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Latent Capacity Region: A Case Study on
Symmetric Broadcast With Common Messages

Chao Tian,Member, IEEE

Abstract—We consider the problem of broadcast with common
messages, and focus on the case that the common message
rate RA, i.e., the rate of the message intended for all the
receivers in the setA, is the same for all the setA of the same
cardinality. Instead of attempting to characterize the capacity
region of general broadcast channels, we only consider the
structure of the capacity region that any broadcast channel
should bear. The concept of latent capacity region is useful
in capturing these underlying constraints, and we provide a
complete characterization of the latent capacity region for the
symmetric broadcast problem. The converse proof of this tight
characterization relies on a deterministic broadcast channel
model. The achievability proof generalizes the familiar rate
transfer argument to include more involved erasure correction
coding among messages, thus revealing an inherent connection
between broadcast with common message and erasure correction
codes.

Index Terms—Broadcast channel, common message, individual
message.

I. I NTRODUCTION

One central theme in multi-user information theory (IT) is
the pursuit of single-letter1 characterizations of the capacity
regions for channel coding problems, or the achievable ratere-
gions (possibly under certain distortion constraints) forsource
coding problems. However, some useful properties of these
regions can be identified, e.g., convexity, even when a single-
letter characterization is not available. An immediate question
to ask is whether there exist other properties of the capacity
region that do not rely on a single letter characterization.

The following question is of interest in this regard: in a
particular multi-user IT problem, can the achievability ofa
rate vector(R∗

1, R
∗
2, . . . , R

∗
N ) imply the achievability of any

rate vector in some region2 R(R∗
1, R

∗
2, . . . , R

∗
N), regardless of

the exact probabilistic channel model? We show that indeed
this is true for the symmetric broadcast problem, and this
region can be rather non-trivial. We denote the largest of
such regionsR(R∗

1 , R
∗
2, . . . , R

∗
N ) as C(R∗

1, R
∗
2, . . . , R

∗
N ) in

a channel coding problem, and call it thelatent capacity
region implied by (R∗

1 , R
∗
2, . . . , R

∗
N ); the latent achievable

rate region can be similarly defined, possibly under certain
distortion constraints, for a source coding problem thoughit
is not our main focus.

Chao Tian is with AT&T Labs-Research, Florham Park, NJ 07932, USA
(email: tian@research.att.com).

1The emphasis on single letter is largely because such kind ofcharacteri-
zation is usually computable.

2Apparently the region defined byRi ≤ R∗
i

is implied in a channel coding
problem, but this trivial case is not interesting. Note herewe do not take the
subscript of rateR∗

i
to have any specific meaning associated with the user

indices, but merely as an integer label to enumerate the rates in question.

For broadcast and multiple access channels, a precise prob-
lem formulation was given in a recent work by Grokop and
Tse [1], calledmulticast region, which provides a framework
to answer the above question. Complete solutions were found
in [1] for broadcast and multiple access channels withtwo
and three users, but the problem remains open for more than
three users. We believe this problem formulation reveals a
more general concept not limited to only these two channels,
and thus rename it as the latent capacity (or latent achievable
rate) region problem to make explicit this generality. Our
perspective is different from [1] in that we wish to highlight
the importance of the latent capacity region concept in its
“maximum implication” meaning, and thus we shall define the
region in an alternative (but equivalent) manner to emphasize
this perspective; our interest in this problem is partiallydue to
an observation made during an earlier work [2], as we shall
discuss shortly.

One may wonder how a single achievable rate vector
(R∗

1, R
∗
2, . . . , R

∗
N ) can imply the achievability of a certain

region. In some cases, it is perhaps best explained by the
familiar rate transfer argument, that the rate to transmit com-
mon messages can be used to transmit individual messages
instead, and vice versa. For example, for a two user broadcast
channel, if a common message rateR∗

{1,2}, and individual
message ratesR∗

{1} andR∗
{2} are achievable, respectively, then

it is not difficult to see that the region of(R{1,2}, R{1}, R{2})
given below is achievable by transferring between common
and individual rates (see also [1])

R{1,2} +R{1} ≤ R∗
{1,2} +R∗

{1}

R{1,2} +R{2} ≤ R∗
{1,2} +R∗

{2}

R{1,2} +R{1} +R{2} ≤ R∗
{1,2} +R∗

{1} +R∗
{2}.

However, for more than two users, such a naive rate transfer
argument is not sufficient, and additional processing is needed,
as observed in [1] for the three user case. In fact, this was
exactly the perspective taken in [1], where the goal is to
exhaust all such rate transfer operations. The perspectivetaken
in [1] and that taken here are complementary to each other, and
one may suit certain problems better than the other. Because
of this relation, it is not surprising that the achievability
proof of our result also relies on a generalized version of
rate transfer operations. We shall show that when more users
are involved, such generalized rate transfer operation requires
strategic application of erasure correction codes, which reveals
an inherent connection between erasure correction codes and
broadcast with common messages. More specifically, in this
work, we shall largely stay in the framework of [1], and
provide a complete solution to theK-user broadcast channel

http://arxiv.org/abs/1103.4784v1
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Fig. 1. The bold curve gives the rate region: while the left one is possible, the
right one is impossible for the successive refinement sourcecoding problem.
The thin lines give the latent capacity region associated with each small black
dot.

latent capacity region problem under an additional symmetry
constraint, whereas only cases with two and three users were
solved in [1] without such a constraint.

The characterization of latent capacity/rate region is impor-
tant in multi-user IT for two reasons. First, it may facilitate
finding a single-letter characterization or an approximatechar-
acterization. For example, a rate-distortion region characteriza-
tion for the problem of multi-stage successive refinement with
degraded decoder side information was given in the form of
bounds on sum-rates [2] as

m∑

i=1

Ri ≥

m∑

i=1

I(X ;Wm|W1,W2, ...,Wm−1, Ym),

1 ≤ m ≤ N.

On the other hand, it seems impossible to establish directlythe
converse for a characterization in the form of bounds on each
individual incremental rate [3], despite the fact that the two
characterizations are equivalent [2]. This is not a coincidence,
and it is not difficult to show that the latent rate region for
this problem has exactly the following form, assuming non-
negativity of the rates

m∑

i=1

Ri ≥

m∑

i=1

R∗
i , 1 ≤ m ≤ N. (1)

Intuitively, when a rate vector(R∗
1, R

∗
2, . . . , R

∗
N ) is achievable,

its latent capacity/rate region gives the largest achievable
region thus implied, i.e., maximally utilizes it, which may
help simplify the representation of the region when taking
the union over auxiliary random variables. Similarly, whenan
approximate characterization is needed, a good inner bound
may be found by choosing one or several good (auxiliary cod-
ing) distributions in an information theoretic coding scheme
which lead to one or several rate vectors, and then taking the
convex hull of their latent rate regions. One simple example
is in [4], where an approximate characterization for the side-
information scalable source coding problem was given for
general sources under the squared error distortion measure, and

the inner bound approximation is exactly the latent capacity
region implied by a single rate pair.

The second reason making this concept important is even
if it does not lead to a single-letter characterization or an
approximate characterization, it can still provide insights into
the problem. One such example is that the capacity region
can always be written as the (possibly uncountable) union of
latent capacity regions, which places certain constraintson
the geometry of the achievable region. For the above example
of successive refinement source coding, we show in Fig. 1 a
possible rate region on the left, and an impossible rate region
on the right. The one on the right is impossible because the
black dot is in the achievable region, thus the latent capacity
region implied by it (given by the thin line) must be also in
the region, which is not satisfied by the region depicted on
the right. This important observation was also discussed in
[1] (see Corollary 4.3), and we do not elaborate it further.
Nevertheless, it is rather clear that the latent capacity region
indeed provides fundamental and useful property of the rate
region, in addition to the well-known convexity.

II. PROBLEM DEFINITION AND PRELIMINARIES

We first define the symmetric broadcast problem, and then
introduce the notion of latent capacity region in this context.

In a generalK-user broadcast channel, the conditional
probability distribution is given as

p(y1[1, 2, . . .], y2[1, 2, . . .], ..., yK [1, 2, . . .]
∣∣x[1, 2, . . .]) (2)

where the index in the bracket[1, 2, ...] is used to denote time;
the random variables have alphabetsX ,Y1, . . . ,Y2, and the
receivers are indexed as1, 2, . . . ,K. The alphabets can be
discrete or continuous, and the channel can be memoryless or
otherwise; for our purpose, it is perhaps beneficial, thoughnot
necessary, to limit the attention to cases where the channel
transition process is (block) stationary and ergodic. We use
script letters to denote sets, and particularly,A and B are
reserved for subsets ofIK = {1, 2, . . . ,K}, i.e.,

A,B ⊆ {1, 2, . . . ,K}. (3)

|A| is used to denote the cardinality of setA. A length-n vector
X [1, 2, ..., n] is sometimes written asXn; for aK dimensional
vector(R1, R2, ..., RK), we sometimes write it simply asR.

Let {WA,A ⊆ IK} be 2K mutually independent and
uniformly distributed messages, whereWA is the message
intended for all the receivers in the setA; for notational
convenience, we includeW∅ but will assume it to be a
constant. For eachk = 1, 2, . . . ,K, define the set of random
variables

Wk = {WA,A : k ∈ A}. (4)

ThusWk is the collection of messages that thek-th receiver
should decode. We also define the following set of random
variables

Wk = {WA, |A| ≥ k}. (5)
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More specifically forK = 3, we have

W1 = {W1,W12,W13,W123}

W2 = {W2,W12,W23,W123}

W3 = {W3,W13,W23,W123}

W1 = W1 ∪W2 ∪W3

W2 = {W12,W13,W23,W123}

W3 = {W123}, (6)

where we have slightly abused the notation by writing, e.g.,
W{1} asW1. The setsXn

i andX
n

i are defined similarly for
length-n random vectors. In this work, we only consider the
case that the rates of messagesWA are the same for all such
messages where the setA has the same cardinality. More
formally, the problem is defined as follows.

Definition 1: An (n,R1, R2, . . . , RK) symmetric broad-
cast code consists of an encoder

f :
∏

A⊆IK

I
2
nR|A| → X

n, (7)

whereR∅ , 0 andK decoders,

gk : Y
n
k →

∏

A:k∈A

I
2
nR|A| , (8)

resulting in the decoded messages at thek-th receiver{Ŵk,A :
k ∈ A}, and the decoding error probability of at least one
message at one receiver

P (n)
e = Pr

(
K⋃

k=1

⋃

A:k∈A

{WA 6= Ŵk,A}

)
. (9)

Definition 2: A rate vectorR is symmetrically achievable
if there exists a sequence of(n,R) codes withP (n)

e → 0. The
closure of the set of symmetrically achievable rate vectorsis
called the symmetric broadcast capacity region, denoted as
Cp(y1,y2,...,yK|x), or simply asCp.

Note that secrecy constraint is not considered in the defini-
tion. Next we define the latent capacity region for this problem.

Definition 3: For a given rate vectorR∗, the collection of
rate vectorsR(R∗) is called the latent capacity region for
symmetric broadcast implied byR∗, denoted asC(R∗), if the
following two conditions are satisfied (i) For any broadcast
channel,R∗ ∈ Cp impliesR(R∗) ⊆ Cp; (ii) There exists a set
of channels{px}, such thatR∗ ∈ Cpx

andR(R∗) ⊇
⋂

x Cpx
.

For the second condition, we essentially wish to find one
particular channel such thatR(R∗) ⊇ Cp. However this
does not quite serve the purpose since this channel might be
difficult to realize, however it can always be approximated
by a sequence of channels. The above definition is slightly
different from the one in [1], which is

C(R∗) =
⋂

p:R∗∈Cp

Cp. (10)

It can be easily verified that they are equivalent. The problem
we wish to solve is the characterization ofC(R∗). It is clear
that the regionC(R∗) is uniquely defined for anyR∗, and

thus the problem is meaningful.

Definition 3 makes clear the “maximal implication” mean-
ing of the latent capacity region. In multi-user IT, usually
a coding scheme is given by fixing some auxiliary random
variables, and then showing a single rate vector is achievable
with certain random codes; the task of maximizing the impli-
cation region of this single point is sometimes mingled with
the conditions under which this single point is achievable.The
concept of latent capacity region can be used to delineate them.

The following lemma is needed in the converse proof.

Lemma1 (K-way submodularity): Let {Ui, i =
1, 2, . . . , N} be a set of mutually independent random
variables, and{Vi, i = 1, 2, . . . , N} be a set of random
variables jointly distributed with it. LetGi, i = 1, 2, . . . ,K
be subsets ofIN . Then

K∑

k=1

H(Vi, i ∈ Gk|Ui, i ∈ Gk) ≥
K∑

k=1

H(Vi, i ∈ Ĝk|Ui, i ∈ Ĝk),

(11)

where

Ĝk ,
⋃

{j1,j2,...,jk}⊆IK

(Gj1 ∩ Gj2 ∩ · · · ∩ Gjk). (12)

This lemma is a direct consequence of the sub-modularity
of the conditional entropy function, when the random variables
being conditioned on are independent (a proof is given in
Appendix A), and theK-way submodularity property of any
submodular function given in [5].

III. M AIN RESULT

Our main result is a complete characterization of the latent
capacity region for the symmetric broadcast problem. To
present this region, a few more quantities need to be defined
first. Let us define the following up-exchange rate fori < j

φi,j =

(
K − i

j − i

)−1(
j − 1

j − i

)
, (13)

and the down-exchange rate fori > j

φi,j =

(
i

i− j

)−1(
K − j

i− j

)
, (14)

and defineφi,i = 1. The up/down exchange ratesφi,j

essentially describe the ratio when converting certain type of
messages into other types. For example whenK = 3, the
common messageW123 can be used to convey individual in-
formation to the three users, and vice versa, but the conversion
of such rates is not always ratio one. It will become clear in
the achievable proof how such conversion can be done in a
most efficient manner.

DefineC∗(R∗) to be the set of rate vectorsR satisfying the
following conditions with someK2 non-negative quantities
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ri,j , (i, j) ∈ IK × IK ,

R∗
i ≥

K∑

j=1

ri,j , i = 1, 2, . . . ,K, (15)

0 ≤ Rj ≤
K∑

i=1

φi,jri,j , j = 1, 2, . . . ,K. (16)

Roughly speaking, the rateri,j is that taken from level-i
rateR∗

i but used to transmit level-j messages. We have the
following theorem.

Theorem1: For any non-negative rate vectors
(R∗

1, R
∗
2, . . . , R

∗
K), we have

C(R∗
1, R

∗
2, . . . , R

∗
K) = C∗(R∗

1, R
∗
2, . . . , R

∗
K). (17)

Example: for K = 2, it is straightforward to see:φ1,2 = 1,
i.e., the same amount of individual message rate for each user
can be used to transmit a common message; andφ2,1 = 1/2,
i.e., to split a common message into two equal parts, each to
transmit a separate individual message for one user.

Example: for K = 3, it can be verified using Fourier-
Motzkin elimination [7] thatC∗(R∗

1, R
∗
1, . . . , R

∗
K) is given by

the non-negative rates satisfying

3R1 + 6R2 + 2R3 ≤ 3R∗
1 + 6R∗

2 + 2R∗
3,

2R1 + 2R2 + 1R3 ≤ 2R∗
1 + 2R∗

2 + 1R∗
3,

1R1 + 2R2 + 1R3 ≤ 1R∗
1 + 2R∗

2 + 1R∗
3,

3R1 + 3R2 + 1R3 ≤ 3R∗
1 + 3R∗

2 + 1R∗
3. (18)

A typical shape is given in Fig. 2 with(R∗
1, R

∗
2, R

∗
3) =

(1, 2, 2). The computation is tedious and thus omitted here.
The same result can also be reduced from that given in [1] for
the asymmetric case. It is clear that this region is non-trivial,
and it is not at all clear a priori why these rate combinations
should be considered.

In [1], the region is characterized by investigating the
distinct universal encoding/decoding operations, which leads
to the concept of extremal rays. Because the latent capacity
region in question is a polytope, it can be characterized by
its faces, edges, or vertices. The extremal rays are essentially
the edges of this polytope. However this proof approach in
[1] appears rather difficult to generalize for more than three
users since the number of edges quickly becomes very large,
and thus we introduce the parametric characterization (15)and
(16) to avoid this difficulty.

Notice that the exchange rate is pairwise, suggesting in this
symmetric setting there is no need to convert rates jointly,e.g.,
useW12 andW3 to send the same messageW123. In the rest
of the paper, we shall prove Theorem 1. The naive approach of
finding the planes of the rate region and derive its upper and
lower bounds is not appropriate for generalK, particularly
for the purpose of converse. Instead, we utilize the structure
of the regionC∗(R∗) to give a proof.

IV. PROOF OF THEFORWARD PART FOR THEOREM 1

The proof of the forward part of Theorem 1, i.e., the fact that
C∗(R∗) satisfies the first condition in Definition 3 is relatively
straightforward.
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Fig. 2. The latent capacity region implied by rate vector(1, 2, 2).

Proof of forward part for Theorem 1: Since (R∗) is
achievable on any channel, there exists a sequence of codes
with such rates withP (n)

e → 0, and we will use these codes
to construct a set of codes to approach any rate vectors in
C∗(R∗). This is done by essentially relabeling and adding
erasure correction codes on the messages.

Observe that the messages{WA, |A| = i} can also be used
to transmit common messages to the subsets with cardinality
smaller or larger thani. Moreover, we can use part of the
rate R∗

i , denoted asri,j , for this purpose, to transmit some
messages{W ′

A, |A| = j}, thus increasingRj . Such an
operation will cause a conversion of rateri,j for i-user subset
messages into rateφi,jri,j for j-user subset messages, with an
exchange rateφi,j . The regionC∗(R∗) is precisely the result of
allowing this kind of pairwise exchange on the rate vectorR

∗.
Thus we only need to show that the exchange ratesφi,j given
before Theorem 1 is indeed valid, then the existing sequence
of channel codes can be used directly.

It is clear that we only need to consider the following
problem: on a channel withRi = R andRk = 0 for k 6= i,
how do we transmit messages{WA, |A| = j}, and how much
rateRj can be supported? We will only need to distinguish
two casesi < j or i > j, since it is clearφi,i = 1.

We first consider the casei < j. For a subsetB of IK where
|B| = j, there are a total of

(
j
i

)
subset ofB with cardinalityi;

denote the collection of such subsets as2B,i. For a particular
userk ∈ B, it can decode (with high probability) the messages
{WA : k ∈ A ⊂ B}, i.e.,

(
j−1
i−1

)
such messages. To transmit

the common messageWB, if we can guarantee that when
receiving any

(
j−1
i−1

)
messages out of the

(
j
i

)
messages in the

set2B,i, the message is decodable, then it is clear that indeed
any receivers in the setB can decode the messageWB. This is
an erasure correction problem and a

((
j
i

)
,
(
j−1
i−1

))
maximum

distance separable (MDS) code can satisfy this requirement,
which indeed exists when the codeword length is sufficiently
large. Furthermore, since each subsetA of cardinality i is a
subset of

(
K−i
j−i

)
sets of cardinalityj, only

(
K−i
j−i

)−1
of the rate
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RA can be used for each MDS code. This yields

Rj =

(
K − i

j − i

)−1(
j − 1

i− 1

)
Ri = φi,jRi. (19)

Next consider the casei > j. LetB be a subset ofIK where
|B| = i. The common messageB can be shared uniformly
between its

(
i
j

)
subsets of cardinalityj, for transmitting their

“individual” message. Since each subsetA of cardinalityj is
a subset of distinct

(
K−j
i−j

)
sets of cardinalityi, it can take part

in such sharing
(
K−j
i−j

)
times. This yields

Rj =

(
i

j

)−1(
K − j

i− j

)
Ri = φi,jRi. (20)

Taking into account the existence of good MDS code, and the
fact thatCp is a closed set, the proof is complete.

In [1], it was observed that in order to efficiently transfer
rates, sometimes a modulo two addition is needed, similar
to that seen in butterfly network of network coding [6]. The
MDS codes we use in the above proof can be understood as
a generalization of the modulo two addition, which itself is
essentially a(3, 2) MDS code. It is worth noting that other
coding/processing may also be useful for converting rates,
however, MDS codes are sufficient in solving the symmetric
broadcast problem.

V. PROOF OF THECONVERSEPART FOR THEOREM 1

The converse proof of Theorem 1 requires more work. For
simplicity we shall assume2R

∗
A ’s are all integers; if this is not

the case, a sequence of channels need to be considered, and
we shall return to this technical point after the proof.

We only need to provide one particular channel thatR
∗ ∈

Cp and R(R∗) ⊇ Cp. The channel is the deterministic one
considered in [1], extended to theK-user case; see Fig. 3
for the caseK = 3. More precisely, let the channel input be
the collection of{XA,A ⊆ IK}. The alphabet ofXA where
|A| = k is I

2R
∗
k
. Thek-th channel outputYk is given by

Yk = {XA : k ∈ A}. (21)

Denote this deterministic channel asp∗. In order to prove the
converse part for Theorem 1, we need to establishC∗(R∗) ⊇
Cp∗ for this channel.

For anyA = A1, A2, . . . , AK whereAi ≥ 0, define the
following quantity

BC∗(A) = max
R∈C∗(R∗)

K∑

k=1

AkRk, (22)

and similarly

BC(A) = max
R∈Cp∗

K∑

k=1

AkRk. (23)

It is clear that bothC∗(R∗) andCp∗ are convex regions, and
thus if we can prove the following theorem, then the converse
of Theorem 1 directly follows.

Theorem2: For anyA whereAi ≥ 0,

BC∗(A) ≥ BC(A). (24)

1X

2X

3X

12X

123X

13X

23X
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�������� �
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23X
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123X

123X

Fig. 3. The deterministic broadcast channelK = 3 from [1].

This is indeed our proof approach, however before giving
the rather long proof for the general case, we first prove a
few rate combinations forK = 3, which illustrates the basic
techniques as well as facilitates better understanding. Though
the proof of the case forK = 3 can also be found in [1],
our proof given here is different and in fact more structured,
which is geared toward the general case. After this example,
a few necessary tools and intermediate results are provided,
and finally we give the converse proof of Theorem 1.

A. Bounding Two Rate Combinations for K = 3

We give an outline of the proof for the first two inequalities
in the example given after Theorem 1.

Proof:

3nR∗
1 + 6nR∗

2 + 2nR∗
3

≥
2

3

3∑

i=1

H(Xn
i ) +

1

3

3∑

i=1

H(Xn
i |X

n
123,W123)

(a)

≥
2

3

3∑

i=1

[H(Xn
i |Wi) +H(Wi)]

+
1

3

3∑

i=1

H(Xn
i |X

n
123,W123)− nδ

(b)
= 2nR1 + 4nR2 + 2nR3 +

2

3

3∑

i=1

H(Xn
i |Wi)

+
1

3

3∑

i=1

H(Xn
i |W123)−H(Xn

123|W123)− nδ

(c)

≥ 2nR1 + 4nR2 + 2nR3 +
2

3
H(Xn

123|W123)

+
1

3

3∑

i=1

[H(Wi|W123) +H(Xn
i |Wi)]

−H(Xn
123|W123)− nδ′

= 3nR1 + 6nR2 + 2nR3 − nδ′

+

[
1

3

3∑

i=1

H(Xn
i |Wi)−

1

3
H(Xn

123|W123)

]

(d)

≥ 3nR1 + 6nR2 + 2nR3 − nδ′, (25)
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where (a) is by Fano’s inequality, (b) is by adding and
subtracting the same term, (c) is by applying Fano’s inequality
on the third term, and noticing that Lemma 1 together with
the fact of the channel being discrete implies that,

3∑

i=1

H(Xn
i |Wi)

≥ H(X
n

1 |W1) +H(X
n

12|W2) +H(Xn
123|W123)

≥ max{H(Xn
123|W123), H(X

n

2 |W2)} (26)

and (d) is again by the inequalities in (26). This completes
the proof for the first rate combination. For the second rate
combination, we have

6nR∗
1 + 6nR∗

2 + 3nR∗
3

≥
3∑

i=1

H(Xn
i |X

n

2W2) +
3∑

i=1

H(Xn
i )

(a)

≥

3∑

i=1

H(Xn
i |X

n

2W2) + 3nR1 + 6nR2 + 3nR3

+H(X
n

2 |W2)− nδ

=
3∑

i=1

H(Xn
i X

n

2 |W2)− 3H(X
n

2 |W2)

+ 3nR1 + 6nR2 + 3nR3 +H(X
n

2 |W2)− nδ

≥ 6nR1 + 6nR2 + 3nR3 − nδ′

+

[
3∑

i=1

H(Xn
i X

n

2 |WiW2)− 2H(X
n

2 |W2)

]

(b)

≥ 6nR1 + 6nR2 + 3nR3 − nδ′, (27)

where (a) is because of (26), and in (b) we applied Lemma 1,

3∑

i=1

H(Xn
i X

n

2 |WiW2) ≥ H(X
n

1 |W1) + 2H(X
n

2 |W2), (28)

and then omit the first term since the channel is discrete; the
rest of the inequalities in (27) are by Fano’s inequality.

This proof illustrates several main components of the proof
for the general case. Firstly, the rate combination needs tobe
written as summations under appropriate proportions, secondly
the K-way submodularity lemma needs to strategically used,
and thirdly there are connections between different layersof
messages and thus terms may be canceled among them. For the
generalK-user problem, the bounding becomes much more
complicated, and we will rely on the optimal solutionBC∗(A)
to provide necessary structure and guidance.

B. Several Properties of φi,j

We begin with a few properties on the exchange rateφi,j .
Lemma2: For any integersi, j, k such that1 ≤ i < j <

k ≤ K, we haveφi,jφj,k = φi,k.
Lemma3: For any integersi, j, k such that1 ≤ i < j <

k ≤ K, we haveφk,jφj,i = φk,i.
Lemma4: For any integersi, j such that1 ≤ i < j ≤ K,

we haveφi,jφj,i = i/j < 1.

� � � � �  !"#$ %

Fig. 4. An illustration of the optimal extremal solution structure. The longer
and bolder marks give the setE .

Lemma5: For any integersi, j, k, we haveφi,k ≥ φi,jφj,k,
with equality only when the sequence(i, j, k) is monotonic.

Lemma6: For anyk > j, we have(k+1)
(
K−1
k−1

)
φk+1,j =

k
(
K−1
k

)
φk,j .

Lemma7: For anyi < j,
(
K−1
i−1

)(
K−1
j−1

)−1
= φi,j .

The above lemmas (particularly Lemma 2-5) may be
best understood as a currency exchange system where up-
converting (or down-converting) many times results in the
same final exchange rate as a single step conversion, but
up-converting mixed with down-converting to the original
currency results in a loss. The proofs of these lemmas are
given in Appendix B.

C. Extremal Solutions and the Effective Rate Set

To prove the converse part of Theorem 2, we proceed in
two steps: first we identify some special optimal solutions for
the maximization problem (22) with certain desired properties,
then show thatBC∗(A) is an upper bound to the quantity
BC(A). In this subsection we discuss the first step.

Definition 4: A non-negative setting ofri,j satisfying (15)
is called extremal if the following conditions hold (i) For each
i = 1, 2, . . . ,K, there exists a uniquej ∈ IK such thatri,j =
R∗

i and ri,k = 0 for k 6= j. (ii) If ri,j = R∗
i > 0, then

rj,j = R∗
j . (iii) If ri,j = R∗

i > 0, then for anyk such that
max(i, j) > k > min(i, j), rk,j = R∗

k.
Lemma8: The solutions to the maximization problem (22)

include one that is extremal.
The lemma is intuitively true since a linear optimization

problem has an optimal solution at its corner point. The
concept of extremal solution makes the definition of corner
point in the problem context more precise. A proof is given
in Appendix B.

Definition 5: In an optimal extremal solution, the effective
rate set is defined asE , {i ∈ IK : rj,i > 0 for somej}.
The elements ofE in an increasing order are denoted as
e1, e2, . . . , e|E|.

Lemma 8 implies there exists a specific structure of rate
exchange in the optimal extremal solutions.

Lemma9: For an optimal extremal solution:

• There exist a partition of the sequence1, 2, . . . ,K, la-
beled asS1,S2, . . . ,S|E|, each consisting a consecutive
sequence of integers, andei ∈ Si.

• For k ∈ Si, we haverk,ei = R∗
k.

This structure is analogous to scalar quantization to some
extent, as illustrated in Fig. 4.

D. Proof of the Converse Part of Theorem 2

Proof: For a fixed vectorA, let {r̂i,j} be an optimal
extremal solution for the maximization problem (22), and let E
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be its effective rate set and letS1,S2, . . . ,S|E| be the partition
sets; for convenience, denote the smallest element in the set
Si as li and the largest element asui. Assuming a sequence
of length-n codes is given with diminishing error probability.
Let Xi andX i be defined similarly asWi andW i. The proof
consists of two layers of inductions. We start from the inner
layer, and then put the pieces together in the outer layer.

Define the following quantity fork = 1, 2, . . . , |E|, for
which lower bounds will be derived

Lk ,

uk−1∑

j=ek

ak,j

K∑

i=1

H(Xn
i |X

n

j+1Wj+1)

+ ak,uk

K∑

i=1

H(Xn
i |X

n

uk+1Wuk+1), (29)

where

ak,j ,
φj,ek(
K−1
j−1

) − φj+1,ek(
K−1
j

) , j = ek, . . . , uk − 1

ak,uk
,

φuk,ek(
K−1
uk−1

) − Aek+1
φuk,ek+1

Aek

(
K−1
uk−1

) , (30)

and for convenience we have definedAe|E|+1
, 0 and

φj,e|E|+1
, 0. Note that all the coefficients in front of the

entropy functions are non-negative: those in the first sum-
mation are straightforward to verify by using the definition
of φi,j , and for the last term we only need to observe that
Aekφuk,ek ≥ Aek+1

φuk,ek+1
by the optimality of the extremal

solution. For convenience let us also define

bk,j ,
φj,ek(
K−1
j−1

) − Aek+1
φuk,ek+1

Aek

(
K−1
uk−1

) =

uk∑

i=j

ak,i, j = ek, . . . , uk,

(31)

which are clearly non-negative quantities. We are interested in
these quantitiesLk ’s because they are directly related with the
rate combination being considered, as we shall see shortly.

We start by writing the following

K∑

i=1

H(Xn
i |X

n

j+1Wj+1)

=

K∑

i=1

H(Xn
i |X

n

j+1Wj+1) +KH(X
n

j+1|Wj+1)

−KH(X
n

j+1|Wj+1)

=
K∑

i=1

H(Xn
i ,X

n

j+1|Wj+1)−KH(X
n

j+1|Wj+1)

(a)

≥
K∑

i=1

H(Wi|Wj+1) +
K∑

i=1

H(Xn
i ,X

n

j+1|Wj+1,Wi)

−KH(X
n

j+1|Wj+1)− nδ

(b)

≥
K∑

i=1

H(Wi|Wj+1) +

j∑

i=1

H(X
n

i |W i)

− jH(X
n

j+1|Wj+1)− nδ, (32)

where (a) is by Fano’s inequality, and (b) is by applying

Lemma 1 on the second term. For notational simplicity, we
shall ignore the small quantityδ in the sequel.

Slightly further expanding the first term in (32) and sub-
stituting it in Lk give us (33). More generally, we claim that
for m such thatuk − 1 ≥ m ≥ ek − 1, (34) holds, which we
prove by induction. Clearly it holds form = uk − 1 since it
is exactly (33) in this case. Suppose it holds form = m∗, we
shall prove it also holds form = m∗ − 1. Putting (32) into
(34), we have (35) given on the next page. In order to simplify
(35), first notice thatak,m∗ + bk,m∗+1 = bk,m∗ , and

bk,m∗

(
K − 1

m∗ − 1

)
= φm∗,ek −

Aek+1
φuk,ek+1

(
K−1
m∗−1

)

Aek

(
K−1
uk−1

)

(a)
= φm∗,ek −

Aek+1
φuk,ek+1

φm∗,uk

Aek

(b)
= φm∗,ek −

Aek+1
φm∗,ek+1

Aek

, (36)

where (a) is by Lemma 7 and (b) is by Lemma 2. It follows
that

ak,m∗

K∑

i=1

H(Wi|Wm∗+1) + bk,m∗+1

K∑

i=1

H(Wi|Wm∗+1)

= bk,m∗

K∑

i=1

H(Wi|Wm∗) + nKbk,m∗

(
K − 1

m∗ − 1

)
Rm∗ ,

= bk,m∗

K∑

i=1

H(Wi|Wm∗)

+ nK

(
φm∗,ek −

Aek+1
φm∗,ek+1

Aek

)
Rm∗ . (37)

Furthermore, notice that

ak,m∗

m∗∑

i=1

H(X
n

i |W i)− ak,m∗m∗H(X
n

m∗+1|Wm∗+1)

+ bk,m∗+1

m∗+1∑

i=1

H(X
n

i |W i)

= bk,m∗

m∗∑

i=1

H(X
n

i |W i)

+ (bk,m∗+1 − ak,m∗m∗)H(X
n

m∗+1|Wm∗+1)

= bk,m∗

m∗∑

i=1

H(X
n

i |W i)

−
Aek+1

φuk,ek+1

Aek

(
K−1
uk−1

) H(X
n

m∗+1|Wm∗+1), (38)

where the last step is due to

bk,m∗+1 − ak,m∗m∗

= (m∗ + 1)
φm∗+1,ek(

K−1
m∗

) −
Aek+1

φuk,ek+1

Aek

(
K−1
uk−1

) −m∗ φm∗,ek(
K−1
m∗−1

)

= −
Aek+1

φuk,ek+1

Aek

(
K−1
uk−1

) , (39)

where the last equality is by Lemma 6. Combining (35), (37)
and (38), we have (40), proving that the claim (34) is indeed
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true.

Letting m = ek − 1, we can write (41) on this page. By
breaking the second term as given in (42), where in the last
step we apply Lemma 7 and Lemma 2, and noticing that for
the third term

bk,ek

ek∑

i=1

H(X
n

i |W i) ≥ bk,ek

lk∑

i=1

H(X
n

i |W i),

implied by the discrete nature of the channel, we can further
write (43) on the next page.

This concludes the inner layer induction, and next we turn
to the outer layer. First notice that the optimality of extremal
solution and Lemma 9 together imply that

BC∗(A) =

|E|∑

i=1

Aei

∑

j∈Si

φj,eiR
∗
j . (44)

We first write (45) where the inequality can be justified
as follows. Observe that in the second summation, for any
k > e|E|, the random variablesXA with |A| = k appear
only in the lastK − k + 1 terms in the outer summation.
Each inner summation has a total ofK

(
K−1
j−1

)
such terms,

which implies such random variables are counted a total of
Ae|E|

Kφj,e|E|
times. Thus by the cardinality of the alphabets,

the normalized entropy is upper bounded byR∗
k. Through a

similar argument, it is not difficult to verify that fork ≤ e|E|,
all the terms are accounted for. Furthermore, notice that by
the optimality of the extremal solution, for anyj ∈ Si, we
haveAeiφj,ei ≥ Ae|E|

φj,e|E|
, and thus the first summation is

non-negative.

We next apply (43) withk = |E| in (45), and write (46)
on the next page, because we haveu|E| = K, Ae|E|+1

= 0 by
definition, and

b|E|,e|E|
=

φe|E| ,e|E|(
K−1
e|E|−1

) =
1(

K−1
e|E|−1

) . (47)

More generally, we claim fork = 0, 1, . . . , |E| − 1, the

following inequality holds

BC∗(A) ≥

k∑

i=1

∑

j∈Si

[
Aeiφj,ei −Aek+1

φj,ek+1

]
R∗

j

+

|E|∑

i=k+1

Aei

ui∑

j=li

φj,eiRj +
Aek+1

nK
(

K−1
ek+1−1

)
K∑

i=1

H(Wi|W lk+1
)

+
Aek+1

nK
(

K−1
ek+1−1

)
lk+1∑

i=1

H(X
n

i |W i) (48)

We again take an induction approach to prove this claim.
The claim is clearly true fork = |E| − 1. Now suppose (48)
is true for k = k∗, and we seek to show it is also true for
k = k∗ − 1. For notational simplicity, let us define

cj,k = Aeiφj,ei −Aek+1
φj,ek+1

. (49)

We first prove the following inequality

k∗∑

i=1

∑

j∈Si

cj,k∗R∗
j ≥

k∗−1∑

i=1

∑

j∈Si

cj,k∗−1R
∗
j +

Aek∗

nK
Lk∗ . (50)

To do this, we need to count in the second term the number
of appearance of random variablesXA for all |A| = m, for
all fixed m, such thatm ∈ Iuk∗ . This is similar to (45), but
slightly more involved. Form such thatuk∗ ≥ m > ek∗ ,
it is easily seen that there are a total ofbk∗,mK

(
K−1
m−1

)
such

random variables inLk∗ , implying the following amount of
R∗

m is accounted for

Aek∗

K
bk∗,mK

(
K − 1

m− 1

)
= Aek∗φm,ek∗ −Aek∗+1

φm,ek∗+1
,

(51)

where we have used (36). This indeed is the difference
between the left hand side of (50) and the first term on the
right hand side, in terms ofR∗

m. For the casem ≤ ek∗ , the
following amount ofR∗

m is accounted for

Aek∗

K
bk∗,ek∗K

(
K − 1

m− 1

)
= Aek∗φm,ek

∗ −Aek∗+1
φm,ek∗+1

,

(52)

where we have used the derivation in (42). This is again

Lk ≥

uk−1∑

j=ek

ak,j

K∑

i=1

H(Xn
i |X

n

j+1Wj+1) + nK

(
φuk,ek −

Aek+1
φuk,ek+1

Aek

)
Ruk

+ ak,uk

K∑

i=1

H(Wi|Wuk
) + ak,uk

uk∑

i=1

H(X
n

i |W i)− ukak,uk
H(X

n

uk+1|Wuk+1). (33)

Lk ≥

m∑

j=ek

ak,j

K∑

i=1

H(Xn
i |X

n

j+1Wj+1) + nK

uk∑

j=m+1

(
φj,ek −

Aek+1
φj,ek+1

Aek

)
Rj + bk,m+1

K∑

i=1

H(Wi|Wm+1)

+ bk,m+1

m+1∑

i=1

H(X
n

i |W i)− ukak,uk
H(X

n

uk+1|Wuk+1)−
Aek+1

φuk,ek+1

Aek

(
K−1
uk−1

)
uk−1∑

i=m+1

H(X
n

i+1|W i+1). (34)
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Lk ≥
m∗−1∑

j=ek

ak,j

K∑

i=1

H(Xn
i |X

n

j+1Wj+1) + ak,m∗

K∑

i=1

H(Wi|Wm∗+1) + ak,m∗

m∗∑

i=1

H(X
n

i |Wi)

− ak,m∗m∗H(X
n

m∗+1|Wm∗+1) + nK

uk∑

j=m∗+1

(
φj,ek −

Aek+1
φj,ek+1

Aek

)
Rj + bk,m∗+1

K∑

i=1

H(Wi|Wm∗+1)

+ bk,m∗+1

m∗+1∑

i=1

H(X
n

i |W i)− ukak,uk
H(X

n

uk+1|Wuk+1)−
Aek+1

φuk,ek+1

Aek

(
K−1
uk−1

)
uk−1∑

i=m∗+1

H(X
n

i+1|W i+1). (35)

Lk ≥

m∗−1∑

j=ek

ak,j

K∑

i=1

H(Xn
i |X

n

j+1Wj+1) + nK

uk∑

j=m∗

(
φj,ek −

Aek+1
φj,ek+1

Aek

)
Rj + bk,m∗

K∑

i=1

H(Wi|Wm∗)

+ bk,m∗

m∗∑

i=1

H(X
n

i |W i)− ukak,uk
H(X

n

uk+1|Wuk+1)−
Aek+1

φuk,ek+1

Aek

(
K−1
uk−1

)
uk−1∑

i=m∗

H(X
n

i+1|W i+1), (40)

Lk ≥nK

uk∑

j=ek

(
φj,ek −

Aek+1
φj,ek+1

Aek

)
Rj + bk,ek

K∑

i=1

H(Wi|Wek) + bk,ek

ek∑

i=1

H(X
n

i |W i)

− ukak,uk
H(X

n

uk+1|Wuk+1)−
Aek+1

φuk,ek+1

Aek

(
K−1
uk−1

)
uk−1∑

i=ek

H(X
n

i+1|W i+1). (41)

bk,ek

K∑

i=1

H(Wi|Wek) = bk,eknK

ek−1∑

j=lk

(
K − 1

j − 1

)
Rj + bk,ek

K∑

i=1

H(Wi|W lk)

= nK

ek−1∑

j=lk

((
K−1
j−1

)
(
K−1
ek−1

) −
Aek+1

φuk,ek+1

(
K−1
j−1

)

Aek

(
K−1
uk−1

)
)
Rj + bk,ek

K∑

i=1

H(Wi|Wlk)

= nK

ek−1∑

j=lk

(
φj,ek −

Aek+1
φj,ek+1

Aek

)
Rj + bk,ek

K∑

i=1

H(Wi|W lk), (42)

precisely the difference between the left hand side of (50) and
the first term on the right hand side, in terms ofR∗

m. Thus
(50) is indeed true.

Now we proceed with the proof of (48) through induction
by assuming it holds fork = k∗, and write (53) on the top of
this page by applying (43). In order to simplify (53), similar
terms need to be combined, for which we write (54), where

in (a) we used Lemma 7, and (b) is because

Aek∗

nK
bek∗ ,ek∗ +

Aek∗+1

nK
(

K−1
ek∗+1−1

)

=
Aek∗

nK
(
K−1
k∗−1

) −
Aek∗+1

φuk,ek∗+1

nK
(

K−1
uk∗−1

) +
Aek∗+1

nK
(

K−1
ek∗+1−1

)

=
Aek∗

nK
(
K−1
k∗−1

) −
Aek∗+1

nK
(

K−1
uk∗−1

)
(
φuk,ek∗+1

−

(
K−1
uk∗−1

)
(

K−1
ek∗+1−1

)
)

=
Aek∗

nK
(
K−1
k∗−1

) , (55)

Lk ≥nK

uk∑

j=lk

(
φj,ek −

Aek+1
φj,ek+1

Aek

)
Rj + bk,ek

K∑

i=1

H(Wi|W lk) + bk,ek

lk∑

i=1

H(X
n

i |W i)

− ukak,uk
H(X

n

uk+1|Wuk+1)−
Aek+1

φuk,ek+1

Aek

(
K−1
uk−1

)
uk−1∑

i=ek

H(X
n

i+1|W i+1). (43)
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BC∗(A) ≥

|E|−1∑

i=1

∑

j∈Si

[
Aeiφj,ei −Ae|E|

φj,e|E|

]
R∗

j +
Ae|E|

nK

K∑

j=e|E|

(
φj,e|E|(
K−1
j−1

) −
φj+1,e|E|(

K−1
j

)
)

K∑

i=1

H(Xn
i |X

n

j+1Wj+1)

=

|E|−1∑

i=1

∑

j∈Si

[
Aeiφj,ei −Ae|E|

φj,e|E|

]
R∗

j +
Ae|E|

nK
L|E|, (45)

BC∗(A) ≥

|E|−1∑

i=1

∑

j∈Si

[
Aeiφj,ei − Ae|E|

φj,e|E|

]
R∗

j +Ae|E|

u|E|∑

j=l|E|

(
φj,e|E|

−
Ae|E|+1

φj,e|E|+1

Ae|E|

)
Rj

+
Ae|E|

nK
b|E|,e|E|




K∑

i=1

H(Wi|W l|E|
) +

l|E|∑

i=1

H(X
n

i |W i)


−

Ae|E|

nK
u|E|a|E|,u|E|

H(X
n

u|E|+1|Wu|E|+1)

−
Ae|E|

nK

Ae|E|+1
φu|E| ,e|E|+1

Ae|E|

(
K−1
u|E|−1

)
u|E|−1∑

i=e|E|

H(X
n

i+1|W i+1)

=

|E|−1∑

i=1

∑

j∈Si

[
Aeiφj,ei − Ae|E|

φj,e|E|

]
R∗

j +Ae|E|

K∑

j=l|E|

φj,e|E|
Rj +

Ae|E|

nK
(

K−1
e|E|−1

)
K∑

i=1

H(Wi|W l|E|
)

+
Ae|E|

nK
(

K−1
e|E|−1

)
l|E|∑

i=1

H(X
n

i |W i), (46)

BC∗(A) ≥
k∗−1∑

i=1

∑

j∈Si

cj,k∗−1R
∗
j +Aek∗

uk∗∑

j=lk∗

(
φj,ek∗ −

Aek∗+1
φj,ek∗+1

Aek∗

)
Rj

+
Aek∗

nK
bk∗,ek∗

(
K∑

i=1

H(Wi|W lk∗ ) +

lk∗∑

i=1

H(X
n

i |W i)

)
−

Aek∗

nK
uk∗ak∗,uk∗H(X

n

uk∗+1|Wuk∗+1)

−
Aek∗+1

φuk∗ ,ek∗+1

nK
(

K−1
uk∗−1

)
uk∗−1∑

i=ek∗

H(X
n

i+1|W i+1) +

|E|∑

i=k∗+1

Aei

ui∑

j=li

φj,eiRj

+
Aek∗+1

nK
(

K−1
ek∗+1−1

)
K∑

i=1

H(Wi|W lk∗+1
) +

Aek∗+1

nK
(

K−1
ek∗+1−1

)
lk∗+1∑

i=1

H(X
n

i |W i). (53)

where the last step is again by Lemma 7.

Next consider the summation (56) where we have split the
last term and combined it with the other terms, and used (55);
moreover, some termsH(X

n

i |W i) for i = lk∗ +1, . . . , ek∗ are
ignored because they are non-negative by the discrete nature
of the channel. Observe that for the last term in the right hand
side of (56)

Aek∗+1

nK
(

K−1
ek∗+1−1

) −
Aek∗+1

φuk∗ ,ek∗+1

nK
(

K−1
uk∗−1

)

=
Aek∗+1

φuk∗ ,ek∗+1
−Aek∗+1

φuk∗ ,ek∗+1

nK
(

K−1
uk∗−1

) = 0. (57)

For the second term in the right hand side of (56), notice
that uk∗ + 1 ∈ Sk∗+1, thus by the optimality of the extremal

solution, we have

Aek∗+1
φuk∗+1,ek∗+1

≥ Aek∗φuk∗+1,ek∗ , (58)

and thus (59) follows, where (a) is by Lemma 4, and the final
inequality is by (58). Now combining (53), (54), (56), (57) and
(59) completes the induction proof of (48) fork = k∗ − 1.

Writing (48) for k = 0, we have

BC∗(A) ≥

|E|∑

i=1

Aei

ui∑

j=li

φj,eiRj

+
Ae1

nK
(
K−1
e1−1

)
(

K∑

i=1

H(Wi|W l1) +

l1∑

i=1

H(X
n

i |W i)

)

≥

|E|∑

i=1

Aei

ui∑

j=li

φj,eiRj , (60)
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Aek∗

uk∗∑

j=lk∗

(
φj,ek∗ −

Aek∗+1
φj,ek∗+1

Aek∗

)
Rj +

Aek∗

nK
bk∗,ek∗

K∑

i=1

H(Wi|W lk∗ ) +

|E|∑

i=k∗+1

Aei

ui∑

j=li

φj,eiRj

+
Aek∗+1

nK
(

K−1
ek∗+1−1

)
K∑

i=1

H(Wi|W lk∗+1
)

=

uk∗∑

j=lk∗

(
Aek∗φj,ek∗ −Aek∗+1

φj,ek∗+1

)
Rj +

Aek∗

nK
bk∗,ek∗

K∑

i=1

H(Wi|W lk∗ ) +

|E|∑

i=k∗+1

Aei

ui∑

j=li

φj,eiRj

+
Aek∗+1

nK
(

K−1
ek∗+1−1

)
K∑

i=1

H(Wi|W lk∗ ) +

uk∗∑

j=lk∗

Aek∗+1(
K−1

ek∗+1−1

)
(
K − 1

j − 1

)
Rj

(a)
=

|E|∑

i=k∗

Aei

ui∑

j=li

φj,eiRj +

(
Aek∗

nK
bk∗,ek∗ +

Aek∗+1

nK
(

K−1
ek∗+1−1

)
)

K∑

i=1

H(Wi|W lk∗ )

(b)
=

|E|∑

i=k∗

Aei

ui∑

j=li

φj,eiRj +
Aek∗

nK
(

K−1
ek∗−1

)
K∑

i=1

H(Wi|W lk∗ ), (54)

Aek∗

nK
bk∗,ek∗

lk∗∑

i=1

H(X
n

i |W i)−
Aek∗

nK
uk∗ak∗,uk∗H(X

n

uk∗+1|Wuk∗+1)

−
Aek∗+1

φuk∗ ,ek∗+1

nK
(

K−1
uk∗−1

)
uk∗−1∑

i=ek∗

H(X
n

i+1|W i+1) +
Aek∗+1

nK
(

K−1
ek∗+1−1

)
lk∗+1∑

i=1

H(X
n

i |W i)

≥
Aek∗

nK
(
K−1
k∗−1

)
lk∗∑

i=1

H(X
n

i |W i) +

(
Aek∗+1

nK
(

K−1
ek∗+1−1

) − Aek∗

nK
uk∗ak∗,uk∗

)
H(X

n

uk∗+1|Wuk∗+1)

+

(
Aek∗+1

nK
(

K−1
ek∗+1−1

) −
Aek∗+1

φuk∗ ,ek∗+1

nK
(

K−1
uk∗−1

)
)

uk∗−1∑

i=ek∗

H(X
n

i+1|W i+1), (56)

Aek∗+1

nK
(

K−1
ek∗+1−1

) − Aek∗

nK
uk∗ak∗,uk∗ =

Aek∗+1

nK
(

K−1
ek∗+1−1

) − Aek∗uk∗

nK

(
φuk∗ ,ek∗(

K−1
uk∗−1

) −
Aek∗+1

φuk∗ ,ek∗+1

Aek∗

(
K−1
uk∗−1

)
)

=
(uk∗ + 1)Aek∗+1

φuk∗ ,ek∗+1
−Aek∗uk∗φuk∗ ,ek∗

nK
(

K−1
uk∗−1

)

(a)
=

Aek∗+1
φuk∗+1,ek∗+1

−Aek∗uk∗φuk∗ ,ek∗φuk∗+1,uk∗

nK
(

K−1
uk∗−1

)
φuk∗+1,uk∗

≥ 0, (59)

where the second inequality is because the first term in
the parenthesis degenerates to zero, and the second is non-
negative. Notice that for anyj ∈ Si, by the optimality of
the given extremal solution,Aj ≤ Aeiφj,ei , thus by the non-
negativeness of rateRi’s, we arrive at

BC∗(A) ≥

|E|∑

i=1

Aei

ui∑

j=li

φj,eiRj ≥

K∑

i=1

AiRi. (61)

This completes the proof.

For the case that2R
∗
i ’s are not integers, we can instead

consider a sequence of channels with memory, for which the
alphabet sizes are2nR

∗
i , however, for eachn channel use,

the channel erases(n − 1) of them. This channel is not
a memoryless channel anymore, however, our definition is
sufficiently general to include such a case, and the converse
proof can be used without any change.

VI. CONCLUSION

We consider the latent capacity region of the symmetric
broadcast problem, which gives the maximum implication
region for a specific achievable rate vector. A complete
characterization is provided, for which the converse proof
relies on a deterministic channel model, and deriving upper
bounds for any bounding plane of the rate region. The forward
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proof reveals an inherent connection between broadcast with
common messages and erasure correction codes.

We believe the latent capacity region (or latent rate region)
is a general concept, and can be applied to other problem.
In [1], the multiple access channel is also considered for two
and three-user case. It is conceivable that the technique used
in this work can be used to generalize their results for the
multiple access channel. Another interesting case may be the
interference channel, where the well-known Han-Kobayashi
region [9] is indeed the projection of a rate region for the
coding problem with common messages. A careful analysis of
the latent capacity region for the general interference channel
may yield further insight into the problem.

ACKNOWLEDGMENT

The author wishes to thank the anonymous reviewers for
their comments which help improve the presentation of this
paper.

APPENDIX A
SUBMODULARITY PROPERTY OF CONDITIONAL ENTROPY

Lemma10: Let U1, U2, . . . , UN be a set of mutually in-
dependent random variables, and letV1, V2, . . . , VN be N
random variables jointly distributed with them. LetG be a
subset ofIN , i.e., G ⊆ IN . The conditional entropy function
HV |U (G) , H(Vi, i ∈ G|Ui, i ∈ G) is a submodular function,
i.e., for anyG1,G2 ⊆ IN ,

HV |U (G1) +HV |U (G2) ≥ HV |U (G1 ∪ G2) +HV |U (G1 ∩ G2).

Proof: Notice that

HV |U (G1) +HV |U (G2)

= H(Vi, Ui, i ∈ G1) +H(Vi, Ui, i ∈ G2)

−H(Ui, i ∈ G1)−H(Ui, i ∈ G2), (62)

and

HV |U (G1 ∪ G2) +HV |U (G1 ∩ G2)

= H(Vi, Ui, i ∈ G1 ∪ G2) +H(Vi, Ui, i ∈ G1 ∩ G2)

−H(Ui, i ∈ G1 ∪ G2)−H(Ui, i ∈ G1 ∩ G2). (63)

The mutual independence amongUi’s gives

H(Ui, i ∈ G1) +H(Ui, i ∈ G2)

= H(Ui, i ∈ G1 ∪ G2) +H(Ui, i ∈ G1 ∩ G2). (64)

The submodularity of unconditioned entropy function of ran-
dom variables is well-known [8], which gives

H(Vi, Ui, i ∈ G1) +H(Vi, Ui, i ∈ G2)

≥ H(Vi, Ui, i ∈ G1 ∪ G2) +H(Vi, Ui, i ∈ G1 ∩ G2) (65)

and the proof is thus complete.

APPENDIX B
PROOF OF THELEMMAS

Proof of Lemma 2:

φi,jφj,k =

(
K − i

j − i

)−1(
j − 1

j − i

)(
K − j

k − j

)−1(
k − 1

k − j

)

=
(j − i)!(K − j)!(j − 1)!

(K − i)!(j − i)!(i− 1)!

(k − j)!(K − k)!(k − 1)!

(K − j)!(k − j)!(j − 1)!

=
(K − k)!(k − 1)!

(K − i)!(i− 1)!

(k − i)!

(k − i)!
= φi,k. (66)

Proof of Lemma 3:

φk,jφj,i =

(
k

k − j

)−1(
K − j

k − j

)(
j

j − i

)−1(
K − i

j − i

)

=
(k − j)!j!(K − j)!

k!(k − j)!(K − k)!

(j − i)!i!(K − i)!

j!(j − i)!(K − j)!

=
i!(K − i)!

k!(K − k)!

(k − i)!

(k − i)!
= φk,i. (67)

Proof of Lemma 4: By the definition ofφi,j , it is easy
to verify that

φi,jφj,i =
i

j
< 1. (68)

Proof of Lemma 5: The casei = k is exactly Lemma 4,
thus we only need to consider the casei 6= k; we may also
assumej 6= i andj 6= k since these cases are trivial. The order
of i, j, k can be arbitrary, but since the proof only relies on
Lemma 2, 3 and 4, we may assume without loss of generality
i < j. Thus we have the only three cases. (1)k < i < j: by
Lemma 3 and 4, we haveφi,k > φi,kφi,jφj,i = φi,jφj,k. (2)
i < k < j: by Lemma 2 and 4, we haveφi,k > φi,kφk,jφj,k =
φi,jφj,k. (3) i < j < k: the equality is implied by Lemma 2.

Proof of Lemma 6:

(k + 1)

(
K − 1

k − 1

)
φk+1,j

=
(k + 1)(K − 1)!(K − j)!(k + 1− j)!j!

(k − 1)!(K − k)!(k + 1− j)!(K − k − 1)!(k + 1)!

=
(K − 1)!(K − j)!j!

(k − 1)!(K − k)!(K − k − 1)!k!
. (69)

Similarly, we have

k

(
K − 1

k

)
φk,j =

k(K − 1)!(K − j)!(k − j)!j!

k!(K − k − 1)!(k − j)!(K − k)!k!

=
(K − 1)!(K − j)!j!

(k − 1)!(K − k)!(K − k − 1)!k!
, (70)

proving the lemma.
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Proof of Lemma 7: We only need to write the following
(
K − 1

i− 1

)(
K − 1

j − 1

)−1

=
(K − 1)!(j − 1)!(K − j)!

(i− 1)!(K − i)!(K − 1)!

=
(j − 1)!

(i− 1)!(j − i)!

(K − j)!(j − i)!

(K − i)!

=

(
j − 1

j − i

)(
K − i

j − i

)−1

= φi,j . (71)

Proof of Lemma 8: Suppose an arbitrary optimal solution
of the maximization problem (22) is given, we shall next
transform it into an extremal one which is also optimal.

For condition (i), we may assumeR∗
i > 0 because otherwise

the statement is trivial. Observe that for any optimal solution,
the second inequality in (16) must hold with equality, because
otherwise the quantity being maximized can strictly increase.
First suppose for certaini, there exist distinctj1, j2 such that
ri,j1 > 0 andri,j2 > 0, then we must have

Aj1φi,j1ri,j1 = Aj2φi,j2ri,j2 , (72)

because otherwise, e.g., if< held, then lettingr′i,j2 = ri,j1 +
ri,j2 and r′i,j1 = 0 strictly increases the quantity being
maximized in (22). However, if (72) is true, the new solution
given above does not decrease the quantity being maximized,
thus a new solution can be found such that there exist no such
two distinct j1, j2. Given this is true, it is clear that for each
i, letting the uniquej for which ri,j > 0 beR∗

i is an optimal
choice. Thus condition (i) is satisfied by some optimal solution,
and from here on, we shall only consider such solutions.

For condition (ii), we may assumeR∗
j > 0 since otherwise

the statement is trivial. Suppose condition (ii) is not true, i.e.,
for somek 6= j, rj,k = R∗

j , then the optimality of the solution
implies

Aj ≤ Akφj,k, (73)

Now we claim that the new solution withr′i,k = R∗
i and

r′i,j = 0 (with other ri,j values unchanged) can not decrease
the quantity being maximized. To see this, we only need to
observe that

Akφi,kR
∗
i ≥ Akφi,jφj,kR

∗
i ≥ Ajφi,jR

∗
i , (74)

which is by Lemma 5 and (73). Thus the conditions (i) and
(ii) are indeed satisfied by some optimal solution, and from
here on we shall only consider such solutions.

For condition (iii), we only discuss the casei < j, because
the other casei > j is similar. The fact thatri,j > 0
impliesAiR

∗
i ≤ Ajφi,jR

∗
i . We may assumeR∗

k > 0 because
otherwise the statement is trivial. Take an arbitraryk, such
that i < k < j, we may haverk,j′ = R∗

k for somej′, and the
value ofj′ may bej′ < i, i < j′ < k or j′ ≤ k; note that we
can assumej′ 6= i since condition (i) afore-proved. It is easy
to see that we must haveAj > 0 andAj′ > 0. The fact that
ri,j > 0 andrk,j′ > 0 imply that

Ajφi,j ≥ Aj′φi,j′ , and Aj′φk,j′ ≥ Ajφk,j . (75)

The three cases are now discussed individually next. Case (1)

j′ < i, from (75) and Lemma 2 and 3, we have

Ajφi,kφk,j ≥ Aj′φi,j′ , and Aj′φk,iφi,j′ ≥ Ajφk,j , (76)

which lead toφi,kφk,i ≥ 1, contradicting Lemma 4, thus this
is an impossible case. Case (2)i < j′ < k, from (75) and
Lemma 2, we have

Ajφi,j′φj′,kφk,j ≥ Aj′φi,j′ , and Aj′φk,j′ ≥ Ajφk,j ,
(77)

which lead toφj′,kφk,j′ ≥ 1, thus this is another impossible
case. Case (3)j′ ≥ k, from (75) and Lemma 2, we have that
for this case

Ajφi,kφk,j ≥ Aj′φi,kφk,j′ (78)

thus the new solution thatr′k,j = rk,j′ andr′k,j′ = 0 does not
decrease the quantity being optimized. Thus the conditions
(i), (ii) and (iii) are indeed satisfied simultaneously by some
optimal solution. The lemma is proved.
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