

Construct
\CA 2 p(n) it U= {u,us}, w e Vis(n),
Unw 0 else,

for somep(n) > 0. This is illustrated in Figuré]5.

w Uy Via(n)

Fig. 5. Caching traffic pattern for Examgdlé 3.

The best edge cut results from removing edga Figure[5. The cut capacity is = (in 2-min{3,0}/2

and the sum-rate across the cutlig,(n)|p(n). By Theorem R and fox > 6, this shows thap*(n), the



largest achievable value ofn), is upper bounded as
P (1) < |Vig(n)| o2 mint3al/2holl) — plomintda}/2+o(l)

with high probability.

On the other hand, consider the general nodeScét {u;,us} C V. The cut capacity here i3 and
the sum-rate across the cut is agfihn.(n)|p(n). Moreover, it is easily checked thatis the bottle neck
cut in G. Thus, fora > 2, Theoren{]L shows that'(n) is lower bounded with high probability as

p(n) = [Vip(n)|"tn=oW = n7tel), (2)

and, fora > 6, Theorenl 2 shows that
p*<n) S n—1+o(1)_

In this example, it can be shown that the correct scaling*of) is actually

p*(n) _ n—l:l:o(l)
for all o > 2 (not justa > 6 as suggested by Theordm 2). Note that this differs subatgnfiom the
upper bound[{2) obtained from the best edge cut. O

Example 4. (Nearest-neighbor cache selectjon
A reasonable strategy of selecting caches is to requestntire enessage from the nearest available
cache. In fact, this is the strategy implicitly assumed instnaf the prior work considering caching in
wireless networks cited in Sectign I-A. This example shokat this strategy can be arbitrarily bad.
Assumel’, (n) andV,o(n) are subsets o ;(n), and Vs 3(n) is a subset o »(n). Consider a node
u* € Vaa(n), and label the nodes ity 1 (n) = {wy, ws, ...} and inV,3(n) = {uy,us,...}. Construct

\CA & p(n) if U= {u*, v}, w=w,; for somei,
YeTl00 else,

for somep(n) > 0. This is illustrated in Figurél6.

—~— —~—
Va1(n) u* Va,s(n)

Fig. 6. Caching traffic pattern for Examglé 4.

For everyw;, the nearest cache is'. It can be shown that requesting the entire message from this
nearest cache results in a per-node rate of at most

p(n) < n—1+o(1)
for all o > 2.
Assume now eachy; uses only the more distant cachge This achieves a value gf(n) of
p(n) > nl—min{3,a}/2—o(1) > n—l—l—o(l).
Applying Theorenf1l yields the samg—™in{3.2}/2=2(1) value of p(n), and Theoreni]l2 confirms that, for

a > 6, no scheme can achieve a better scaling. Hence

p* (n) _ nl—min{3,a}/2:|:o(1)



10

for a« > 6, and, as in the previous example, it can be shown that thiseicorrect scaling of*(n) also
for a € (2,6]. This shows that the strategy of always selecting the neasehe can result in a scaling
exponent that is considerably worse than what is achiewaltle optimal cache selection. O

Example 5. (Complete cach@s

Assume we randomly pick” caches for3 € [0, 1), each holding a complete copy of all the messages.
More precisely, lettingV = {w;}?”, be the collection of caches, we consider a caching traffiaimat
AR € R3™ of the form

oa _ o) W=,
Wo —
0 else,
for somep(n) > 0. In this setup, choosing the nearest cache strategy (assdisd in Examplel 4) results
in a per-node rate of

p<n> > nﬁ—l—o(l)

with probability 1 — o(1) asn — oo. The three-layer architecture proposed in Theokém 1 aehiéve
same rate, and Theordm 2 shows that,das 6, for any communication scheme

p(n) < np—1+o()

Hence, fora > 6,
B—1+0(1)

p(n) =n :
and it can be shown, as in the previous two examples, thatghise correct scaling op*(n) also for
a € (2,6].
This example illustrates that in situations in which thdfitalemand and location of caches are regular
enough, the strategy of selecting the nearest cache (agzadahlso in Examplel4, and which is shown
there to be arbitrarily bad in general) can actually be closeptimal. O

IV. PROOFS

This section contains the proofs of TheordrhEl1, 2,[and 3. W ist Sectiod TV-A with some auxiliary
results. Sections TVAH, TV-IC, anld IVAD contain the proofsTdfeoremg 311, anld 2, respectively.

A. Auxiliary Results

In this section, we define several quantities and recall sauxdiary results needed in several of the
proofs.
We first introduce a “dual” description of the various regioRecall that for any caching traffic matrix
ACA e RZ™ R
prea(n) £ sup {p > 0: pA“ € A (n)},

and define similarly
paca(n) = sup {p > 0: pA“* € A% (n)}.

Consider a caching traffic matrid* € R " for the wireless network and note thet* can equivalently
be treated as a traffic matrix between the leaf nodes of thphgfa introduced in Sectiom_1ll. Let
ASA(n) C R™*™ be the collection of such caching traffic matricés* € RY " that can be routed over
G. Note thato,ca(n) as defined through the linear program (1) is equal to

Grea(n) = sup {gb >0: AP e A?;A(n)}.

It can be shown that the region§*(n), KCA(n), andA&*(n) are convex, and hence knowledgeogfa(n),
prca(n), andgyea(n) for every \°A € R " is sufficient to completely describe them.
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To analyze caching traffic in wireless networks, we shall enake of known results for unicast traffic
in such networks. Formally, anicast traffic matrix\"¢ for V(n) is an element oR’*", associating with
each pair(u, w) € V(n) x V(n) the rate);, at which nodeu wants to transmit a message to nade
We define theunicast capacity reglomUC( ) C R to be the collection all achievable unicast traffic
matricesA\"¢ € R’*". In analogy to the caching case, defitig“(n) C R’.*" as the collection of unicast
traffic matrlces)\UC e R}*" that can be routed over the tree gra@h

We now introduce some regularity conditions that are satisfvith high probability by a random
node placement. Defing(n) to be the collection of all node placement$n) that satisfy the following
conditions:

Fuw >0 for all u,v € V(n),
[Vei(n)| < log(n) for ¢ = %log(n) and alli € {1,...,4"},
n
(n)| > — Y e {1,...,4
[Vei(n)| > 1 for ¢ = 3 log <210g(n)> and alli € {1,...,4°},

Vii(n)| €[4~ 0,410 forall £ ¢ {1, o % log(n) (1 — log_5/6(n))},i ef1,...,4%.

The first condition is that the minimum distance between ruades is not too small. The second condition
is that all squares of arelcontain at mostog(n) nodes. The third condition is that all squares of area
2log(n) contain at least one node. The fourth condition is that allasgs up to levek log(n)(1 —

log‘5/6(n)) contain a number of nodes proportional to their area.
The next lemma states that a random node placement satlsfi®s tonditions with high probability.

Lemma 4.
P(V(n) € V(n)) >1-o0(1)

asn — oQ.
Proof. See [19, Lemma 5]. O

B. Proof of Theoreriil3
We first prove the upper bound, i.e.,
Cb)\CA S ﬁ)\CA. (3)

Note that if \“* € AS* then there exists a strategy to route traffic at rate’s over G. This implies that
the flow across each cut C V; must be less than the capacity of that cut. The flow across aumit
S contains at least all those requested messages that ortlgirc@aches ins, i.e.,

> Z A
UCSNV (n) weV (n)\

On the other hand, the capacity of the ¢uts equal to

E Cup-

(u,w)EEG:
ueS,vg¢sS
Therefore
> Rk > G
UcsSnvV(n) weV(n)\ (u,v)eEq:

ueS,vg¢sS

for all S  V, and hence\°* e AGA implies \°* € ACA. Thus,AS* ¢ ACA, from which [3) follows.
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Fig. 7. Construction of the directed gra&n‘rom the undirected graptv.

We now prove the lower bound, i.e., we show that there exigts) > n—°(") such that for any\“

Drca > bg(n)ﬁACA. (4)
Pick any\“A. Since for anyb > 0,

¢b>\CA = Eéﬁ,\CA;

1
Porca = gﬁw\,

we may assume without loss of generality that
DA =1 (5)
(Uyw)

Recall thatG' is anundirectedcapacitated graph. Constructiaectedcapacitated grapﬁ? = Vg, Eg)
as follows. Take the undirected graphand turn it into a directed graph by splitting each edge E
into two directed edges each with the same capacity. #dd 2™ additional nodes td/;, one for each
subsetU c V. Connect the new node corresponding td/ C V to each node: € U by a (directed)
edge(a, u) with c;,, = oo. This procedure is illustrated in Figuré 7. We call the dieelcversion ofG/
that is contained irG as a subgraph itsore. Note that if some flows can be routed througtthen the
same flows can be routed through the cor&ofand if some flows can routed through the cor&sothen
at least half of each flow can be routed throughHence, for scaling purposes, the two are equivalent.

Now, assume we are given a caching traffic mak& for G. Construct aunicasttraffic matrix AV
for G by making for eachU, w) pair in G (i.e.,U C V, w € V) the nodeu in G corresponding td/ a
source forw with rate

A 2 e

Denote byA%C the set of feasible unicast traffic matrices f&r and set
é;uc £ sup {¢ >0: ng\UC € A%C}.
By construction ofG from G, and by the above argument relaticgto the core ofG, we have
brcn > %é;w. (6)

We are thus left with the problem of analyzing unicast traffier G. Two difficulties arise. First(
is a directed graph. While unicast traffic over undirecteapbs withm nodes are well understood and
O(log(m)) approximation results for the capacity region of such gsaphterms of cut-set bounds are
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known [23], the best known approximation result for geneliaécted graphs is (up to polylog factors)
O(m!'/23) [24]. Second, the grapl¥ is exponentially big in.. More precisely|Vz| > 2". Hence even a
logarithmic (in the sizen of the graph) approximation result will only yield a polyn@happroximation
in n. Nonetheless, as we shall see, the special structufé ad#n be used to obtailog(n) approximation
results of/\‘éC

We use an idea from [25], namely that the unicast traffic @oblcan be reduced to a maximum
sum-rate problem. More precisely, for a subget Vg x Vg of (u,w) pairs inG, define themaximum
sum-rateas 3 3

G5 = sup {Z(u,w)eﬁ)‘ggu A€ e ALCJ:,C}.

We now argue that for every unicast traffic mati¥° there exists” such thatr  is not too much bigger
than gsuc.
First, note thatbAUC is the solution to the following linear program

maximize qb
subjectto - 5 fy 20N, Yu,we Vg, @)
E EP.EEp fp S Ce Ve € Ega
fp Z 0 v p S P7
Whereﬁw is the collection of all paths i from nodew to nodew, and
P2 ) P
(u,w)eVgx Vg
The corresponding dual linear program is
minimize EeeEé CeMe
subject to Zeep Me > dyw VuweVgpe JBW,
yuc 8
Zu,weVé dUﬂU)\u,w Z 1 ( )
me >0 Vee Eé,
du,w 20 VU,UJEVé.
Since the all-zero solution is feasible for the primal peogr(7), strong duality holds.
Second i is the solution to the linear program
maximize E(%w)eﬁ Zpeﬁw fp
subject to Y pePecy v <ce  Ve€ Eg,
fp 2 O v p € P7
and its dual is o
minimize > .p_ ceme
subjectto Y., me >duw Y u,w € Vgp € P,
dyw >1 V (u,w) € F, %)
me >0 Vec Eé,
du,w >0 \V/U,UJEVé.

Again strong duality holds.

Let {m?}eer,, {dy . uwev, DE @ minimizer for the duall8) of the unicast traffic probleie now
show how{m} i {d w} can’be used to construct a solution to the d[hl (9) of the maxiraum-rate
problem. Note that we can assume without loss of optimaliat t

0 if \UC —,
@@:{. " (10)

. *
min 5 Y., me else.
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Now, sincec, = co whenevere € Ez \ E¢, we havem; = 0 for those edges. Since, in additio}S, > 0
only if u € Vz\ Vi and if w is a leaf node ofG, this implies that{d}, , }...cv, can take at most?
different nonzero values. Order these values in decreasihey
di >dy> ... >dy >dp ;=0
with K < n?, and define . )
Wee s
u,weVgz:dy, ,=dy.

G u,w

We now argue thatl; < n? for all k € {1,..., K}. In fact, assumel; > n?, then by [ID) there exists
at least one edge such thatn? > n. Hence

E Cem, > cgmi >n
BGEé

sincec, > 1 for all e € Eg. On the other hand, let.. = 1 for all edges between the leave nodes and
parent nodes in the core ¢f, and letm. = 0 for all other edges. Set, ., as in [10) but with respect
to this choice of{m.}. Since all paths between node paiis w) such that\YS > 0 include at least

u,W

one edge between the aforementioned leave and parent neelédsyved,, , > 1 whenever;\;’fﬂ > 0, and
therefore ~ -
>l = Y NG =1,
wweVg uweVg
by the normalization assumptionl (5). Th{is..}, {d...} is feasible for the dual{8), and has value
Z CeMe =M < Z Cem,,
eEEC:, BGEé

contradicting the optimality o{m;}, {d; ,}. Henced; < d; <n” for all k.
We now argue that at least o is not too small. Lett; < bk, < ... < k; be such that

- 1
(= {have > L1 1)
Note that/ > 1 since otherwise
~ K+1 ~
>oNL =D NS
u,weVg k=1
< (K +1) !
2n4

n?+1

- 2nt

<1,

contradicting the normalization assumptidh (5). Finatlgfine

7
A 2 :~UC
J=1
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Using that{d;} is feasible for the dual{8), that, < n?, and thatK < n?, we have

id;}}fzp > ane
i=1

k: XUC<1 /2n4

1
> . 12
> - (12)
We argue that this implies existence io$uch that
1
(13)

* > .
di, = 25;(1 + In(2n%))

Indeed, assumé (IL3) is false for allThen

~ . suc 1 L e
;dki)\ki < 2(1 + In(2n4) ; 5
I
Si — Si—1
o+ ln 2n1) (1 * 22 ) (14a)
I
20+ ln 50 n(@nd) (1 - Z (In(s;) — ln(si_l))> (14b)

2(1 + ln 2nt))

< - 14
=90 +ln 2n1) (14¢)

Y

N —

where we have used that> 1 in (I44a), thatl — z < —In(x) for everyz > 0 in (140), and thak; < 1
by @) and\}® > L; in (I4d). This contradictd_(12), showing thaf}(13) must hinidsomei. Consider

this value ofi in the following.
Now, consider the following set’ of (u,w) pairs:

F& {(u,w):d;,, > dy,}

Note that, by [(ID),F contains only pairgu, w) such thatu € Vz \ Vo andw € V C Vj (i.e., nodes in

G corresponding to leaf nodes ). Set

Ay

dy.
s My

Me = d;;. .

A
du,w -

Note that for(u,w) € F,
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and that for allu,w € Vg, p € ﬁu,w

> = o Som
ecp k; ecp
> d_*d*
_‘dmwv

by feasibility of {d; ,,} and{m} for the dual [(8). Hence, for thi§", the choice of{m.} and {duw} is
feasible for the dual {9). By weak duality

5‘ﬁ S E CeMe

eEEé

By (13),

dy. >
M= 95,(1 4 In(2n4))’
and, sinced; > dj, for all j <4,

_ 3 e
j=1
DS

J=1 (waw):dy ,=d;*
’ J

Therefore
0F<2)\UC 1+ In( 2n Zce

e€Es

Since{m;} is optimal for the duall(8), and by strong duality, we alsoéav
Z Cemy = é;\uca
e€Eg
and hence i 1 o
O3 Z S Tn(2n®) e

(15)

We are thus left with analyzing maximum sum-rates in G. Now notice that, since the edges in
Eg \ E¢ have infinite capacity, and since fou, w) € F' we haveu € Vz \ Vg andw € V C Vg C Vg,
this analysis can be done by considering only the coré&/oMore precisely, for a collection of node
pairs F' in G as above, we construct a collection of node p#irgn G as follows. For eaclia, w) € F
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with @ connected byG with nodesU c Vi C Vg, add (u, w) to F for eachu € U. Denote bysr the
maximum sum-rate fof*' in G. Sinced is the undirected version of the core @f we have

For a collection of node pair$’ in GG, we call a set of edged/ a multicut for F' if in the graph
(Vg, Eq \ M) each pair inF’ is disconnected. For a subset C Eg, define

A
Cyn — Ce.

eeM

It is shown in [26, Theorem 8] that if7 is an undirected tree, then for evekye V; x Vs there exists a
multicut M for F' such that

1
(o2l 2 56]\/[. (17)
Combining [I5), [(16), and (17), we obtain that for eveHf there exists a collection of node paiFSin

G, and a multicutM for the corresponding” in G’ such that

~ 1 Cnr
> _ .
¢AUC = 4<1 + 1H(2n4)) )\%C

(18)

We now show how the edge c C E can be transformed into a node ciitC V. Denote by{S;}
the connected components @f;, E¢ \ M). We can assume without loss of generality that

M = J(Si x §¢)n Eg,

since otherwise we can remove the additional edges fidnio create a smaller multicut foF'. We
therefore have

1
Cm = 2 Z C(S¢xS;)NEG > (19)

since every edge i/ appears exactly twice in the sum on the right-hand side. BdtinS C V

CA A E : E : CA
)‘S,Sc - )‘U,w'

UcsSnV wev\s

M is a multicut for F induced byF, and hence for everyu, w) € F and the corresponding pait/, w),
M separatesv from all the nodes inU. Therefore, for each sucfl/, w) pair, there exists &; such that
w e S;, U C S¢. This shows that

AU < $TAGA (20)

Equations[(I8),[{19), and_(R0) imply that there existsuch that

1 > i C(SexS)NEG

8(1+1In(2nt)) > A8
S 1 C(s;xsj)n;sc
—8(L+In(2nh)) - AGE,

1 . C(SxS°)NEg
Zsu+mew»$%(A£C

X A 7
8(1 + In(2n1))

<5;\uc >

(21)
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Combined with [(B), this shows that for

1
bs(n) £ > pol)
(") = 50 ) ="

we have
Paca > bz(n)pxca,

proving the lower bound in Theorem 3.

C. Proof of Theorerh]1

In this Section, we provide the proof of Theoréin 1. Insteagroking the theorem directly, it will be
convenient to work with the dual descriptiopgea(n) and pyea(n) of AA(n) and A°A(n) introduced in
Section[IV-A. The next theorem is the dual version of TheofEm

Theorem 5. Under either fast or slow fading, for any > 2, there existsh, = n~°(!) such that with
probability 1 — o(1) asn — oo for anyn and caching traffic matrix\®* € RY *"

bi(n)prea(n) < prea(n).

Proof. The same arguments as in [19, Theorem 1] show that thereségist > n—°() such that if a
caching traffic matrix\°* can be routed ove€, thenb(n)\“* can be communicated reliably over the
wireless network. Formally, ii” € V then under fast fading

b(n)gxca < pxea, (22)

and the same results holds for slow fading for a collectiomtufnnel gaing{ (not dependent onc*)
with
P({huv}uvey € H) > 1 —0(1)

asn — oo.
Combining [(22), with Theorerml 3 and Lemrinh 4, we obtain thahitobability

P({hy,} € H,V €V)>1—0(1)
asn — oo, we have for any caching traffic matri*

Paca > b(n)@ea
> b(n)bs(n)prca.
Setting
bi(n) = b(n)bs(n),

and recalling thabs(n) > n=°") andb(n) > n~°M both uniformly inA“A, concludes the proof of Theorem
5. O
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D. Proof of Theoreni]2

In this Section, we prove Theordm 2. As before, it will be cament to work with the dual description
pxea(n) and pyea(n) of AA(n) and A°A(n) as introduced in Sectidn IVAA. The next theorem is the dual
version of Theorer]2

Theorem 6. Under either fast or slow fading, for any > 2, there existsh, < n°") such that with
probability 1 — o(1) asn — oo for anyn and caching traffic matrix\®* ¢ R *"

paca(n) < ba(n)prea(n).

We start with some auxiliary lemmas. For a subsgtsS, C V(n), denote byC(S;, S;) the MIMO
capacity between the nodes $ and S,. Denote byS% the nodes inS, that are at distance betweén
andk + 1 from Sy, i.e.,

SE&E{veS,: Héisl“"u,v €k, k+1)}.

Lemma 7. Under either fast or slow fading, for every> 6, there exists a constart; such that for all
V(n) € V(n) and all S C V(n)

log(n)

C(S, 59 < K;log(n Z|S’f

Proof. SetS; £ S and S, £ S¢, and note that
= U Sk,
k=0

Let
HS1,SQ é [hu,v]’u651,’l}€52
be the matrix of channel gains between the nodeS;imand S,. Under fast fading
N t
C(Sy,8;) & Ql(rllﬁ?o; E(logdet (I+ H517S2Q(H)H51752)),
E(qu,u)<P YueSy

and under slow fading

(S, 8,) & max log det (I+ Hj, 5, QHg, s,).
qu,u<P YueS:

Applying the generalized Hadamard inequality, we obtaat tmder either fast or slow fading
C(S1,55) < O(S1, U S5) + C(S1, Unsogm) S5). (23)

Now, for the first term in[{23), using Hadamard'’s inequalityce more, yields

log(n

C(S1, UM 8%) < Z > (S {v})
k=0 UESk
log(n

< Z ZC{U} {v}).

k=0 UESk

By Lemma 7 in [19],
C({v}* {v}) < Klog(n)
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for some constank(, and thus

log(n

C(S1, UZMSE) < Klog(n Z |55 (24)

For the second term in_(23), we have the following upper bdlrmnh (slightly adapting) Theorem 2.1

in [11]:
C(S1, Urslog(n) 95) < Z Z(Z —a/2)

k>log(n) vesy ueSi

For v € S§, the (open) disk of radiug aroundv does not contain any node i (by definition of S%).
Moreover sincel’ € V, there are at modbg(n) nodes inside every subsquare 4fof sidelength one.
Thus

Z O‘/210g 28wk+2 o/

u€eS|

< Klog(n)k2 2
for some constank independent of5; and k. Therefore,

C(S1, UrstogmS5) < > |S5[K? log®(n)k* . (25)

k>log(n)

Consider now some € S5 with k£ > log(n), and letu* be the closest point i} to v. Sincev € S§,
we must have
Tux v c [l{?, k -+ 1)

Consider the (open) disk of radius- , aroundv and the disk of radiusog(n) aroundu*. Sinceu* is
the closest node to in S;, all nodes in the disk around are in S;. Moreover, the intersection of the
two disks has an area of at ledstog*(n). SinceV € V, this implies that this intersection must contain
at least one point, say, and by construction

ﬁeUS’“

This shows that for every nodein S} there exists a node in U%OEE)")SQE such that
rvs € [k —log(n), k+1).
Now, sinceV €V, for every nodey, there are at most
21 (k + 1)(log(n) + 5) log(n) < K'klog?(n)

nodes at distancg — log(n), k + 1). Hence the number of nodes i is at most

log(n)

S5 < K'klog®(n Z B (26)
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Combining [26) with [(2b) yields
C(S1, UtstogmyS5) < Y S5 log? (n)k*~

k>log(n)
log(n

< K'K2log*(n <Z|Sk> Yo ke 27

k>log(n)
log(n)

= K"log"(n) _ |53,
k=0
for some constanf”, and where we have used that> 6. Finally, plugging [(24) and({27) intd_(23)

shows that 1
og(n

C(Sy,8,) < (K + K")log*(n Z EAD

which proves the lemma with
K2 K+ K" O

The next lemma shows that, for large path-loss exponents §), every cut is approximately achievable,
i.e., for every cut there exists an achievable unicast trafatrix that has a sum-rate across the cut that
is not much smaller than the cut capacity.

Lemma 8. Under fast fading, for every > 6, there exists,(n) < n° and AU € AYC(n) such that
for anyn, V(n) € V(n), and S C V(n),
C(S.59) < ba(n) Y D A, (28)
ueS w¢S
Moreover, there exists a collection of channel gaifig:) such that

IED(ULu,v}u,veV(n) € H(n)) >1-—o0(1)
asn — oo, and such that fo{ ., }..., € H(n), 28) holds for slow fading as well.
Proof. By LemmalY, forV € V

C(S,5°) < Kylog*(n)|{v € S°:rg, < log(n) + 1}, (29)
where
rgy = mmruv
v ues

Construct a unicast traffic matrix’c € R’*" as

\uc 2 p(n) if 1y, <log(n) +1,
“ 0 else

for some functionp(n). We now argue that fop(n) = ©(log™*(n)) there existd(n) > n=°") such that
b(n)A\YC € AYC. This follows from [19, Theorem 1] (see also Section IX.Créeonce we show that for
every/ € {1,...,L(n)} andi € {1,...,4°} we have

Z Z )\UC S 4 7’L2 mln{3a}/2

ueVy; weVy ;

Z Z )\UC < (47 Fp)2mind3ad/2.

ugVe,; wEVy,;
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and for allw € V

YN <,

uFWw
DAL L
uFwWw

Since we assume that € V', we have for allw € V'

D N, < Klog(n)p(n),
uFw

D A < Klog*(n)p(n),
uFw

for some constank’. By the locality of the traffic matrix>\~UC, it can be shown that this is sufficient for
[19, Theorem 1] to apply withy(n) = - 1log~*(n). Henceb(n)A\ € AUYC for fast fading, and the same
holds for slow fading for somé&{ with

]P)({hu,v}u,vev € H) Z 1-— 0(1)

asn — oo.
Combined with [(ZB), this implies that

(S, 5°) Klog ZZAQj‘;,

ueS w¢S
proving the lemma. O

We are now ready for the proof of the outer bound/dif(n).

Proof of Theorenil6 Consider a cutS C V in the wireless network. Assume we allow the nodes on each
side of the cut to cooperate without any restriction — this ciearly only increasg,ca. The total amount
of traffic that needs to be transmitted across the cut is then

> 2
UcSw¢s

The maximum achievable sum-rate (with the aforementiorgetkrcooperation) is given by (.S, S¢), the
MIMO capacity between the nodes Fand in S¢. Therefore
C(S, 59

VY Ucs Dowgs AT

We proceed by relating the cut in the wireless network to a cuf in G. By Lemmal®8, forV € V,
there exists\"¢ ¢ AYC such that for fast fading

C(S.5%) <ba(n) Y D A, (31)
ueS w¢S
and [31) holds also for slow fading {fi,, }..,» € H (with 7 defined as in Lemmi 8). By [19, Theorem
1] (see again the discussion in Section IX.C there),dor 5 andV € V), there existsk' such that if
AUC € AUC then K log_®(n)AYC € AZE, whereG is the tree graph defined in Section TI-A.
Now, consider anys C V; such thatS NV = S. Note thatS is a cut inG separatingsS from V' \ S.
Since K log™°(n)A\UC € AYC, we thus have

ZZKlog )\UCS Z Cu,vs

ueS w¢s (u,v)€Eq:
ueS,vgs

(30)

PcA < ml
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and by minimizing over the choice &f such thats NV = S, we obtain

DY Klog ®(m)AlS, < min Y ey (32)

ueS weS S:iSv=s v)eBg:
ueSwgs

Combining [31) and[{32) shows that

b
(5,5 < "D iogb(n) min Y e
K 5:5nV=5
(uv)EEG
ueSwgs

Together with [(3D), and using Lemmids 4 dnd 8, this yields witkt probability
P({huotus € H,V €V) >1—o(1)

asn — oo, we have for any caching traffic matri*

prea < min C(S SC)
g SCV Y ucs Ewgzs )‘

Z(u v)EEG: Cu,v
ueSwgs
CA

SCV Sevg:Snv=s Zchmf ZwEV\§ )‘U,w

Z(u U)EEG Cuv

< by(n)min  min

— by(n) min ueS ¢S
Scve ZUcSmV ZwEV\S Uw
= ba(n)pxca,
with
ba(n) = b4]<?> log®(n) < n°W, O

V. CONCLUSIONS

We analyzed the influence of caching on the performance oélegs networks. Our approach is
information theoretic, yielding an inner bound on the caghcapacity region for all values > 2
of path-loss exponent, and a matching (in the scaling sem#e)y bound fore > 6. Thus, in the high
path-loss regimer > 6, this provides a scaling characterization of the completshing capacity region.
Even though this region 12" x n-dimensional (i.e., exponential in the number of nodes the wireless
network), we present an algorithm that checks approxinesilbility of a particular caching traffic matrix
efficiently (in polynomial time in the description length tfe caching traffic matrix). Achievability is
proved using a three-layer communication architectureéeacly the entire caching capacity region in the
scaling sense forr > 6. The three layers deal with optimal selection of cachesjcehof amount of
necessary cooperation, noise and interference, resplgctihe matching (in the scaling sense) converse
proves that addressing these questions separately isuwiites of order-optimality in the high path-loss
regime.
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