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Abstract—The serial concatenation of a repetition code with Furthermore, it has been shown i [7] afd [8] that the double
two or more accumulators has the advantage of a simple encode serially concatenated repeat accumulate accumulate (RAA)

structure. Furthermore, the resulting ensemble is asymptocally  qqe of rate 1/3 or smaller is asymptotically good and exgibi
good and exhibits minimum distance growing linearly with block - dist i li v with block | h

length. However, in practice these codes cannot be decodeg b MNIMUM diStance growing Anearly with block lengtn. -

a maximum likelihood decoder, and iterative decoding schees ~ Like LDPC codes, turbo-like codes are decoded in an itera-

must be employed. For low-density parity-check codes, theation tive fashion. Commonly, the component codes are decoded
of trapping sets has been introduced to estimate the perforance wijth a maximum a posteriori probability (MAP) decoding
of these codes under iterative message passing decoding.this  44qrithm and the extrinsic information provided by a com-
paper, we present a closed form finite length ensemble trappg . L .
set enumerator for repeat multiple accumulate codes by cramg ~ PONent decoder functions as a priori information for anothe
a trellis representation of trapping sets. We also obtain te For RMA codes, the turbo decoder can be represented as a
asymptotic expressions when the block length tends to infity message passing decoder [9], similar to the belief propayat
and evaluate them numerically. decoder, albeit with a different message passing schedule.
Thus the turbo decoder may also be susceptible to trapping
sets. To predict the error floor of a code one generally needs
Turbo-like codes[[1], as well as LDPC codes [2], cato have full knowledge of the trapping sets that dominate the
perform close to the Shannon limit using suboptimal iteeati error floor, i.e., one needs to know their graph structure and
decoding schemes. However, these codes typically exhibit @umerate their multiplicities, and to find the probabitiat
error floor at medium to high signal-to-noise ratios (SNRsjhe decoder gets trapped in a particular set. The lattermigt o
In [3], the height of the error floor of LDPC codes was linkedlepends on the graph structure of the trapping set but also on
to so-called "near codewords”. Later, in [4], this concepisw the channel model, the decoding algorithm, and the paaticul
generalized to trapping sets, substructures in the Tama@hg decoder implementation that is used.
of a code that may cause the iterative message passing decodin this paper we address the first part of the problem, the
to fail. For certain LDPC codes, small trapping sets, rathenumeration of subgraphs in an RAA code. We derive a closed
than the minimum distance of the code, dominate the errfarm trapping set enumerator (TSE) for gendialb) trapping
floor performance. sets, as defined in][4] and|[5]. A genefal b) trapping set for
Asymptotic spectra of trapping sets in LDPC code ensera-given Tanner graph is a set @fvariable nodes that induces
bles were computed iri[5] for regular and irregular LDPG subgraph containing odd degree check nodes, which can
codes and in[]6] for protograph-based codes. It was showe thought of asinsatisfiedchecks, and an arbitrary number
that there exist LDPC codes that exhibit a minimum trappingf even degree check nodes. If there are only a few unsatisfied
set size growing linearly with block length, for certain &9 check nodes and a sufficiently large number of erroneous
of trapping sets. variable nodes, the iterative message passing decoder ohay n
In turbo-like codes, the concatenation of simple componelpé¢ able to correct the erroneous nodes. The TSE is the average
codes through interleavers can lead to powerful code aamstrnumber of (¢, b) trapping sets in the ensemble composed of
tions. The simplest examples are repeat multiple accumulall possible interleaver realizations. We also derive gstypiic
(RMA) codes. These codes have a low encoding complexiypressions for the TSE and analyze them.
of O(1) and can be decoded using relatively few iterations.

I. INTRODUCTION

Il. TRAPPING SET ENUMERATORS FOR REPEAT
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gramme. in Fig. [. It is a serial concatenation of a repetition code
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e Fig. 2. Block diagram and factor graph representation of ecumulate
code.
) To proceed, we must define the trapping set enumerators
z% eee %z}v of the component coded$ " and Aii.a",bl’ for [ = {1,2}.

| - | Since there are no check nodes in Iéyér 1 of the factor graph,
crep (K

Al qw = w) is the input-output weight enumerator (IOWE)
3 % cee M of the repetition code, giving the number of codewords in
CreP of input weightw and output weightw, while Ai; as.b,
is the input-output trapping set enumerator (IOTSI':LS of code
Fig. 1. Block diagram and factor graph & 3) of an RAA encoder. The Cj°°, denoting the number of trapping setsdff® consisting
circles represent variable nodes and the boxes check nadgmgctively. of a% input variable nodes (i.e., variable nodes Corresponding

to information bits),af output variable nodes (i.e., variable

Cre» of rate R,., = 1/q and two identical rate-1, memory-1,nodes corresponding to code bits), andinsatisfied checks.
accumulate code&’, I = {1, 2}, with generator polynomials  with these definitions, the ensemble average T8,

g(D) =1/(1+ D), connected by interleavers andr,. For can be computed using the uniform interleaver condept [10]
the repetition cod€'P, we denote the binary input sequencgs:

2 2
z% r% (E% 1‘2; TN-1TN

of length K by u = [u1,...,uk] and the binary output _.nas AS L, g;ma%bl g?’,ag,bg
sequence of lengtly by x*P = [277, ..., z\"]. Likewise, for Ay = Z (N) (N)
encodeCiec, vl = [vl, ... vl ] andx! = [z},...,2Y] denote wailaﬁszé;f:a qu/ \ay )
the input sequence and the codeword, respectively, whehe bo o _oRAA

are of lengthN. Note thatv! = 71 (x*P) andv? = m(x}). = Z A ,09,b1,0,b2

The overall code rate i® = K/N. w,a?,az: wtajtag=a

b1,b2: b1+ba=b

The factor graph of an RAA code is also depicted in Elg. Jhere 407 is called the ensemble-average condi-

for a repetition factor ofy = 3. The circles represent variablegj, 4 Tswé‘f?’b““g’bz
nodes while the boxes represent check nodes. The infomatio 1,q evaluation off{1) requires the computationAffcc
symbolsu correspond to the variable nodes of the first layer aj,apbr’

) ! . : which will be presented in the next section. The ' extension
and their degree is equal to the repetition fagtofhe variable of (@) to more than two serially concatenated accumulasrs i

nodes of the second layer correspond to the output of the ﬁé%rtai htforward

accumulatorx', and the variable nodes of the third layer to 9 ’

the output of the second accumulatet, respectively. The [Il. | NPUT-OUTPUT TRAPPING SET ENUMERATOR FOR THE
input bits of the accumulators are represented by the Jariab ACCUMULATE CODE

nodes of the next higher layer. Only the variable nodes in theIn the following, we address the computation of the IOTSE
third layer are transmitted through the channel. This ig®pli ,cx of an accumulate code by considering an equivalent
that, initially, only variable nodes in the third layer cae im aj,af by y 9 q

01 . . .
error, while the others have a neutral initial value. Hovvevetreills representation of trapping sets in the factor graph

in the first decoding iteration, the variable nodes in laykers Fig.[3, the block diagram of an accumulate code and a single

and 2 get values assigned based on the received sequeﬁ%‘éﬂon of the corresponding factor graph are depictednFro

If there are trapping sets containing variable nodes inethoté1e figure we obtain the following refation:
layers, erroneous values that were assigned during the first
iteration may never be corrected and may cause the iterative
decoder to fail. Therefore, we consider the whole graph whenFour different 3-tuplegvy, z,_1, ) are possible, namely
enumerating for trapping sets. (0,0,0), (0,1,1), (1,0,1), and (1,1,0), such that the parity
Let Agrjf‘* be the ensemble-average TSE of an RAA codeheck is satisfied. Their factor graph representationstanes
ensemble, i.e., the average numbe(af) trapping sets. With in Fig.[3(a), where black circles represent non-zero symsbol
reference to Fid.]1, we denote hythe number of information and empty circles represent zero symbols. Now consider an
bits that participate in atu, b) trapping set o*44, Also, let (a,b) trapping set ofc®44, and assume that (some) of the
al, a?, andb; be the number of variable nodes correspondingriable nodes of accumulate cod&“ corresponding to
to input bits, the number of variable nodes corresponding (o, x;—1, z) participate in the trapping set and cause an
code bits, and the number of unsatisfied checks, respegtiveinsatisfied check. Again, only four different configuratame
of codeCi¢ involved in an(a,b) trapping set oCRAA, possible. They are depicted in F[d. 3(b), where black circle

Vg = Th—1 + Tk 3



)

wherem andn must satisfy the constraints
:)%: :;%. .';‘. .';%: ZE;C :);i. .Ei: .';;‘. i—b
m > o 5 | m < min{a’, N — a°},
() (b)

: (4)
Fig. 3. Factor graph representations of an accumulate code. n > a'+b —a®, n<N-—a’—m.
0/0/0 Proof: Consider the extended trellis section of the encoder
0 1o 0 g(D) = 1/(1 + D) in Fig.[4. Denote byn the number of

length-one error events/1/0 from the zero state to the zero
state, called type-1 error events, and tythe number of
error events that leave the zero state, and remerge latheto t
zero state, called type-2 error events. Furtheraletz®, and

00 b be the number of information variable nodes, the number of
. vin , _ code variable nodes, and the number of unsatisfied checks,
Fig. 4. Extended Trellis Section. respectively, participating in the trapping set. Also, let
denote the total input weight associated with the transitio

0 — 1 (from state zero to state one) and— 0 (from state
correspond to erroneous symbols and a black box means that 1o state zero) in the: type-2 error events.

the check is unsatisfied. Note that all possible trapping set Only type-2 error events are responsible for the weight at

can be obtained by properly combining the eight factor graphe output of the accumulator. From [11], we know that the

sections of FiglB. number of permutations of. type-2 error events resulting in
For enumeration purposes, it is simpler to refer to amn output weight of:° is

equivalent trellis representation. Assign to the variaindes N —a°\ [a® — 1

and the check nodes in Figl 3 that participate in a trapping ( )( )

set (the black circles and boxes) the valueThen the eight .

factor graph sections in Fif] 3 can be conveniently replteslen(Here’ the transitions away from gnd back to the zero state ar

by the equivalent trellis section of Fig] 4. We call this th&0t only caused by the input weight' but also by2m — w’

extended trellis sectiosince it extends the standard trellidinsatisfied check nodes.) The type-2 error events include

section of an accumulate code to include all possible trappi@’ — " transitions from the one state to the one statex(1),

sets. Each edge between two trellis states is labeled witt2d the input weight associated with the transitions: 1 is

binary 3-tuples;/c/s,, wheres; den_otes_the input symbol, w1y =a’ —n —wt. (5)

s, denotes the output symbol, ardis 1 if the check node

in the corresponding equivalent factor graph represamtati

is unsatisfied. The four labels in black correspond to the , al—b

four configurations of Fid.]3(a) and define the standardigrell = m. ©)

se&:tion of a”d iccrhmuflate coo:c_e, Wi‘_"e th? I%ur3l(ab|)aele Riso, due to terminationg’ + b is even. From[{5) and6) it
red correspond to the four configurations o . . No _od4b . .

the IOTSE of the accumulate code can be computed fr(;an])W follows _thath__;ll T2 e Th's_ We'ght can
the trellis representation of Figl 4 by considering a tselliP® ordered In(“i;rb—n—m) different ways, which gives the
consisting of N concatenated trellis sections like the one ithird binomial coefficient in[{3). On the other hand, there ar
Fig.[4 and enumerating all possible paths. The IOTSE is givé — a® — m transitions from the zero state to the zero state

in closed form in the following Theorem. with an associated input weight Therefore, we obtain the
term (Y~*"=™). The last binomial coefficient if]3) results
from the ordering of thev’ ones in the2m transitions) — 1

m m—1

Moreover, the following equality holds:

Theorem 1. Let (a?,a®, b) be a trapping set with’ informa-
tion variable nodesq® code variable nodes, andunsatisfied ) o
checks. The input-output trapping set enumerator (I0TSg)d1 — 0,in (#ﬁum) ways.

for the rate-1, memory-1, convolutional encodgtc with To summarize, the number of paths in the extended trellis
generator po'ynom|ab(D) — 1/(1 + D)’ terminated to the pon_SIStlng Of’fL type-l error events anch type-2 error events
all-zero state at the end of the trellis, and with input andipnu is given by:

block lengthV, can be given in closed form as: N—a°\fa°—1 a®—m N—a’—m 2m
m m—1 %—n—m n “i;b—&-m'
A, B N —a®\ (a° -1 The result for the encodey(D) = 1/(1 + D) follows by
aab = Z Z m m—1) summing over all possible values afandm. |

a®—m N —a°—m 2m Corollary 1. For b = 0, the expression i 13) reduces to the
’ aT+b aT—b +m)/)’ well-known IOWE for the rate-1, memory-1, accumulate code

(3) [LII.

—n—-m n



V. ASYMPTOTIC ENSEMBLE TRAPPING SET ENUMERATOR B, =B, =B/2

0.02
In order to determine the asymptotic spectral shape of the

trapping sets associated with a particular code ensemsle, a o018y

the block lengthV tends to infinity, we define the normalized 0.016|
logarithmic asymptotic TSEC (a, 3) of a code ensemblé as o014l
In A€
(e, B) = limsup b (7) 200y
N—o0 N 3 ool
wherea = a/N, 8 = b/N, and the supremum is taken overall £
intermediate variables. We also define the functigfs” and 0.008

fG° as the asymptotic behavior of the IOWE of a repeat code .06/
and the asymptotic behavior of the IOTSE of an accumulate
codeCj°c, respectively:

0.004r A=0.002

crep 0.002 =0.001 _
€7 (w) = lim Ay g 2-oo00/ “7° ‘
N—oo ]\C[MC (8) % 0.05 0.1 0.15 02 0.25 03
a
fclacc (ali af ﬁl) — lim In al,a? b =19 Fig. 5. Asymptotic TSE for different values &k and 81 = 52 = /2.
) ) . N*}Oo N ) ) ) X10’3
wherew = w/K, of =al/N, of = a?/N, and; = b;/N. s, 6=01
Using Stirling’s approximation for binomial coefficients 35| — B /B=02
==Y ¢"B(%), whereH(-) is the binary entropy function —F,/p=03
with natural logarithms, the functions il (8) can be writas 3 _Elisfz‘s‘
rep 1 ———B1IB=O.G
£ @) = (), ©) I
£l ---B,/B=08
and ; 27___[;115:0.9
N (ad, a9, 8) = sup (1 —af)H ( ol 0) + 0 el e
M1 1- a
0 o of + B = 2(vi + ) 1 A
+af (1) + (af = e "
af 2(a — ) ol P
v ol — B +2 '
+(1—af —m)H ( ——— ) +2uH o —Pit2m ,
l—af — dp 0 =
(10) 0 0.05
where we have defined the normalized quantities- m; /N Fig. 6. Asymptotic TSE for different fractions: /6.

andul = m/Nl.
Then, using[(8-10) and(1) if](7), the asymptotic TSE of
code ensembl€RAA can be written as:

N with increasinga. The presence of unsatisfied checks in
fhe factor graph results in a positive initial slope, and we
observe a quasi-linear increasing first section of the qunvel

By = sup fCT (W) + £ (w08, B)+  there is a discontinuity in the slope. In the second section,
azﬁw:/gi‘fﬁzas the slope of the curve is similar for all values &, and
2 o o . the curve shifts to the left with increasingy. Also, as the
+ /7 (af, a3, 52) — H(w) — H(a?), fraction of unsatisfied checkd increases, the slope in the
(11) first section also increases. Because of the large number
with the constrainter = % +a%+ag andB = B + Bo. of parameters involved in taking the supremum [n] (11), it
is difficult to draw general conclusions about the trapping
V. NUMERICAL EVALUATION set structures that are most likely to cause decoding &slur

In this section, we present a numerical evaluation[of (11Fhe structure of a trapping set is greatly influenced by the
Following [6], in the curves for the asymptotic TSE that wehoice of these parameters. We are primarily concerned with
present, we keep the ratid = 3/a of unsatisfied check nodestrapping set configurations that lead to decoding errors and
to erroneous variable nodes constant and comp(teAc«) this requiresv > 0. The choice of the parametefls and 3,
for varying values ofa. In Fig.[8, the unsatisfied checks indetermines how many unsatisfied checks are associated with
the RAA code ensemble are equally distributed between ttiee middle and inner accumulator, respectively. For insan
middle and inner accumulator, i.e; = B2 = (/2. For in the extreme case gf; = 8 and5; = 0, all the unsatisfied
A = 0, when no unsatisfied checks are present in the factdrecks are associated with the middle accumulator, ané ther
graph, the spectral shapéx, 0) exhibits a zero stretch in the are no unsatisfied checks in the graph of the inner accunulato
beginning and turns positive when the number of codewordsin Fig.[d we vary the ratigs; /3, the fraction of unsatisfied
with normalized weighta starts to grow exponentially in check nodes associated with the middle accumulator in the
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RAA code ensemble. For largeéh /3, when relatively more

VI. CONCLUSIONS

We have presented a simple closed form method to enu-
merate generala, b) trapping sets for RAA code ensembles.
The trapping set enumerator is first obtained for finite block
lengths N and its asymptotic expression is derived by letting
N go to infinity. Similar to [5] and [[6], we observe that,
when unsatisfied check nodes are present in the factor graph,
the asymptotic TSE lies strictly above the asymptotic spéct
shape for the case when no unsatisfied check nodes exist in
the graph. Although the RAA code ensemble is asymptotically
good and exhibits minimum distance growing linearly with
block length, in contrast to regular and some protograph-
based irregular LDPC codes, there exists no region where
the minimum trapping set size grows linearly with block
length. It can, at best, grow only sublinearly in the block
length, since the asymptotic TSE of the RAA code ensemble
is always positive if unsatisfied check nodes are present in
the graph. While the method presented in this paper allows
us to enumerate all genergal, b) trapping sets, the influence
that these trapping sets have on the error floor must still
be evaluated separately. As noted earlier, the probalbiiay
the decoder gets stuck in particular types of trapping sets
depends on the channel, the decoding algorithm, and the
particular decoder implementation. In future work we hope t
evaluate this probability for the turbo decoder and theebeli
propagation decoder, in order to obtain a reliable estiméte
the height of the error floor for RMA codes.
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