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Abstract— This paper considers a key agreement problem
in which two parties aim to agree on a key by exchanging
messages in the presence of adversarial tampering. The aim of
the adversary is to disrupt the key agreement process, but there
are no secrecy constraints (i.e. we do not insist that the key is
kept secret from the adversary). The main results of the paper
are coding schemes and bounds on maximum key generation
rates for this problem.

I. INTRODUCTION

In many distributed collaborative algorithms or applications,
it is required that each involved party shares a common random
key or seed. For instance, in authentication [1] or secret
communications [2], the client and the server may need to
share a common private key. In another scenario, a common
random seed may need to be shared by a group of cooperative
users to run a distributed probabilistic algorithm. In such cases,
key secrecy may not be important. In all of these examples
however, it is important that each party has the same key.

It is important to investigate methods for generation and
distribution of random keys. For example, in one scenario, it
may be required to “divide” a secret key into smaller pieces,
for distribution to a group of users. The goal is to ensure that
only legitimate groups of users, each of which holds one small
piece of the secret, can reconstruct the secret key. This is the
secret sharing problem [3]. In another scenario, two legitimate
parties (and possibly an adversary) may observe correlated
randomness. The objective is for the two parties to extract a
common random key from their observations, by exchanging
messages over a public channel. The goal is to ensure that an
adversary who observes all the messages exchanged over the
public channel has no knowledge about the agreed key [4].

The focus of this paper is on robust key agreement in
the presence of adversarial tampering (i.e. the adversary can
alter some of the messages exchanged between the legitimate
parties during the key agreement process). We are interested
in coding methods and key generation rates, where the only
requirement is that the parties obtain the same key. We do not
require that the key be kept secret from the adversary.

One approach to this problem is for one party to simply
generate a key and then send it to the other party. Using this
simple approach, the key agreement problem reduces to the
standard problem of reliable communication. To ensure the
other party can reliably reconstruct the key in the presence of
noise or tampering, the sender adds redundancy in the form
of an error correction code [5]. Recently, the error correction
problem was studied in the context of network coding [6].
Although this direct communications approach is very simple,

we shall see that its application to key agreement can be
suboptimal.

The organization of this paper is as follows. Section II
provides the problem formulation. Section III focuses on
zero-error key agreement, which is the worst case scenario
assuming adversaries have unbounded computational abilities.
Section IV considers a weaker adversarial model in which
adversaries can only make certain kinds of simple attacks.

Notations: Vectors will be denoted by bold-faced lowercase
letters whose entries are denoted by superscripts. For example
x is the vector, x1 is its first entry and x[i,j] is the ith to jth

entries of x. In addition, define Am(n, d) as a maximum rate
2m-ary code of length n and minimum Hamming distance d.

II. PROBLEM FORMULATION

Consider a simple two-way network as depicted in Figure 1.
Alice and Bob aim to agree on a common random key by ex-
changing messages through the network. Eve is the adversary
in the network, whose only objective is to prevent Alice and
Bob from agreeing on a key. She attacks by replacing some
of the exchanged messages. There is no requirement to keep
the key secret from Eve.

n1

n2

Alice Bob

Fig. 1. A two-way network

We will mainly consider a two-round key agreement sce-
nario. In the first round, Alice generates n1 message vec-
tors, x1, . . . ,xn1 . Assume without loss of generality that all
messages are binary vectors of length m. These are sent to
Bob using the n1 forward links (one for each message). Eve
observes the messages and can replace some of them with
messages of her own choosing. Let the n1 messages received
by Bob be denoted x̂1, . . . x̂n1 .

In the second round, after receiving x̂1, . . . x̂n1 , Bob gener-
ates n2 message vectors, y1, . . . ,yn2 . These are sent to Alice
using the n2 backward links. Again, Eve may observe and
replace some of the messages. Let the n2 messages received
by Alice be denoted ŷ1, . . . ŷn2 .
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If Eve can attack every link, it is impossible for Alice and
Bob to agree on a key. However there are many scenarios of
interest where it may be reasonable to assume that this is not
possible (e.g. due to limited network access, or the use of
special hardened links). Henceforth, we assume that Eve can
attack at most t links in total. In other words,

n1∑
i=1

dH(xi, x̂i) +
n2∑
i=1

dH(yi, ŷi) ≤ t (1)

where dH(·) is a Hamming distortion function with

dH(x,y) =

{
0 x = y
1 x 6= y

i.e. two distinct vectors are at distance 1, regardless of how
many element disagree.

After these two rounds of message exchange (forward and
backward), Alice and Bob make independent decisions on their
random key. Let ga and gb be their (key-)decoding functions
respectively. A key agreement error occurs if

ga(x1, . . . ,xn1 , ŷ1, . . . ŷn2) 6= gb(y1, . . . ,yn2 , x̂1, . . . x̂n1).

A key agreement scheme is specified by the encoders and
decoders used by Alice and Bob. We shall use a probabilistic
setting. Alice’s encoder Ea is specified by a probability
distribution Pr(x1, . . . ,xn1) which governs how Alice gen-
erates the first round of messages. Bob’s encoder Eb however
is specified by a conditional distribution Pr(y1, . . . ,yn2 |
x̂1, . . . x̂n1) which determines how the second round of mes-
sages should be generated after receiving the possibly cor-
rupted messages from Alice. A key agreement scheme will
be denoted by the tuple (m,n1, n2, Ea, Eb, ga, gb) or simply
(Ea, Eb, ga, gb) if m,n1, n2 are understood.

Eve’s attack is specified by a pair of conditional probability
distributions

Pr(x̂1, . . . x̂n1 |x1, . . . ,xn1) (2)

and

Pr(ŷ1, . . . ŷn2 |y1, . . . ,yn2 ,x1, . . . ,xn1 , x̂1, . . . , x̂n1), (3)

These distributions must satisfy the constraint (1). Let

K1 = ga(x1, . . . ,xn1 , ŷ1, . . . ŷn2)
K2 = gb(y1, . . . ,yn2 , x̂1, . . . x̂n1).

The probability distribution of K1 and K2 depends on Eve’s
attacking strategy. For a given attacking strategy E, let

HE(K1|K1 = K2)

, −
∑
k1

Pr(K1 = k1|K1 = K2) log Pr(K1 = k1|K1 = K2)

where Pr(K1 = k1|K1 = K2) is the conditional probability
that K1 = k1 given the event that K1 = K2.

Let AE be the set of attacking strategies that Eve can choose
(i.e. the set of pairs of conditional distributions (2) and (3)

satisfying (1)). We define the key agreement rate (for a given
key agreement scheme) as

min
E∈AE

HE(K1|K1 = K2).

III. ZERO-ERROR KEY AGREEMENT

The objective of zero-error key agreement is for Alice and
Bob to generate identical keys with probability one at some
positive rate.

Definition 1: For given positive integers n1, n2,m, the key
rate R is called zero-error admissible if there exists a key
agreement scheme (Ea, Eb, ga, gb) such that (1) the probability
of key agreement error is zero for all attacking strategies that
Eve can choose and (2) R ≤ minE∈AE

HE(K1). The zero-
error key agreement capacity is the supremum of all zero-error
admissible rates.

The natural fundamental question is: What is the zero-error
key agreement capacity? In this paper, we will give lower
bounds for the zero-error key agreement capacity and simple
schemes that achieve the lower bounds.

Theorem 1: If t ≥ max(n1, n2), then the zero-error key
agreement capacity is 0.
Proof sketch: Since t ≥ n1, n2, no matter which messages
Alice and Bob send, Eve can replace them with any other
messages. If the probability of key agreement error is zero,
then the key that Alice and Bob agree on must be independent
of x̂1, . . . x̂n1 and ŷ1, . . . ŷn2 . As such, the agreed key can
only be a constant.

A. Examples

We will now develop some small examples that provide
motivation for a general coding scheme.

If messages can be sent only in one direction (i.e., either n1

or n2 is zero), then key agreement is equivalent to transmission
of a random key from one party to another. When messages
can be sent in both directions, we can naively decouple the two
rounds of message transmissions into two rounds of random
key transmissions as follows.

Example 1 (Direct key transmission): Suppose n1 = n2 =
3 and t = 1. Let Ca = {(x1,x2,x3) : x1 = x2 = x3} and let

Pr(x1,x2,x3) ,

{
1/2m if (x1,x2,x3) ∈ Ca
0 otherwise.

Since Ca has minimum distance 3, no matter how Eve at-
tacks, Bob can reconstruct x1 without error. Note that, if the
minimum distance of Ca is less than 3, then Bob may fail to
correctly reconstruct x1.

Similarly, let Cb = {(y1,y2,y3) : y1 = y2 = y3} and

Pr(y1,y2,y3|x̂1, x̂2, x̂3) ,

{
1/2m if (y1,y2,y3) ∈ Cb
0 otherwise

for all (x̂1, x̂2, x̂3). Again, Alice can reconstruct y1 without
error, no matter how Eve attacks. Finally, Alice and Bob can
use (x1,y1) as the common random key whose entropy is 2m.

The above scheme essentially consists of two one-round
key transmission schemes. The resulting key consists of two



random parts, one generated by Alice (and sent to Bob)
and one generated by Bob (and sent to to Alice). Despite
its simplicity, this scheme is not optimal as shown by the
following example.

Example 2: Suppose n1 = n2 = 3 and t = 1. Let Ca be an
Am(3, 2) code and

Pr(x1,x2,x3) ,

{
1/|Ca| if (x1,x2,x3) ∈ Ca
0 otherwise.

Note that Ca has minimum distance 2. Therefore, if Eve attacks
one of the forward links, Bob can always detect it but not
necessarily correct it.

Consider the following codebooks C∗b,0 = Am−1(3, 3) and
C∗b,1 = Am−1(3, 1). Let

Cb,0 =
{

(y1,y2,y3) : y1
1 = y1

2 = y1
3 = 0

and (y[2,m]
1 , y

[2,m]
2 , y

[2,m]
3 ) ∈ C∗b,0

}
,

Cb,1 =
{

(y1,y2,y3) : y1
1 = y1

2 = y1
3 = 1

and (y[2,m]
1 , y

[2,m]
2 , y

[2,m]
3 ) ∈ C∗b,1

}
If Bob does not detect any errors (i.e., (x̂1, x̂2, x̂3) ∈ Ca),

then

Pr(y1,y2,y3|x̂1, x̂2, x̂3)

{
1/|Cb,0| if (y1,y2,y3) ∈ Cb,0
0 otherwise.

Otherwise, if an error is detected,

Pr(y1,y2,y3|x̂1, x̂2, x̂3) ,

{
1/|Cb,1| if (y1,y2,y3) ∈ Cb,1
0 otherwise.

After receiving ŷ1
1 , ŷ

1
2 , ŷ

1
3 , Alice can reconstruct y1

1 . There-
fore, Alice will know which codebook Bob used. It is easy to
see that (y1,y2,y3) can also be reconstructed perfectly.

Finally, Alice and Bob agree on K = (ko, ka, kb) such that
• ko = y1

1 , which indicates whether errors were detected in
the forward links;

• ka = 0 if ko = 1. Otherwise, ka = (x1,x2,x3);
• kb = (y1,y2,y3).

It is straightforward to prove that the probability of key
agreement error is zero and that the entropy of the key K
is at least

min(log |Am(3, 2)|+ log |Am−1(3, 3)|, log |Am−1(3, 1)|).

When m is sufficiently large, the Singleton bound is tight, and
hence the entropy of K is at least 3m− 1.

Compared with the key agreement rate in Example 1, a 50%
gain is achieved.

From the above example, it is easy to see that the direct
key transmission scheme in Example 1 is suboptimal because
Bob did not use his received messages to estimate how many
forward links were attacked by Eve. As a result, Bob has to
pessimistically protect his messages, assuming that Eve can
attack t backward links.

Although the key agreement scheme in Example 2 may
appear to be a modified direct key transmission scheme, there
are some subtle differences. Using direct key transmission

(multiple one-round key distribution sessions), the agreed key
consists of two random parts, one from Alice and one from
Bob. The entropy of the agreed key will be the same no matter
how Eve attacks. On the other hand, in the scheme detailed in
Example 2, the size of the key depends on how Eve attacks.
For instance, if Eve attacks the forward link, then the entropy
of the resulting key is the largest. Furthermore, in this case,
the key is essentially solely generated by Bob.

In this paper, we are not concerned with the source of
randomness. However, in some other scenarios, it may be of a
practical concern. For example, suppose that there is another
adversary who can “observe” how Bob can generate the
random messages (y1,y2,y3). Then, it may cause a problem
if that adversary will know the key completely.

The following is another interesting example in which
direct key transmission fails altogether, but the key agreement
capacity is nonzero.

Example 3 (n1 = n2 = 2 and t = 1): Let Ca = Am(2, 2)
and

Pr(x1,x2) ,

{
1/|Ca| if (x1,x2) ∈ Ca
0 otherwise.

Again, if Eve attacks the forward links, Bob can detect it but
not correct it.

Consider codebooks C∗b,0 = Am−1(2, 2) and C∗b,1 =
Am−1(2, 1). Let

Cb,0 =
{

(y1,y2) : y1
1 = y1

2 = 0
and (y[2,m]

1 , y
[2,m]
2 ) ∈ C∗b,0

}
,

Cb,1 =
{

(y1,y2) : y1
1 = y1

2 = 1
and (y[2,m]

1 , y
[2,m]
2 ) ∈ C∗b,1

}
.

If Bob does not detect any errors (i.e., (x̂1, x̂2) ∈ Ca), then

Pr(y1,y2|x̂1, x̂2)

{
1/|Cb,0| if (y1,y2) ∈ Cb,0
0 otherwise.

Otherwise,

Pr(y1,y2|x̂1, x̂2)

{
1/|Cb,1| if (y1,y2) ∈ Cb,1
0 otherwise.

As before, we can easily show that the resulting key
agreement capacity is at least log |Ca| = m.

B. Generalization

We will now generalize Examples 2 and 3 to arbitrary n1, n2

and t. Let ` = dlog(t + 1)e and Ωm(d, t1)1 be defined as
follows:

Ωm(d, t1) =

{
log |Am(n1, d)||Am−`(n2, 2t+ 1)| d > t+ t1

log |Am−`(n2, 2(t− t1) + 1)| otherwise.

Theorem 2 (Inner bound): Suppose that n2 > 2t. Then the
zero-error key agreement capacity is at least

max
n1≥d>t

min(Ωm(d, 0),Ωm(d, d− t)). (4)

1We do not explicitly indicate the dependency of Ωm(d, t1) on n1, n2, t
to simplify notations.



Proof: Let Ca be an Am(n1, d) code and

Pr(x1, . . . ,xn1) ,

{
1/|Ca| if (x1, . . . ,xn1) ∈ Ca
0 otherwise.

Let t1 be the number of forward links that Eve attacks. If
t1 < d− t, then Bob can reconstruct (x1, . . . ,xn1) perfectly.
Otherwise, Bob can deduce that at least d − t forward links
have been attacked by Eve.

Any integer i between 0 and t, can be easily represented
using ` bits. For each i, let C∗b,i = Am−`(n2, 2(t− i) + 1) and

Cb,i ,

{
(y1, . . . ,yn2) : y[1,`]

1 = · · · = y
[1,`]
n2 = i

and (y[`+1,m]
1 , . . . , y

[`+1,m]
n2 ) ∈ C∗b,i

}
.

Suppose that Bob can detect and correct errors (i.e.,
(x̂1, . . . , x̂n1) is within a distance of d−t−1 from a codeword
in Ca), then he can also determine the number of forward links
i that were attacked by Eve. Then let

Pr(y1, . . . ,yn2 |x̂1, . . . , x̂n1)

=

{
1/|Cb,i| if (y1, . . . ,yn2) ∈ Cb,i
0 otherwise.

Similarly, if Bob determines that at least d− t errors occur
in the forward links, then

Pr(y1, . . . ,yn2 |x̂1, . . . , x̂n1)

=

{
1/|Cb,d−t| if (y1, . . . ,yn2) ∈ Cb,d−t
0 otherwise.

Let K = (ko, ka, kb) such that
• ko = y

[1,`]
1 which is the number of errors (or attacks)

occurred in the forward links;
• ka = 0 if ko = d− t. Otherwise, ka = (x1, . . . ,xn1);
• kb = (y1, . . . ,yn2).

It is straightforward to prove that K is known to both Alice
and Bob, and the entropy of the common key K is at least

H(K) ≥ min
0≤t1≤t

Ωm(d, t1) (5)

= min(Ωm(d, 0),Ωm(d, d− t)) (6)

and the result then follows.
In above, we considered only two-round key-agreement

schemes and obtained inner bounds on rates of the agreed key.
We can easily extend the bounds to multi-round scenarios.

Define Rw,n1,...,nw,t,m as the key agreement capacity in
a w-round key agreement scenario in which (1) the number
of messages that can be sent in the ith round is ni, (2) the
maximum number of links that can be attacked by Eve is t,
and (3) each message is a binary vector of length m.

Theorem 3: Suppose n1, . . . , nw > 2t+ 1. Then for any d
such that 2t ≥ d > t, Rw,n1,...,nw,t,m is at least

min
(

log |Am−`(n1, d)|+Rw−1,n2,...,nw,t,m−`,
Rw−1,n2,...,nw,2t−d,m−`

)
(7)

where ` = dlog(t+ 1)e.

Remark: By replacing the key agreement capacity terms
in (7) with their corresponding inner bounds, we can get
inner bounds for the multi-round key agreement capacity from
Theorems 2 and 3.

IV. RANDOM ERRORS

In the previous section, we considered the worst case
scenario in which no errors are allowed in key agreement.
Even if Eve attacks links randomly, there is still a small but
positive probability that she may choose the most damaging
attack. In fact, in this worst case scenario, we can even assume
that Eve has knowledge the messages sent by Alice prior to
attack.

We will now relax our model to allow small errors and
assume that it is infeasible for Eve to determine which is the
most damaging attack. More specifically, Eve can only decide
on the number of links to be attacked in each direction, but not
explicitly which links. We will consider the asymptotic case:

n1 = λ1r, n2 = λ2r, and t = τr

where r approaches infinity. Also, each link can transmit either
zero or one (i.e., m = 1).

Definition 2: A normalized key agreement rate R is ε-
error admissible (with respect to given λ1, λ2 and τ )
if there exists a sequence of key agreement schemes
(1, n1, n2, t, Ea, Eb, ga, gb)2 such that

1) limr→∞ n1/r = λ1, limr→∞ n2/r = λ2 and
limr→∞ t/r = τ ,

2) R ≤ minE∈AE
HE(K1|K1 = K2)/r,

3) The probability of key agreement failure, denoted as
Pe(1, n1, n2, t, Ea, Eb, ga, gb), goes to zero as r goes
to infinity.

The normalized ε-error key agreement capacity (for given
λ1, λ2 and τ ) is the supremum ε-error admissible R. In the
following, we will obtain a lower bound for the capacity.

Definition 3 (Combinatorial Binary Symmetric Channel):
A CBS(ε) channel takes binary inputs and gives binary
output. Let (X1, . . . , Xn) be the n input symbols to the
channel and (X̂1, . . . , X̂n) be the n output symbols. The
channel inputs and outputs are related by

(X̂1, . . . , X̂n) = (X1, . . . , Xn)⊕ (E1, . . . , En),

where (E1, . . . , En) is a binary error vector, independent
of the inputs and uniformly distributed over {(e1, . . . , en) :
dH(e1, . . . , en) ≤ nε} where ε < 1/2 is a channel parameter.

The CBS(ε) channel is not memoryless, but behaves like
a memoryless binary symmetric channel with crossover prob-
ability ε for sufficiently large n.

Let X = {0, 1}. Consider a rate s error correcting/detecting
code. The encoder is a mapping f : {1, . . . , 2ns} 7→ Xn
and the decoder is a mapping g : Xn 7→ {0, 1, . . . , 2ns}
where decoder output zero means that the decoder fails to
correct errors. Suppose that the transmitted codeword is f(i).

2The sequence of schemes are indexed by r. For notational simplicity, we
do not indicate the dependency explicitly.



A correction failure means that decoding output is not i and
a detection failure means that the output is neither i nor 0.

Clearly, the probabilities of correction and detection failures
depend on the channel model. In this paper, we will focus on
CBS channels. For a given error correcting/detecting code C,
Let P ce (C, ξ) and P de (C, ξ) be respectively the probabilities
of correction and detection failures when the channel is a
CBS(ξ) channel.

Proposition 1 (Achievability): Fix ξ < 1/2. Let I(ξ) , 1+
ξ log ξ+(1−ξ) log(1−ξ). For any s < I(ξ), we can construct
a sequence of rate sn error correcting/detecting codes Cn such
that

lim inf
i→∞

sn ≥ s (8)

lim
n→∞

P ce (Cn, ε) = 0, for ε ≤ ξ (9)

lim
n→∞

P de (Cn, ε) = 0,∀ε (10)
Proof: The sequence of codes Cn is randomly con-

structed as follows. The proof of (9) and (10) is straightforward
and will be omitted.

The encoder f is a randomly selected mapping

f : {1, . . . , 2ns} 7→ Xn

such that each symbol in the codeword f(i) is independently
and uniformly distributed over {0, 1}.

The decoder g is a “bounded distance decoder”

g : Xn 7→ {0, 1, . . . , 2ns}.

For any sequence (X̂1, . . . , X̂n), if there exists a unique
f(i) such that if the Hamming weight of (X̂1, . . . , X̂n)−f(i)
is less than nξ, then the decoder output will be i. Otherwise,
g(X̂1, . . . , X̂n) = 0.

Proposition 1 proves the existence of error correct-
ing/detecting codes that can correct ξ-fraction of errors. We
can use these codes to construct key agreement schemes as
before. As a result, we obtain the following bounds on the
ε-error key agreement capacity.

Theorem 4 (Inner bound): Assume τ/λ2 < 1/2. Let γ =
(τ − λ1ξ)/λ2. Then the key agreement rate is at least

max
ξ≤τ/λ1

(
λ2I(γ/λ2), λ1I(ξ) + λ2I(τ/λ2))

)
. (11)

Proof: Let rν be the number of links attacked in the
forward direction. By Proposition 1, for sufficiently large r,
there exists a code at rate close to I(ξ) which with high
probability can correct any n1ξ = rλ1ξ’s errors and detect
any number of errors.

That τ/λ2 < 1/2 guarantees that Bob can successfully
inform Alice whether he can correctly decode his received
message. If Bob’s decoder can correct the errors, then he
and Alice both know (X1, . . . , Xn1). Otherwise, Bob can
determine that Eve has attacked at least rλ1ξ links and that
she can attack at most rγ , rτ − rλ1ξ of backward links.
Hence Bob can transmit rλ2I(γ/λ2) bits of random key to
Alice.

Depending on the number of forward link attacks made by
Eve, the key agreement rate is given by

Ω(ξ, ν) =

{
λ1I(ξ) + λ2I(τ/λ2) if ν < λ1ξ

λ2I(γ/λ2) if ν ≥ λ1ξ

Alice and Bob can agree on a common random key at rate
no less than

max
ξ≤τ/λ1

min
0≤ν≤τ

Ω(ξ, ν) (12)

By monotonicity of the function I(·), we can further reduce
(12) to (11) and hence the result follows.
Note: If both Alice and Bob share a small private key which
is unknown by Eve, they can use the private key in a way
so that any attacks made by Eve are no better than a random
attack.

V. CONCLUSION

In this paper, we consider a key (or seed) agreement problem
in which two parties aim to agree on a key by exchanging
messages in the presence of adversarial tampering. We showed
that naively decoupling the problem into two key transmission
problems is suboptimal. We proposed an improved scheme and
obtained lower bounds on the key generation rates. Although
the proposed scheme is very simple, it can significantly
improve the key agreement rate. Finally, we extended the
proposed schemes and bounds to a weaker scenario in which
the adversary has a limited computational power and cannot
select the most damaging attacks.
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