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Abstract—In this work, we consider a stopping set analysis
of repeat multiple-accumulate (RMA) code ensembles formed
by the serial concatenation of a repetition code with multiple
accumulators. The RMA codes are assumed to be iteratively
decoded in a constituent code oriented fashion using maximum
a posteriori erasure correction in the constituent codes. We give
stopping set enumerators for RMA code ensembles and show
that their stopping distance hmin, defined as the size of the
smallest nonempty stopping set, asymptotically grows linearly
with the block length. Thus, the RMA code ensembles are good
for the binary erasure channel. Furthermore, it is shown that,
contrary to the asymptotic minimum distance dmin, whose growth
rate coefficient increases with the number of accumulate codes,
the hmin growth rate coefficient diminishes with the number of
accumulators. We also consider random puncturing and show
that for sufficiently high code rates, the asymptotic hmin does not
grow linearly with the block length, contrary to the asymptotic
dmin, whose growth rate coefficient approaches the Gilbert-
Varshamov bound as the rate increases. Finally, we give iterative
decoding thresholds to show the convergence properties.

I. INTRODUCTION

The performance of a concatenated code in the error floor

region for an additive white Gaussian noise channel is domi-

nated by the distance spectrum of the code and, in particular,

by its minimum distance dmin. Turbo codes [1] and single

serially concatenated codes [2] are asymptotically bad codes,

in the sense that their minimum distance does not asymptot-

ically grow linearly with the block length. Recently, it was

shown that the minimum distance dmin of very simple serially

concatenated code ensembles built from the concatenation of

a repeat code with two or more accumulators increases as

the number of accumulators increase. In fact, in the limit of

infinitely many accumulators, the dmin approaches the Gilbert-

Varshamov bound (GVB) [3]. Furthermore, in [4, 5], it was

shown that, indeed, repeat multiple-accumulate (RMA) code

ensembles are asymptotically good, in the sense that their

dmin asymptotically grows linearly with the block length. A

method for the calculation of a lower bound on the growth

rate coefficient was also given in [4].

For the binary erasure channel (BEC) with iterative de-

coding, a similar role to that of the distance spectrum with
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Fig. 1. Encoder structure for RMA codes.

maximum-likelihood decoding is played by the stopping set

distribution. Stopping sets for iterative belief-propagation (BP)

decoding of low-density parity-check (LDPC) codes were

introduced in [6]. The concept of stopping sets was later ex-

tended in [7] to turbo decoding by introducing turbo stopping

sets. In this work, we extend the asymptotic minimum distance

analysis in [4, 5] by considering stopping sets for iterative con-

stituent code oriented decoding using maximum a posteriori

(MAP) erasure correction in the constituent codes of RMA

codes. We derive a closed-form expression for the subcode

input-output support size enumerating function (SIOSEF) [7]

of an accumulate code and obtain stopping set enumerators

for RMA code ensembles. We then analyze the asymptotic

behavior of the stopping set distribution and show that RMA

code ensembles exhibit an asymptotic stopping distance hmin,

defined as the size of the smallest nonempty stopping set, that

grows linearly with the block length. Therefore, RMA codes

are good for the BEC. However, contrary to the asymptotic

dmin, whose growth rate coefficient increases with the number

of accumulate codes, the asymptotic hmin growth rate coef-

ficient diminishes with the number of accumulators. We also

consider random puncturing of RMA codes and show that for

sufficiently high code rates, the asymptotic hmin does not grow

linearly with the block length, contrary to the asymptotic dmin,

whose growth rate coefficient approaches the GVB as the rate

increases [4]. Finally, we consider extrinsic information trans-

fer (EXIT) charts [8] to analyze the convergence properties of

RMA codes. We will show that repeat accumulate-accumulate

(RAA) codes are good codes for the BEC, while increasing the

number of accumulators decreases both the stopping distance

and the convergence threshold.

II. ITERATIVE CONSTITUENT CODE ORIENTED DECODING

AND STOPPING SETS

The encoder structure of RMA codes is depicted in Fig. 1.

It is a serial concatenation of a (Kq,K) repetition code C0

with input block length K and rate 1/q with L ≥ 1 identical

rate-1, memory-one, accumulators Cl, l = 1, . . . , L, with



generator polynomials g(D) = 1/(1+D), through interleavers

π1, . . . , πL. The overall nominal code rate (avoiding termi-

nation) is denoted by R = K/N = 1/q, where N denotes

the output block length. Higher rates may be obtained by

puncturing the output of the most inner accumulator CL.
In this paper, we consider stopping sets for iterative con-

stituent code oriented decoding using MAP constituent de-

coders (turbo decoding) over the BEC of RMA codes. With

iterative constituent code oriented decoding we mean a de-

coding strategy that iterates between the constituent decoders.

MAP decoding of the constituent codes can be implemented

efficiently on a trellis representation of the constituent code

[7]. Thus, the complexity of iterative constituent code oriented

decoding of RMA codes is linear in the block length N when

the number of constituent code activations is independent of

N .

A. Stopping Sets for RMA Codes

We will now give the formal definition of a stopping set

for RMA codes, adapted from the definition in [7] for turbo

stopping sets. The generalization to the case with puncturing

is straightforward. In the definition, we need the concept of

support set of a binary vector and of a binary linear code.

The support set χ(x) of a binary vector x = (x1, . . . , xN ) (of
length N ) is the set of nonzero coordinates. As an example,

with x = (0, 1, 1, 0, 1), χ(x) = {2, 3, 5}. The support set

χ(C) of a binary linear code C is the union of the support

sets of each codeword in C. Finally, an interleaver will be

regarded as a mapping from the set of coordinates of its input

sequence to the set of coordinates of its output sequence.

Definition 1. Let CRMA denote a given RMA code with inter-

leavers π1, . . . , πL. A set S = S(π1, . . . , πL) ⊆ {1, . . . , N}
of the coordinates of the output sequence (or codeword) is a

stopping set if and only if there exist L + 1 linear subcodes

Ĉl ⊆ Cl ⊆ {0, 1}N , l = 0, . . . , L, with support sets χ(Ĉl)
such that

χ(ĈL) = S and πl(χ(Ĉl−1)) = χ(Ĉl), l = 1, . . . , L.

The size of a stopping set S is its cardinality.

In Definition 1 we used the fact that the mapping between

the input support set and the output support set is an identity

mapping for rate R = 1 encoders. Note also that Definition 1

does not exclude the empty set. Thus, the empty set is

formally a stopping set of size zero. We stress the fact that the

concept of stopping sets for RMA codes, as defined above, is

conceptually different from the traditional concept of stopping

sets used in connection with iterative BP decoding of LDPC

codes, but it reduces to the traditional concept of stopping

sets for Tanner graphs when the constituent codes are single

parity-check codes. We can prove the following theorem.

Theorem 1. Let CRMA denote a RMA code that we use to

transmit information over the BEC. The received vectors are

decoded iteratively using constituent code oriented decoding

using MAP erasure correction in the constituent codes until

either the codeword has been recovered, or the decoder fails to

progress further. Then the set of erased positions that remain

when the decoder stops is equal to the unique maximum-size

stopping set that is contained in the (initial) set of erased

positions.

From Theorem 1 it follows that an important parameter for

code performance is the stopping distance hmin.

III. SUPPORT SETS AND STOPPING SET ENUMERATORS

Let C denote an (N,K) binary linear code. Partition all the

subcodes of C of dimension d, d = 0, . . . ,K, into equivalence

classes based on their support sets. In particular, all subcodes

within a specific subcode class are required to have the same

support set, but the subcodes may have different dimensions.

We define the SIOSEF [7] of C as

AC(W,H) =
K

∑

w=0

N
∑

h=0

aCw,hW
wHh

whereW and H are dummy variables, and aCw,h is the number

of subcode classes of C of input support set size w and output

support set size h. In the rest of the paper, with a slight abuse

of notation, we will refer interchangeably to both AC(W,H)
and aCw,h as the SIOSEF of a code C.

A. Stopping Set Enumerators for RMA Code Ensembles

Benedetto et al. introduced in [2] the concept of uniform

interleaver to obtain average weight enumerators for concate-

nated code ensembles from the weight enumerators of the

constituent encoders. The same concept can be used to obtain

stopping set enumerators of concatenated code ensembles

by combining the SIOSEFs of the constituent encoders. Let

s̄Cw,h be the ensemble-average input-output stopping set size

enumerating function (IOSSEF) of the code ensemble C with

input and output block length K and N , respectively, denoting

the average number of stopping sets of input size w and output

size h over C. Also, denote by s̄Ch =
∑K
w=0 s̄

C
w,h the ensemble-

average stopping set size enumerating function (SSEF) of the

code ensemble C, giving the average number of stopping sets

of size h over C. Using the concept of uniform interleaver [2],

the IOSSEF of a RMA code ensemble CRMA can be written

as [2, 7]

s̄CRMA

w,h =

N
∑

h1=0

· · ·

N
∑

hL−1=0

aC0
w,qwa

C1

qw,h1
(

N
qw

)

[

L−1
∏

l=2

aCl

hl−1,hl
(

N
hl−1

)

]

aCL

hL−1,h
(

N
hL−1

)

=
N

∑

h1=0

· · ·
N

∑

hL−1=0

s̄CRMA

w,h1,...,hL−1,h

(1)

where s̄CRMA

w,h1,...,hL−1,h
is called the conditional support size

enumerating function of CRMA.

The evaluation of (1) requires the computation of the

SIOSEFs of the constituent encoders, which is addressed

below.
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B. SIOSEFs for Memory-One Encoders and the Repetition

Code

Theorem 2. The SIOSEF for rate-1, memory-one, convolu-

tional encoders with generator polynomials g(D) = 1/(1+D)
and g(D) = 1 + D that are terminated to the zero state at

the end of the trellis and with input and output block length

N can be given in closed form as

a
1

1+D

w,h = a1+D
h,w =

⌊w
2 ⌋

∑

d=1

(

N − h

d

)(

h− 1

d− 1

)(

h− d

w − 2d

)

(2)

for positive input sizes w. Also, a
1

1+D

0,0 = a1+D
0,0 = 1.

A detailed proof can be found in [9].

Theorem 3. The SIOSEF for the (Kq,K) repetition code C0

with input block length K can be given in closed form as

aC0
w,qw =

(

K

w

)

. (3)

Using (2) and (3) in (1), we get the expression at the top of

the page for the conditional support size enumerating function

(with w > 0) of RMA code ensembles.

IV. FINITE-LENGTH ANALYSIS OF STOPPING DISTANCE

The ensemble-average SSEF can be used to lower bound

hmin for finite block lengths, similarly to the case of the dmin

[3, 10]. In particular, the following bound holds.

Lemma 1. The probability that a code chosen randomly from

the ensemble C with ensemble-average SSEF s̄Ch has stopping

distance hmin < ~ is upper-bounded as

Pr(hmin < ~) ≤
~−1
∑

h=1

s̄Ch. (4)

Lemma 1 can be used to obtain a probabilistic lower bound

on the stopping distance of a code ensemble. In particular,

if we set Pr(hmin < ~) = ε, where ε is any positive value

between 0 and 1, we would expect that at least a fraction

1 − ε of the codes in the ensemble have a stopping distance

hmin of at least ~. In Fig. 2, we plot the probabilistic lower

bound on hmin from Lemma 1 for RMA codes with repeat

factor q = 4, and L = 2, 3, and 4, as a function of the

code length N . The bounds were obtained by setting ε = 0.5
in (4), i.e., at least half of the codes in the ensemble have

stopping distance at least equal to the value indicated by the

curves. All codes appear to have linear hmin growth rate. The

best growth rate is obtained for L = 2, while increasing

the number of accumulate codes decreases the growth rate.

For instance, the bound on hmin for the RAA code ensemble

indicates a stopping distance of at least 132 for block length

N = 1000 bits. The value is reduced to 122 and to 80 for the
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Fig. 2. Probabilistic lower bound on the stopping distance hmin versus block
length N for RMA codes with q = 4 and L = 2, 3, and 4.

repeat triple-accumulate (RAAA) and the repeat quadruple-

accumulate (RAAAA) code ensembles, respectively.
In the following, we obtain the asymptotic expression for

the stopping set enumerator of RMA code ensembles, and we

show that, indeed, their hmin asymptotically grows linearly

with the block length.

V. ASYMPTOTIC ANALYSIS OF STOPPING DISTANCE

We define the asymptotic stopping set size spectral shape

function as [10]

rs(ρ) = lim
N−→∞

sup
1

N
ln s̄C⌊ρN⌋

where sup(·) denotes the supremum of its argument, ρ = h
N

is the normalized stopping set size, and N is the block

length. If there exists some abscissa ρ0 > 0 such that

supρ≤ρ∗ rs(ρ) < 0 ∀ρ∗ < ρ0, and rs(ρ) > 0 for some

ρ > ρ0, then it can be shown (using Lemma 1 for example)

that, with high probability, the stopping distance of most codes

in the ensemble grows linearly with the block length N , with

growth rate coefficient of at least ρ0. On the other hand, if

rs(ρ) is strictly zero in the range (0, ρ0), it cannot be proved

directly whether hmin grows linearly with the block length or

not. In [5], it was shown that the spectral shape function of

RMA codes, for the codeword case, exhibits this behavior,

i.e., it is zero in the range (0, ρ0) and positive for some

ρ > ρ0, where ρ means here the normalized output weight.

By combining the asymptotic spectral shapes with the use of

bounding techniques, it was proved in [5, Theorem 11] that

the minimum distance of RMA codes indeed grows linearly

with the block length with growth rate coefficient of at least

ρ0. We remark that in the rest of the paper, with a slight abuse

of language, we sometimes refer to ρ0 as the exact value of the

asymptotic growth rate coefficient. However, strictly speaking,

ρ0 is only a lower bound on it.
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Now, by using Stirling’s approximation for the binomial

coefficient
(

n
k

) n→∞
−→ enH(k/n) where H(·) is the binary

entropy function with natural logarithms, and the fact that w,
h1, . . . , hL−1, d1, . . . , dL, and h can all be assumed to be of

the same order as N [9], s̄CRMA

w,h1,...,hL−1,h
can be written as

s̄CRMA

w,h1,...,hL−1,h
=

∑

d1,...,dL

exp {f(α, β1, . . . , βL−1, γ1, . . . , γL, ρ)N + o(N)}

when N −→ ∞, where α = w
K is the normalized input

stopping set size, ρ = h
N is the normalized output stopping

set size, βl = hl

N is the normalized output support set size of

code Cl, γl = dl

N , and the function f(·) is given by

f(β0, β1, . . . , βL−1, γ1, . . . , γL, ρ)

=
H(β0)

q
−

L
∑

l=1

H (βl−1) +

L
∑

l=1

(1 − βl)H

(

γl
1 − βl

)

+

L
∑

l=1

βlH

(

γl
βl

)

+

L
∑

l=1

(βl − γl)H

(

βl−1 − 2γl
βl − γl

)

(5)

where for conciseness we defined β0 = α and βL = ρ. Finally,
the stopping set size spectral shape function for RMA code

ensembles can be written as [4]

rCRMA
s (ρ) = sup

0<β0,...,βL−1≤1
0<γ1,...,γL≤1

f(β0, β1, . . . , βL−1, γ1, . . . , γL, ρ)

(6)

To analyze the asymptotic stopping distance behavior of RMA

code ensembles, we must solve the optimization problem in

(5)-(6). Details can be found in [9]. The numerical evaluation

of (5)-(6) is shown in Fig. 3 for RAA code ensembles with q =
2, 3, 4, 5, and 6. We observe that the stopping set size spectral

shape function for the rate R = 1/2 RAA code ensemble

is strictly positive, meaning that the ensemble is bad for the

BEC. For 3 ≤ q ≤ 6, the function rCRMA
s (ρ) is zero in the

range (0, ρ0) and positive for some ρ > ρ0. In this case, we

cannot conclude directly whether hmin grows linearly with the

block length or not. Define the function

ψ(u, ρ) = sup
max(0,u−ρ)≤γ≤min(ρ,1−ρ,u/2)

[

−H(u) + ρH

(

γ

ρ

)

+ (1 − ρ)H

(

γ

1 − ρ

)

+ (ρ− γ)H

(

u− 2γ

ρ− γ

)]

.

We can prove the following theorem (see [9] for details),

extending the results in [5] to the stopping distance case.

Theorem 4. Define ρ0 = max{ρ∗ ∈ [0, 1/2) : rCRMA
s (ρ) =

0 ∀ρ ≤ ρ∗}. Assuming that limu−→0
ψ(u,ρ)
u < 0 ∀ρ < ρ0, then

∀ρ∗ > 0

lim
N−→∞

Pr (hmin ≤ (ρ0 − ρ∗)N) = 0

for L ≥ 3 and q ≥ 2, and L = 2 and q ≥ 3. Thus, if ρ0 > 0
and rCRMA

s (ρ) ≥ 0 ∀ρ, then almost all codes in the ensemble
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Fig. 3. Asymptotic stopping set size spectral shape function for the RAA
code ensemble with q = 2, 3, 4, 5, and 6.

TABLE I
ASYMPTOTIC hmin GROWTH RATE COEFFICIENTS FOR RMA CODE

ENSEMBLES.

q = 2 q = 3 q = 4 q = 5

ρ0 (hmin) (L = 2) N/A 0.0929 0.1289 0.1505
ρ0 (dmin) (L = 2) [4] N/A 0.1323 0.1911 0.2286
ρ0 (hmin) (L = 3) 0.0681 0.1037 0.1194 0.1279
ρ0 (dmin) (L = 3) [4] 0.1034 0.1731 0.2143 0.2428
ρ0 (hmin) (L = 4) 0.0549 0.0716 0.0784 0.0817
GVB 0.1100 0.1740 0.2145 0.2430

have asymptotic stopping distance growing linearly with N
with growth rate coefficient of at least ρ0.

We remark that it can be verified that the assumption in

Theorem 4 always holds for the numerical values of ρ0 that

we have found. The exact values of ρ0 are given in Table I

(except for q = 6). For comparison purposes we also give

the asymptotic growth rate coefficient of the dmin computed

in [4]. As expected, the asymptotic growth rate coefficient of

hmin is smaller than for dmin. We can now prove the following

theorem (see [9] for details).

Theorem 5. The typical hmin of RMA code ensembles for

L ≥ 3 and q ≥ 2 grows linearly with block length.

In Table I, we also report the asymptotic growth rate

coefficient ρ0 for RAAA and RAAAA code ensembles. In-

terestingly, contrary to the asymptotic dmin growth rate coef-

ficient, which increases with the number of accumulators and

tends to approach the GVB [4, 5], the asymptotic growth rate

coefficient of hmin decreases with the number of accumulators

concatenated in series. The results are in agreement with the

finite-length analysis in the previous section.

On the other hand, the hmin of RA code ensembles does

not grow linearly with the block length (see [9] for details).

A. RMA Codes with Random Puncturing

In this section, we consider high rate RMA code ensembles

obtained by randomly puncturing the output of the most inner

accumulator CL of a RMA code ensemble. Denote by λ (0 ≤
λ ≤ 1) the puncturing permeability rate, i.e., the fraction of

bits surviving after puncturing, and by R′ = R/λ = 1/(λq)



TABLE II
ASYMPTOTIC hmin GROWTH RATE COEFFICIENTS FOR PUNCTURED RMA CODE ENSEMBLES WITH q = 4 AND NOMINAL CODE RATE R′ = 1/(λq).

R′ 1/4 0.28 0.29 3/10 5/16 0.33 1/3 11/30 2/5 0.41 0.42 0.43

λ 1 25/28 25/29 5/6 4/5 25/33 3/4 15/22 5/8 25/41 25/42 25/43

ρ0 (L = 2) 0.1289 0.1192 0.1142 0.1077 0.0977 0.0819 0.0788 0.0474 0.0188 0.0112 0.0045 N/A

ρ0 (L = 3) 0.1194 0.0694 0.0528 0.0373 0.0198 0.0004 N/A N/A N/A N/A N/A N/A

ρ0 (L = 4) 0.0784 0.0112 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

TABLE III
CONVERGENCE THRESHOLDS FOR RMA CODE ENSEMBLES.

q = 3 q = 4 q = 5 q = 6

RAA 0.4965 0.5422 0.5719 0.5935
RAAA 0.3259 0.3531 0.3718 0.3860
RAAAA 0.1957 0.2105 0.2209 0.2290

the nominal code rate of the punctured RMA code.

The SIOSEF of a randomly punctured code Cpunct. with

input support set size w, output support set size h before

puncturing, and output support set size h′ after puncturing

is given by [4]

aC
punct.

w,h′ =
N

∑

h=h′

aCw,h

(

h
h′

)(

N−h
λN−h′

)

(

N
λN

) . (7)

Using Stirling’s approximation in (7) and coupling it with

(5) and (6), the stopping set size spectral shape function of a

punctured RMA code ensemble r
CRMA−punct.

s (ρ′), where ρ′ =
h′

λN , can be derived.

The values of ρ0 corresponding to r
CRMA−punct.

s (ρ′) are

given in Table II for L = 2, 3, and 4 mother RMA code

ensembles with q = 4 for several nominal code rates R′.

Asymptotic hmin linear growth can be guaranteed for some

rates R′ > 1/q. However, it is interesting to note that the

asymptotic linear growth rate property breaks down for heavy

puncturing of the mother code ensemble. This behavior gets

worse as the number of encoding stages increases. These

results are also supported by the finite-length analysis. In

Fig. 2, we plot the probabilistic lower bound on hmin from

Lemma 1 for punctured q = 4 RMA code ensembles with

λ = 3/4 and L = 2 and 3. The results are in agreement

with the asymptotic analysis; for L = 2 and permeability rate

λ = 3/4 linear growth rate is guaranteed. However, applying

the same puncturing to the L = 3 RMA code ensemble breaks

down the linear growth rate property. Note that these results

are in contrast with the results in [4], where it was observed

that the asymptotic normalized dmin gets closer to the GVB

for higher rates with random puncturing.

VI. EXIT CHARTS ANALYSIS

In this section, we address iterative constituent code oriented

decoding of RMA code ensembles on the BEC by using EXIT

charts analysis [8] to estimate the convergence thresholds.

Note that for the BEC the EXIT functions of the repeat

and the accumulate codes can be given in closed form [11].

The convergence thresholds for RMA code ensembles for

q = 3, . . . , 6 are given in Table III. Note that RAAA and

RAAAA code ensembles show very poor thresholds, which

make them impractical. From the EXIT charts analysis and the

asymptotic analysis in Section V, it arises that double serially

concatenated code ensembles are good ensembles for the BEC,

since they provide both high asymptotic hmin growth rates

and good convergence behavior, while adding more encoding

stages penalizes both the asymptotic hmin growth rate and the

convergence threshold.

VII. CONCLUSION

In this paper, we considered RMA code ensembles on the

BEC. By deriving a closed-form expression for the SIOSEF

of the accumulate code, we obtained stopping set enumerators

for RMA code ensembles. We then analyzed the asymptotic

behavior of the stopping distance and showed that RMA code

ensembles exhibit a stopping distance that grows linearly

with the block length. Contrary to the minimum distance,

whose growth rate coefficient increases with the number of

accumulators, the growth rate of hmin diminishes with the

number of accumulators. We also considered puncturing of the

RMA code ensembles and showed that linear growth can be

obtained for rates larger than 1/q. However, the linear growth

property breaks down for heavy puncturing.
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