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Computing the biases of parity-check relations
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Abstract—A divide-and-conquer cryptanalysis can often be However, the main weakness of this design is obviously
mounted against some keystream generators composed of sle that it is inherently vulnerable to divide-and-conqueneks.
(nonlinear) independent devices combined by a Boolean fution. As originally pointed out by Siegenthaléf [3], the cryptiysa

In particular, any parity-check relation derived from the p eriods tuall ¢ ttack which d d I
of some constituent sequences usually leads to a distinghiisg may actually mount an attack which depends on a sma

attack whose complexity is determined by the bias of the retion.  Subset of the constituent devices only. This can be done if
However, estimating this bias is a difficult problem since tle there exists a smaller generator which involvesonstituent
piling-up lemma cannot be used. Here, we give two exact devices whose output is correlated to the keystream. This
expressions for this bias. Most notably, these expressiotead to a equivalently means that there exists a correlation betwieen

new algorithm for computing the bias of a parity-check relaton, . .
and they also provide some simple formulae for this bias in soe output of the combining function and the output of a Boolean

particular cases which are commonly used in cryptography. function depending o variables. The smallest numbkerof
devices that have to be considered together in the attabkiis t
|. DIVIDE-AND-CONQUER ATTACKS AGAINST SOME equal to(t + 1) wheret is the correlation-immunity order (or
STREAM CIPHERS resiliency order) of the combining functiofi Recall that a

Parity-check relations are extensively used in cryptasialy Boolean function is said to beth order correlation-immune
for building statistical distinguishers. For instancesytitan be if its output distribution does not change when anynput
exploited in divide-and-conquer attacks against somestrevariables are fixed. Moreover, faresilient function is at-th
ciphers which consist of several independent devices whaseler correlation-immune function which is balanced.
output sequences are combined by a nonlinear function.,HereNow, we recall how parity-check relations can be used
we focus on such keystream generators as depicted on Fiag- mounting a divide-and-conquer attack against such a
ure[d. All then constituent devices are updated independentyystream generator. This technique has been introduced by
from each other. The only assumption which will be usegbhansson, Meier and Muller][4] for cryptanalysing the first
in the whole paper is that each sequenge= (z;(t)):>0 version of Achterbahn[]1]. Then, it has been extensively
generated by théth device is periodic with least peridfi.  exploited in several attacks against the following vasaoit

the cipher[[5], [[6], [7], [8]. By analogy with coding theorg,

X parity-check relation for a binary sequente= ((t)):>o is
Device 2 a linear relation between some bits »fat different instants
|—|. x| f 8 keystream (t + 7) wherer varies in a fixed set antltakes any value:

[Devicen}— Pt +m) =0, >0

TET

Fig. 1.  Keystream generator composed of several indepéndevices

combined by a Boolean function Then, the indexes corresponding to the nonzero coefficients

of the characteristic polynomial of a linear recurring senge

provide a parity-check relation. A two-term parity-cheelar
The simplest case of a generator built according to thign,

model depicted in Figuifd 1 is the combination generatorrevhe a(t) ®a(t+1) =0, ¥t >0,

all devices are LFSRs. However, our work is of greater irstere B

in the case where the next-state functions of the constituetviously corresponds to a period of the sequence. In the
devices are nonlinear. The eSTREAM candidate Achterbafollowing, we only focus on parity-check relations between
and its variants[]1],]2], designed by Gammel, Géttfert an2f instants which are defined as follows.

Kniffler, follow this design principle: all these ciphersear Definition 1: Let x3,...,x, ben sequences and let be
actually composed of several nonlinear feedback shifstegs a Boolean function of. variables. Then, for any set

(NLFSRs) with maximal periods. This design is very attnaeti s

since the use of independent devices enables to accommodate T = {ZCiMiv ¢ € {0,1}}

a large internal state with a small hardware footprint. —
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whereMy, ..., M, are some non-negative integef3'; r is wheres is the keystream for different values bf> 0 enables

the binary sequence defined by the attacker to distinguish the keystream from a random
' B sequence. The complexity of this distinguishing attacketels
PCyr(t) = @f(xl(t + 1) an(t+ 7)), V2 0. on the bias: of PCy . More precisely, the time complexity

i i of the attack corresponds to 22° where2? is the number of

In the following, each}M; corresponds to a multiple of gjements inT™ since the bias can be detected from at least
the least common multiple of the periods of some constituent2 occyrrences of the biased relation. The data complexity,
sequences. Moreover, in order to simplify the notation, W w; ¢ the number of consecutive keystream bits required for the

assume without loss of generality that the input variables at5ck is then the maximal value which must be considered
ordered in such a way that each integéy corresponds to a 5, (t+7), ie.

mqltiple of 1CIT1(T¢1:+1, e Tlfm) with ¢; =0 .and lgp1 = k_. 2 4 max T
This notably implies thaf™ involves the periods of the first
k sequencesx; ..., Xk. Many variants of this attack can be derived [5]] [6]] [7],
Proposition 2: Let x1,...,x, be n sequences with least[8]. However, determining the complexity of all these atmc
periodsTy, ..., T, and requires an estimation of the bias 6fC; 7. In several at-
s tacks[4], [5], [2], it was assumed that the piling-up lemi®2][
T={> M, c;€{0,1}} holds, i.e. )
i1 E(PCrr)=[E(f@9)" .

where M; = gilem(Ty, 41, ..., Tp,,,) With ¢; > 0 and/; =0
and/,.1 = k. Let g be any Boolean function of variables
of the form

But it clearly appears that this result does not apply sihee t
terms f(z1(t + 7),...,x,(t + 7)) for the different values of
7 € T are not independent. Actually, Naya-PlasenCia [6] and
Hell and Johansson][7] have independently pointed out that
the so-calledpiling-up approximation[10] is far from being
valid in some cases.

For instance, thell-variable Boolean function used in
Achterbahn-80 is6-resilient. An exhaustive search for the

S
g(@1,... k) = Zgi(wﬁh s Tly)
1=1

where eacly; is any Boolean function of¢; 1 — ¢;) variables.
Then, for allt > 0, we have

PCyr(t) = @ gxi(t+7),...,2n(t +7)) = 0. initial states ofx; andx, and a decimation b{% enable the
reT attacker to use parity-check relations fr= f+x1+z2+x7,
In the whole paper, we use the following notation. which is 3-resilient. Then, the quadratic approximation

Definition 3: Let f be a Boolean function of. variables.
Then, thebiasof f is

Efy=2") (-1)/@.
zeFy T= {01T3T10 + coTyTy, c1,c9 € {0, 1}}

This quantity is alsq called the imbalance pf(e.g. in Q], It has been deduced that the biasRf' - was (275)* =

[10]) or the correlation betweefi and the all-zero function 20 " jeading to an infeasible attack which exceeds the

(e.g. in [11]). o keystream length limitatior [2]: the data complexity must b
The underlying principle of the attack presented by ‘]%ft least2 and must be multiplied b{f; — 225 But, Naya-

hansson, Meier and Muller][4] consists in exhibiting a bms%lasencia in[6] used another approximation, namely
approximationg of the combining functiory’ which involves '

g = x3x10 + T4T9 with E(f’ D g) =925

has been considered, corresponding to the set

k input variables, and a parity-check relatiétC, - = 0 for g =3+ 10 + 14 + 29 With E(f' © g) =273,
the sequence(xy, ..., xx). Then, the associated parity-check =~ o 19
relation applied tof(xi, .. .,x,) does not vanish but it is | NS linear approximation leads ©(PCy,7) =2 for the

same set7, and to a feasible attack with an overall data

biased in the sense that it is not uniformly distributed wtien . ) e
complexity close to2°2 (see [6] for a precise estimation of

(T1++Tn) bitSIl(O),...,ZCl(Tl—l),IQ(O),...,IQ(TQ— h lexi
1),...,2,(T, — 1) are randomly chosen. The bias By r, the comp e_X|ty). ) )
denoted byt (PC; 7) is then defined as the bias of a Boolean From this concrete example, it clearly appears that esti-

function with (T} + ... + T,,) input variables correspondingMating the bias of°Cy, 7 may be a difficult problem. This
to the concatenation of the first periods of the sequences/SRUe has been raised I [6]. [13] which have identified some
follows that cases where the piling-up approximation holds. Howevecsesi

1 these equality cases are quite rare, a much more extensive

P{PC;(t) =0] = 5(1 +E(PCYT)) study is needed in order to evaluate the resistance of such
keystream generators to distinguishing attacks. In thjgepa

we first emphasize that, even if most attacks based on parity-

PCy1(t) = @ s(t+7) check relations use an explicit correspondence between the
rerT set7 and an approximatiop of f depending ork variables,

with £(PCy ) > 0. Then, computing



the bias of PC; 7 does not depend on this approximationis completely determined by its Walsh transforire. by
Most notably, we show in the next section that the pilinghe biases of all its linear approximations, it appears that
up lemma applied to any approximatigrcompatible with7 £(PCy 1) can be computed from the biases of the linear
provides a lower bound ofi(PC/ 7). Then, SectiofiLTll gives approximations off only.

two exact expressions f@i(PC/, 1), one involving the biases m
of some restrictions of’, and the qther one by means .of its PARITY-CHECK RELATION
Walsh coefficients. These expressions lead to an algoritm f ] ) ) )

computing the bias of a parity-check relation with a much /" SOme situations, especially when the designer of a gen-
lower complexity than the usual approach, and they al§kator has to gugrantee that the system re3|§ts dlstlngg|s_h
provide some simple formulae for this bias in some particul@ttacks, the previous lower bound on the bias of a parity-

cases which are commonly used in cryptography, especia‘ﬁg}eCk relation is not suffi_cient, and_its exact valge mu_st
when f is a plateaued function. bé computed. However, since a parity-check relation with

2% terms involvesn2® variables wheren is the number of

. EXACT FORMULAE FOR THE BIAS OF THE

Il. A LOWER BOUND ON THE BIAS OF PARITY¥CHECK variables of f, computing its bias require2”?’ evaluations
RELATIONS of f, which is out of reach in many practical situations.
However, we can prove that the piling-up approximatiohor instance, Achterbahn-128 uses a combining funcfion
provides a lower bound on the bias B, 7. of 13 variables, and the biases of parity-check relations with
Theorem 4:Let x4, ...,x, ben sequences with least pe-8 terms {.e. with s = 3) must be estimated; this requires
riods 73,...,T,, f a Boolean function of, variables and 2'°* operations. Here, we give two exact expressions of the
s = f(x1,...,%,). Let bias of a parity-check relation, which can be computed with
s much fewer operations.g. with 243 evaluations off in the
T = {ZCiMi, ci € {0,1}} previous case. The first expression makes use of the biases
P of the restrictions off when its firstk inputs are fixed; the

second one, which is related to a theorem due to Nyherg [11],
is based on the Walsh coefficients of the combining function.
A similar technique is also used in another contex{in [14].

whereM; = g;lem(Ty,41,...,Ty,.,) with ¢; > 0, /; =0 and
lsy1 = k. Then, for any Boolean function of & variables of
the form
s A. Expression by means of the restrictionsfof
9z, 2) = Zgi(”#l’ c Thig) @) Definition 6: Let f be a Boolean function of variables and
=1 let V. andV,,_, be two subspaces such tHatx V,,_, = F3
where eacly; is a Boolean function of¢; 1 — ¢;) variables, and dim(V;) = k. Then, the restriction off to the affine

we have . subspacex + V,,_, a € Vi, denoted byf,+v, ., is the
E(PCyrr) 2 [E(fO9)] - Boolean function of(n — k) variables defined by
The keypoint in the previous theorem is thétf & g) Jatv,_p i x € Vo f(z+a).

provides a lower bound on the bias on the parity-check waiati
for any choice of the approximation of the form [1). The

linear approximation off by the sum of the first input in f since the othefn — k) sequences;, k+1 < i < n, are

iables i Il idered, but li ionat . i ;
variables IS usuatly considered, but any finear approxona sg(pposed to be such thaf(t + 7) is statistically independent
involving these variables can be chosen, as stated in thie n .

. " romz;(t) foranyr € 7. Amongst the:2® variablese; (t+7),
corollary. In the following, for anyx € F%, ¢, denotes the 1< i<k and T we can easily see that each variable is
linear function ofn variables:z — « - z, wherez -y is the ~ — L= TET, W X Y . varl !

repeated once. Indeed, forsuch that/; < j < ¢,.1 we have
usual scalar product wj(t+7) = x;(t+7') if and only if |7 — 7| = M,
: Wi i I i R Lk
Corollary 5: With the notation of Theore4, we have It follows that the values of; ( +7), 1 < j < k andr € T
E(PCy7) > max [E(f © pa)]? are determined by &2°!-bit word . Let us splita into k
acVi words (as, . .., ax) of 25~ bits. We use the correspondence
whereV, is the subspace spanned by the firdiasis vectors. petween the values af = Si_,eiM; in T and the integers
It is worth noticing that this corollary leads to a lower baun. ¢ < < 25 — 1 defined b)?c = 37, 2L Then, the
on the bias of the parity check relation even if the functiongalue of thek-bit word (1 (¢ + 7), . . . 7;6;@4”)) is equal to

fandz — z; @ ... @z, are not correlatedi, if the (¢ o) = (x1(c,a),...,xs(c,a)) where, for anyj such that
Walsh coefficient off at point1, vanishes, where the firsty, < j <y,., we have

k coordinates ofl;, arel and the othefn — k) are zero). This , .

; . ) T : o xj(c—=2%a) ife¢#0

is the first known result in such a situation; the imposdipili  x,(c, o) = I £ o ot i

of deducing any estimation of the bias of the relation in such @520 q+r Te=2""g+nrr<2.

cases has been stressed in Example Lih [13]. Clearly, if ¢; # 0, we have that and¢’ = ¢ — 2¢ correspond
However, some other approximatiopsvith a higher degree to a pair(r, ') with + — 7/ = M;. Since M, is a period of

may lead to a better bound. But, since any Boolean functier), we deduce that;(c, o) = x; (¢, ).

Now, for computing the exact value ¢{PC/ 1), we de-
compose’C'y 7 according to the values of the firktvariables



If ¢; = 0, the corresponding value af; (t+7) is statistically in the previous sum equals
independent from the previous ones and must be defined by a
bit of « which has not been used for smaller valueg.ofhe
number of bits ofx; which has been used for previous vectors L+ [T &t +7),y(t + 7))t +7) = x(c,;0))| =
x;(c,a) for ¢ < 27+1qis 21 since the sef0, ..., 2" g—1} TeT

N~

is composed of’q pairs of the form(c’, ¢’ + 2%) with ¢, = 0. 1 25_15
Moreover, allc’ in {2F1q,... 2" g+ — 1} satisfyc, = 0 ) 1+ H (Fxe.o)Vas)
becauser < 2°. Therefore, exactly2q + r — 1) bits of a; =0
have been used fog, (¢, @), ¢ < 27+1q +r. We then deduce that
Example. Let us consider a sef composed oR? elements .
which involve the periods ol sequences: 1 1 ~
PPCyr(t) = 0] = 3 1+2;€21 Z H E(fx(era)+Va_i)
T = {ClT1T2 + T3 + c3Ty, c1,c9,c3 € {01}} O‘EF§2871 e=0

Then, the4-bit words x(c, ), 0 < ¢ < 8, are defined by the _ _ _ _ u
16-bit word « as follows, where the bold elements correspond This result provides an algorithm for computing the exact

to those which have already been used for a smaller value o¥alue of&(PCy, 7). The precomputation step consists in com-
puting and storing in a table ti values of€(fuiv, ) =

x(0, @) = (agoa1o2030) X(4,a) = (aggaisamnasge)  oF Zye_\/nfk(_l)f(a-’_y)* forall a € Vi. This step requireg”
_ _ evaluations off. Then, computing the bias of the parity-check
x(1,a) = (@poa10021031) X (5, a) = (oza12023031) . k251
relation needs to compute, for all € F5 , the product of
X(2,0) = (agranazoasz)  x(6,@) = (apsarzaszasz)  gs precomputed values whose indexes are giveg(ay«), for
. . s—1 . .
X(3,a) = (aorar1az1a33)  x(7,a) = (osa1zazzass) 0 < ¢ < 2¢. This require2k2” " x 2¢ operations over integers.

This leads to an overall complexity @f2" ' +¢ + 27 which
The definition ofx(c, a) enables us to express the bias o much lower than the complexity of the trivial computation
PCy 7 by means of the biases of the restrictionsfofo all 272" evaluations off. For instance, thé3-variable function in
cosets of the subspadé . spanned by the lagt: — k) basis  Achterbahn-128 i$-resilient. Estimating the bias of a parity-

vectors. check relation involvingl0 input variables with’ terms (.e.
Theorem 7:Let x4, ...,x, ben sequences with least pe-with s = 3) then require2*? operations.
riods Ty,...,T,, f a Boolean function ofn variables and

s=f(x1,...,xn). Let B. Expression by means of the Walsh coefficients of

- A similar exact expression for the bias &PC/ 1) can be
= M, c¢; €{0,1 : ici ' ’ i
T {;C ¢ €011} obtained from the Walsh coefficients ¢f i.e. from all biases

a E(f + pa),a € V, whereV, is the subspace spanned by the
whereM; = g;lem(Ty, 41, ..., Ty, ,) with ¢; > 0, ¢, =0 and first & basis vectors.
lsy1 = k. Assume that/” does not contain any multiple of Theorem 8:Let x1,...,x, ben sequences with least pe-
T;, for anyk < j < n. LetV,,_; be the subspace spanned byiods T},...,T,, f a Boolean function of. variables and
the last(n — k) basis vectors. Then, we have s = f(x1,...,%xp). Let

1 2°—-1 S
5(PCf,T) = WT Z H g(fX(Cya)‘i’Vn—k)' T = {;CZMM C; S {07 1}}

acFj2e L e=0

whereM; = ¢;lem(Ty, 41, ..., Ty,.,) with ¢; > 0, ¢/, =0 and

Proof. lsy+1 = k. Assume that/ does not contain any multiple of
1 T;, for any k < j < n. Then, we have
PIPCyr(t) =0 = S > PIPCy7(t) =0
aeFk2o ! 21
(@1t +7), .zt + 7)) = x(e Q). EPCrr) = > I & +¢xem)

a€F§2871 e=0
When the values of the first input variables in every term
of PCy  are fixed, the piling-up lemma can be applied sincéhis expression leads to an algorithm for computing the bias
the remainingn— k)2° variables are statistically independentwhich is very similar to the one based on the biases of the
The reason is that is not a multiple of the period’;, for any restrictions off. But, we need to precompute and to store the
k < i <n. Then, we deduce that the term corresponding to Walsh coefficients off corresponding to all elements 15,.



IV. COMPUTING THE BIAS IN SOME PARTICULAR CASES [6]
As a direct corollary of Theorefd 8, we obtain the following
theorem. It shows that equality holds in Corolléady 5 when(7]

amongst all linear functions depending on thevariables
involved in 7, a single one corresponds to a biased approx{—]
mation of f. With this theorem, we recover the value of the
bias of a parity-check relation involving the periodskoihput ]
sequences when the resiliency orderfois equal to(k — 1).
This particular case of our theorem corresponds to the case
identified in [6], [13] where the piling-up approximationits.
Theorem 9:With the notation of Theorein] 8, suppose tha[ilo]
there exists a single linear functian, with a € V. such that
E(f + va) # 0. Then, we have

E(PCr7) = [E(f +va) -

In particular, if f is (k — 1)-resilient, then

E(PCrr) = [E(f +o1,)]”

wherely, is then-bit word whose firs& coordinates are equal i
to 1 and the other ones are equalto

For at-resilient function, the bias of a parity-check relatiorﬂls]
involving any (¢ + 1) inputs is given by Theorerl 9 but, as
pointed out in[[18], this result does not hold anymore wifen
involves (¢ + 2) sequences. However, this case can be treated
when the functionf is plateaued[[15]j.e. when all values
taken by its Walsh transform belong @, =W} for some [17]
W. Note that both combining functions in Achterbahn-80 and
in Achterbahn-128 are plateaued. [18]

Theorem 10:With the notation and hypotheses of Theo-
rem[8, suppose that is (k — 2)-resilient and plateauedle.
E(f + wa) € {0,£e} for all a € F3. Let

A={ae€ Vi, &(f + ¢a) # 0}.

(11]

[12]
[13]

4]

Then, B
S(PCLT) < |A|2 e,
Moreover, equality holds if and only if there existsl < i <

s, such thatM; is a period of all sequences; for all j in
Uaseasupp(lx @ a).
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