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Abstract— We determine the optimal achievable rate at which further uses some basic properties of typical projectiors$ a

entanglement can be reliably transmitted when the memorylss  operations, which are stated in sectioh V. From there we pass
channel used during transmission is unknown both to senderrad on to the proof of our main theorem in Sectian VI.

receiver. To be more precise, we assume that both of them only
know that the channel belongs to a given set of channels. Thus I
they have to use encoding and decoding schemes that work well

for the whole set. All Hilbert spaces are assumed to have finite dimension

and are over the fiel@. S(#) is the set of states, i.e. positive

semi-definite operators with tradeacting on the Hilbert space
One of the main goals of quantum Shannon theory is tfé Pure states are given by projections onto one-dimensional

determination of optimal transmission rates for variouargu subspaces. A vector of unit length spanning such a subspace

tum communication tasks. In contrast to classical inforomat will therefore be referred to as a state vector.

theory to every quantum channel we can associate varioltse set of completely positive trace preserving (CPTP) maps

capacities each of which characterizes the optimal rates irbetween the operator spacB$#) and B(K) is denoted by

specific communication scenario. In this paper we focus @H, K). C*(#,K) stands for the set of completely positive

the determination of the entanglement transmission cgpadirace decreasing maps betweB(fH) and B(K). (H) will

of quantum compound channels. denote in what follows the group of unitary operators acting

The correct formula describing this capacity for a singlarch on #H. For a Hilbert spac&; c H we will always identify

nel has been identified in [1], [5], [9]. Of particular intste $1(G) with a subgroup ofl(#) in the canonical way. For any

for our work are the later on developments by Klesse [7] arpiojectiong € B(H) we setqt := 14 — ¢q. Each projection

Hayden, Horodecki, Winter and Yard [6] which are based ane B(#) defines a completely positive trace decreasing map

a decoupling idea that can be traced back to Schumacher gdiven byQ(a) := gaq for all a € B(H). In a similar fashion

Westmoreland [8]. any u € $(H) defines af € C(H,H) by U(a) := uau™ for

We use their approach to determine the optimal achievable enc B(#).

tanglement transmission rate under channel uncertairftjew We use the base two logarithm which is denoted lby.

sustaining the assumption of memoryless communication, Whe von Neumann entropy of a statee S(H) is given

assume that sender as well as receiver only know that twe S(p) := —tr(plogp). The coherent information faN" €

channel they use belongs to some given set of channgl§t,K) andp € S(H) is defined byl.(p,N') := S(N(p)) —

This describes a somewhat more realistic situation sinaetexS((idy ® N)(|¢)(¢])), wherey € H ® H is an arbitrary

channel knowledge will hardly ever be given in applicationgpurification of the statep. Following the usual conventions

Due to space limitation we will only give the proof of thewe letS.(p, N) := S((idy QN )(|¢)(])) denote the entropy

direct part of the coding theorem for finite compound chasinebxchange.

The extension to the general case, the proof of the conveFRs® p € S(H) and NV € C*(#,K) the entanglement Fidelity

part and the relation to the entanglement-generating dgpads given by F.(p, N) = (¢, (idyy @ N)(|[¢){|)v), with

of compound channels can be picked up in the accompanying: H ® H being an arbitrary purification of the stape

paper [4]. In the following, a compound channel is identified with the se

The paper is organized as follows: We first fix the notatioh C C(#, K) of its constituents. It is called finite f consists

in section]. In sectiom Tl we introduce our model and statef finitely many elements.

the main theorem. Sectign ]IV contains two results concernin

existence of recovery operations of a certain performance 1. CODES, CAPACITY AND MAIN RESULT

and behavior of entanglement fidelity under disturbance of aAn (I, k;)—entanglement transmission codier the com-

channel through a projection. The proof of our main theorepound channel is a pair (P!, R!) of CPTP mapsP' ¢

. NOTATION AND CONVENTIONS

I. INTRODUCTION
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C(F;, H®") where F; is a Hilbert space withk; = dim F; pa = trcen, (V)W) po = tryex (V) (@']).
andR! € C(K®!, F]) with F;, C F.
A nonnegative numbei? is called an achievable rate for
(entanglement transmission through)f there is a sequence
of (I, k;)-entanglement transmission codes such that

1) liminf; %log k; > R, and

2) limy_,oo infrrey Fo(mr,, RLo N®L o Pl =1, E.(p,RoN)>w— |[wpl —wpa & pL|1,
The entanglement transmission capacify(J) of the com- wherew — tr(A(p)).

pound channel is given by We will make use of this lemma in the proof of the following

The announced decoupling lemma can now be stated as
follows.

Lemma 4.1 (Cf. [7], [6]): For any N' € C*(H,K) there
exists a recovery operatioR € C(K, H) with

Q(J) :=sup{R € R, : R is achievable foJ}. theorem, which is the heart of the proof of Theoren 3.1. In
) _ order to state the theorem, we need to introduce the code
Our main result can now be formulated as follows: entanglement fidelity which is, fop € S(H), N € C(¥, K)

Theorem 3.1:Let 3 C C(H,K) be a compound Channel'(referring top as the code) given by
The entanglement transmission capacityJdé given by
Fee(pN) = max. Fe(p,RoN).

1
AN — Tim : ®! ReC(K,
@) A l pegl(%f@tw%frgj Le(p, N').

Remark Corresponding results for the entanglement transmis- Theorem 4.1 (One-Shot Result for Averaged Channel):
sion capacity of a compound channel with informed encoder pgt the Hilbert spaceH be given and consider subspaces
informed decoder can be found in [4]. It is a remarkable fact G ¢ H with dim€ = k. For any choice of
that the proof of the coding theorem for an informed encodg\yh ...,.Ny € CYH,K) each allowing a representation
is not, as in the classical case, just a trivial modificatioh g, n; Kraus operatorsj = 1,...,N, and and for any
the one for Theorefn 3.1. ue u('g) we set

IV. ONE-SHOT RESULTS

N N

This section contains essentially two statements. The first N = %ZN}’ Ny = %ZNJ oU. Then
gives an estimate on the performance of universal recovery J=1 J=1
operations for a given finite set of channels. The secontb®la
the entanglement fidelity of a coding-decoding procedure t N
that of a disturbed version of the procedure, where dishoba f Foelme, Nu)du > tr(N (mg)) — 2 ) v/kng|IN; (76) 2,
means application of a projection after using the channel. j=1
Both results give rather loose bounds that become shavhere the integration is with respect to the normalized Haar
enough only in the asymptotic limit. measure oil(G) andrg, g are the maximally mixed states
on & andg.
Remark The above Theorem gives a lower bound on the code

Before we turn our attention to quantum compound chann@lgtanglement fidelity of an averaged channel. Since ergang|
we will shortly describe a part of recent developments in-coghent fidelity is affine in the operatiof, (7 ,, L va—l NBo
ing theory for single (i.e. perfectly known) channels aggiin Pl > 1 — ¢ implies Fe(ﬂ_]__”N@l 0P >1- Neg for every
[7] and [6]. Both approaches are based on a decoupling idea (1 . N}. If 5 is finite ande, becomes arbitrarily small
which is closely related to approximate error correctiam. ko good codes, this Theorem gives a sufficient estimate. The

order to state this decoupling lemma we need some notatiopgle of general exploits the difference in polynomial growth

preparation. _ ) o of the numberN; of approximating channels fof versus
Let p € S(H) be given and consider any purificatian € exponential decay of.

Ha ©H, Ha = H, Of p. According to Stinespring’s representor the proof of this Theorem, we shall need the following
tation theorem any" € C*(H, K) is given by two lemmata:

N() =ty (1 @ pe)o( - )v*), (1) Lemma_4.2 (Cf._ [3]):L_etL an_dD be N x N matrices with
non-negative entries which satisfy

A. Performance of Recovery Operations

where#, is a suitable finite-dimensional Hilbert spage,is
a projection onto a subspace #,, andv : H — K@ H is  Li < Ljj,  Lj < Lu, and Dj < max{Dj;, Dy} (2)

an isometry. for all j,l € {1,...,N}. Then
Let us define a pure state 64, ® K ® H. by the formula
N N
1 1
Y= W(lHaébK ® pe)(Ln, @ V). Z N VLD = 22 LjiDij-

7yl=1 j=1

Lemma 47.3 (Cf. [4]):Let £ and G be subspaces ¢f with

E C G C H wherek := dimé&, dg := dimG. p and pg
P =t emn, ([0) W), phe = trc ([0 (W), will denote the orthogonal projections onéband G. For a

We set



Haar distributed random variablé with values int{(G) and where

z,y € B(H) we define a random sesquilinear form nj,n 1

| D)= D" (t(p(a00,)"pa sar,) - £ |tr(pa sar,) )
bupu-(x,y) = tr(UpU*gc*UpU*y)—Etr(UpU*gc*)tr(UpU*y). i=1,r=1
Then (dependence on is througha;; = b;;u) and L;; :=

min{n;,n;}.

2-1 Let U be a random variable taking values$iiG) according
E{bypu~ = ——tr * :
{bopu- (@)} d? -1 (g pgy) to the Haar measure éf(G). Then we can infer fronﬂS) that
1— k2
+ =y (por o) EF..(me, N oll) > Etr(Nou (me))

Proof of Theoreni_4]1We can assume without loss of gen- E(D
erality that the numbering of the channels is chosen in such - Z N k Lj (U
a way thatn; < ny < ... < ny holds for the numbers of =1
Kraus operators of the maps,., ..., Ny. From Lemmd4j1 Where we have used concavity of the function
we know that for every: € $4(G) there is a recovery operauon\/_ and Jensen's inequality. Now, settind); :=
R such that WNj(rg), Ni(ng))ms, where ( -, - )gs denotes the

) ) Hilbert-Schmidt inner product, and using Lemrhal4.3 we
Fe(ﬂ-gaRONu)Zw_prae_wpa@pe”lv (3) obtain

where we have used the notation introduced in the paragraph ED;;(U) < tr(N,(ng)Ni(mg)) = Dji. @)
preceding Lemm& 41 and the states on the RHS of equat|E> % obvious thatl;; < Lj; and Ly < Ly hold. Moreover,
9 now ﬁlepeno{ o NV Jet {b. 4 be th t of K the Cauchy- Schwarz inequality for the Hilbert-Schmidténn
oocrerz?c():rsjog\/{ Then/\/}- eu Ea{sz}lzé seo eeraigr O- : ;> product justifies the inequality);; < max{Dj;, D}

P 7 i° us op Bujiitily Therefore, an application of Lemrha}d.2 allows us to conclude
given by aji = bj,iu. Let {fl, ey fN} and {61, ceey enN} from @) that
be arbitrary orthonormal bases &f¥ and C™V with only
imposed restriction that; ® f; = .. Let the projectionp,
and unitaryv in (@) be chosen in such a way that for each (Fe.e(me, N o Ul)) = tr(N(mg)) — 22 Vgl IN (mg)|l2.

¢ € H the relation

N which is what we aimed to provél
J

1y ®pe)v(dRe1® f1) = Z Z (bji0)®e; @ f;, (4) B. Projections and Entanglement Fidelity
j=1i=1 Lemma 4.4:Let p € S(H) for some Hilbert spacé{. Let,
holds. For a purificationy € H, ® H of the statere we for some other Hilbert spade, A € C(H,K), D € C(K, H),

consider a Schmidt representation q € B(K) be an orthogonal projection. If for sonee> 0 the
. relation F,.(p, Do Q o A) > 1 — ¢ holds, then
— > hn @ g, Fo(p,Do A) >1—3e. ©)

The following Lemmd_4J5 contains an inequality which will
d be needed in the proof of Lemrha }.4.
Lemma 4.5 (Cf. [4]):LetD € C(K,H) andx; L x4, z be
state vectorsyy,zo € K, z € H. Then

with suitable orthonormal systems{hi,...,hx} an
{gla s agk}

We use this representation to derive explicit represeantati
of the statespl,,pa,p. in terms of the Kraus operators |(z,D(|z1)(z2|)z)| < /|(z, D(Py,)2)| - |(z, D(Ps,)2)],
of the operationsV; and insert them into[{3). If we

perform the unitary conjugatlon induced by the unitary mavF\)/herePy = [y){y| for arbitrary state vectorg & 3, K.
Tsij = hs®@e; @ fj = 2, ; = gs ®e; ® f; followed by
the compIex conjugation of the matrix elements with respe

Proof of Lemma 4l4Let dimH = h, dimK = &, |[¢)(Y| €
« ® H be a purification ofp (w.l.o.g. H, = H). SetD :=

38,050, ; 5o ~ 1
anti-linear isometryl with respect to the metrics induced byﬁgaoﬁhgcofnpleﬁgﬁt%ﬁ/it%ih_;}%?%qSBSi’oizI;/Jsuab

the trace distances on the operator spaces under conmderat
A calculation identical to that performed by Klesse [7] and F.(p,Do A) =

additionally using ttt/e_triangle inequality for- ||, as well as _ <1/),DoA(|1/)>< )
the relation||a||; < V/d||a||2, d being the number of non-zero _ = _
singular values of the operatarshows that = (qA(|1/)><¢|)(J)1/1> + WD ~91/)~><¢|) L)im
+(, DAY e) + (. DG Al) (W) a)w)
Foo(me, Ni) > tr(No(n LTI > (¥ (qA(|w><w|> )¥) = 21(, DGA() (¥ )a "))l
’ : ZN . = Fp,Do Qo) — 2w, D@A() W) il (©)



We establish a lower bound on the second term on the RB$For eachV € C(H, K), § € (0,1/2),1 € N and maximally

of @). Let mixed staterg on some subspagg C H there is an operation
N € CHH®! K®!) called reduced operation with respect to
Ay (w)) Z)\ |ai)(ail, N andng that satisfies
3) tr(Npu(n§")) > 1 — 27" —h),

where {a,...,a,} are assumed to form an orthonormal 4) Aj, has a Kraus representatlon with at mest; <
basis. Now every;; can be written as; = a;x; + 8;y; where 9U(Se (76, N)+0(8)+h(1)) Kraus operators.
z; € supp(q) andy; € supp(¢-), i € {1,...,x- h}, are state  5) For every statp € S(H®!) and every two channel €
vectors andy;, 3; € C. Defineo := A(|¢)(4|), then CHHEL,H®Y) and £ e CHK®!, H®!) the inequality

wh F.(p,LoN5,0T) < F.(p, Lo N® o) is fulfilled.

Z )‘j(|aj|2|xj><xj| + a]ﬁ;klxj><yj| VI. PROOF OFTHEOREM[3.1

Jj=1
* We will restrict our proof to the case thdl consists
+Bia |y (i + 1857 v) (ws D). (20
o Bieilys) @il +18;lyg) ) (10) of finitely many elements. Also, we only prove the direct
Set X := | (1, D(GA(|v) (¥])G+)w)|. Then, using the decom- part Q(J) > lim; o 1 infrres max,espsr) Ie(p, N€'). The
position [I0) and the abbreviatid®,, := |w){w| (for w € K converse part for finiteJ follows from an application of

being a state-vector) Lemma 6 in [5]. In order to pass on to the case of gengral
- one approximate3 by a sequencéd; )<y of finite compound
X = [, D(Ggog)v)| channels. It has to be taken care that the numbégrs= |7,
. . increase subexponentially fast/inAll calculations are carried
S Z |Niei37 | - [(, D(|2i) (wil )¥) | out in our papers [4] and [3].

Let us consider a compound channel given by a finite set

Kk-h
2 oy ~ ~ J:={MN,....,Ny} C C(H,K) and a subspacé C H. For
= Z; e X \/| (¥, D(P2)¥) (¥, D(Py. )0 everyl € N, we choose a subspad@ c G®'. As usual,rr,
:h andrg denote the maximally mixed states &), respectively
b . . . . i
< il 7 s 7 Y while k; := dim F; gives the dimension af;.
- ; loaf*(w, D Z 31054, D(Py, )¥) Forj e {1,...,N},0 € (0,1/2),1 € N and statesV; (ng) let
_ 1 qj.5, € B(K)®! be the frequency-typical projection &f; (mg)
. Felp, Do A)- Fe(p’D °Q7oA) and \V; 5, be the reduced operation associated with and
< e (11) =g as given in Lemm&asll.

For an arbitrary unitary operationf € B(H®') we set
Here,a follows from utilizing Lemmd4.bb is an application y yop (")

of the Cauchy-Schwarz inequality ands true by assumption. ., ; ~p N
The inequality [(TIL) establishels] (&)L Njurs = QispoNjsiol', Nys = Z ul, 5

V. TYPICAL PROJECTIONS ANDOPERATIONS

VY ) . & 1
At this point, we introduce the minimal amount of state- Njs = QisroNjsr,  Ny:= N ZN’@
ments about typical projections and operations that is esged 7=
for the proof of Theorerh 311. The reader interested in mor@t (/! be a random variable taking values $f{G®') which

details is referred to [3], [4] and references therein. Tasib s distributed according to the Haar measure. Applicatibn o
idea is that we throw away some non-essential informatiqmeoreni 41l yields

about an object and get nice estimates in return.

Lemma 5.1:There is a real number > 0 such that for ~ EFee(mr, N s) > (Nl( &) (12)
every two Hilbert space®{, K the following hold:
There are functions : N — R, andy : (0,1/2) — R, with —22 VEm; s lINLs (78] 2,

h(l) N 0 and p(d) \, 0 (Settingd := dimH, k := dim K,
h and ¢ are glven byh(l) := %=log(l +1) VI € N and wheren; 5, is the number of Kraus operators.of; 5 ;. Notice

p(8) := —blog 72 V6 € (0,1/2)) such that thatQ; s ;0N s, has a Kraus representation containing exactly

A) Foranyp € S(H), ¢ € (0,1/2), I € N there is an ., elements. We will use inequality{12) in the proof of the
orthogonal projectionys; € B(H)®' called frequency-typical fo||ow|ng Lemma.

projection that satisfies . Lemma 6.1 (Direct Part for maximally mixed states):et
1) tr(p®lgsy) > 1 — 27" —hD), J={M,...Nny} C C(H,K) be a compound channel ang
2) gs1p®'qs; < 271 5W)=e)gs . the maximally mixed state associated to a subspgace H.
The inequality 2) implies Then
> min I, i)
||q5_,lp®lq(;yl||g S 27l(5(p)7tp(5))' Q(j) j\r}l (WgaN)



Proof. We show that for everye > 0 the number Lemma 6.2 (Compound BSST Lemma, Cf. [3¢t T C

miny, ey I.(7g, ;) — € is an achievable rate fdr. C(H,K) be an arbitrary set of channels. For amye S(H)
1) If minp;e5 I.(7g, N;) — € < 0, there is nothing to prove. letgs; € B(H®') be the frequency-typical projection pfand
2) Let minp;,e5 Ie(mg, N;) — € > 0. set

Choosed € (0,1/2) andly € N satisfying2 - ¢(6) + h(lp) < T = Bl S(H®H.

¢/2 with functionsy, h from LemmaG.1L. tr(gs.1)

For everyl € N let the dimension of the subspage c G® Then there is a positive sequence);)cy satisfying
be given by lim;_ o0 6; = 0 with

_ minp, eq Ie(mg ,N;)—e€ 1
ky = [2Hmimvies Lelmo N =e) | lim ~ inf I.(7s,, N®) = inf I.(p,N).
L. . l—oo | N€T NET
By S(mg) > I.(mg,N;) (see [1]), this is always possible.
We will now give lower bounds on the terms {A{12), thereb§'om Lemmd 61 and the fact that

making use of Lemmpg3.1: Q(3%Y) = 1Q(3) (17)

7l l —1(c6®—h(l
tr(NG (') > 1—2.271 . (13)  holds for everyl € N we get independent from the value lof

A more detailed calculation can be found in [3] or [7]. Furthe@nd for every maximallly mixed stater, € S(H®') supported
using that||A + B|2 > ||A|2 + || B2 holds for nonnegative On @ subspacé; C H*' the inequality
operatorsA, B € B(K®!) (see [7]), we get the inequality

1
J) > = min L (77, NY. 18
||~/W6(7T§l)||§ < 2 USW;(mg))=(9)) (14) Q) = [ Ni€3d (m7, Ni™) (18)
- . , Let p € S(H) be arbitrary andd;);en, (7s,.1)ien @S in Lemma
E\r/(e)}rrr;l(%)l, [(18),[(14) and our specific choicefgfwe get for 2. Then by[(IB) and Lemnia .2 we have
= 40
1
EF.o(nz, N 5) 21— 227U -h) _oNy/o-te/2, QM) = lim 7 min Lo(ms 1, N;)
This shows the existence of at least one sequéndeR');cn = /{/me% Ic(ps N3)
of (I, k;)— entanglement transmission codes foand — min L(p, \;). (19)
.. 1 . N €T
hlrg(l)gfflogkz = foin I.(mg,Ni) — ¢ Thus, Q(J) > max,cs(z) miny,es Ie(p, N;) has to hold. A

as well as (using that entanglement fidelity is affine in thseecond application of equatidn {17) and taking the limt oo

channel), for every € N with [ > [ ylelds the desired result]
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