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Abstract— We determine the optimal achievable rate at which
entanglement can be reliably transmitted when the memoryless
channel used during transmission is unknown both to sender and
receiver. To be more precise, we assume that both of them only
know that the channel belongs to a given set of channels. Thus,
they have to use encoding and decoding schemes that work well
for the whole set.

I. I NTRODUCTION

One of the main goals of quantum Shannon theory is the
determination of optimal transmission rates for various quan-
tum communication tasks. In contrast to classical information
theory to every quantum channel we can associate various
capacities each of which characterizes the optimal rates ina
specific communication scenario. In this paper we focus on
the determination of the entanglement transmission capacity
of quantum compound channels.
The correct formula describing this capacity for a single chan-
nel has been identified in [1], [5], [9]. Of particular interest
for our work are the later on developments by Klesse [7] and
Hayden, Horodecki, Winter and Yard [6] which are based on
a decoupling idea that can be traced back to Schumacher and
Westmoreland [8].
We use their approach to determine the optimal achievable en-
tanglement transmission rate under channel uncertainty: while
sustaining the assumption of memoryless communication, we
assume that sender as well as receiver only know that the
channel they use belongs to some given set of channels.
This describes a somewhat more realistic situation since exact
channel knowledge will hardly ever be given in applications.
Due to space limitation we will only give the proof of the
direct part of the coding theorem for finite compound channels.
The extension to the general case, the proof of the converse
part and the relation to the entanglement-generating capacity
of compound channels can be picked up in the accompanying
paper [4].
The paper is organized as follows: We first fix the notation
in section II. In section III we introduce our model and state
the main theorem. Section IV contains two results concerning
existence of recovery operations of a certain performance
and behavior of entanglement fidelity under disturbance of a
channel through a projection. The proof of our main theorem

further uses some basic properties of typical projections and
operations, which are stated in section V. From there we pass
on to the proof of our main theorem in Section VI.

II. N OTATION AND CONVENTIONS

All Hilbert spaces are assumed to have finite dimension
and are over the fieldC. S(H) is the set of states, i.e. positive
semi-definite operators with trace1 acting on the Hilbert space
H. Pure states are given by projections onto one-dimensional
subspaces. A vector of unit length spanning such a subspace
will therefore be referred to as a state vector.
The set of completely positive trace preserving (CPTP) maps
between the operator spacesB(H) and B(K) is denoted by
C(H,K). C↓(H,K) stands for the set of completely positive
trace decreasing maps betweenB(H) andB(K). U(H) will
denote in what follows the group of unitary operators acting
on H. For a Hilbert spaceG ⊂ H we will always identify
U(G) with a subgroup ofU(H) in the canonical way. For any
projectionq ∈ B(H) we setq⊥ := 1H − q. Each projection
q ∈ B(H) defines a completely positive trace decreasing map
Q given byQ(a) := qaq for all a ∈ B(H). In a similar fashion
any u ∈ U(H) defines aU ∈ C(H,H) by U(a) := uau∗ for
a ∈ B(H).
We use the base two logarithm which is denoted bylog.
The von Neumann entropy of a stateρ ∈ S(H) is given
by S(ρ) := −tr(ρ log ρ). The coherent information forN ∈
C(H,K) andρ ∈ S(H) is defined byIc(ρ,N ) := S(N (ρ))−
S((idH ⊗ N )(|ψ〉〈ψ|)), whereψ ∈ H ⊗ H is an arbitrary
purification of the stateρ. Following the usual conventions
we letSe(ρ,N ) := S((idH⊗N )(|ψ〉〈ψ|)) denote the entropy
exchange.
For ρ ∈ S(H) andN ∈ C↓(H,K) the entanglement Fidelity
is given by Fe(ρ,N ) := 〈ψ, (idH ⊗ N )(|ψ〉〈ψ|)ψ〉, with
ψ ∈ H ⊗H being an arbitrary purification of the stateρ.
In the following, a compound channel is identified with the set
I ⊂ C(H,K) of its constituents. It is called finite ifI consists
of finitely many elements.

III. C ODES, CAPACITY AND MAIN RESULT

An (l, kl)−entanglement transmission codefor the com-
pound channelI is a pair (P l,Rl) of CPTP mapsP l ∈
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C(Fl,H⊗l) whereFl is a Hilbert space withkl = dimFl

andRl ∈ C(K⊗l,F ′
l ) with Fl ⊂ F ′

l .
A nonnegative numberR is called an achievable rate for
(entanglement transmission through)I if there is a sequence
of (l, kl)-entanglement transmission codes such that

1) lim inf l→∞
1
l log kl ≥ R, and

2) liml→∞ infN∈I Fe(πFl
,Rl ◦ N⊗l ◦ P l) = 1.

The entanglement transmission capacityQ(I) of the com-
pound channelI is given by

Q(I) := sup{R ∈ R+ : R is achievable forI}.
Our main result can now be formulated as follows:

Theorem 3.1:Let I ⊂ C(H,K) be a compound channel.
The entanglement transmission capacity ofI is given by

Q(I) = lim
l→∞

1

l
max

ρ∈S(H⊗l)
inf
N∈I

Ic(ρ,N⊗l).

Remark. Corresponding results for the entanglement transmis-
sion capacity of a compound channel with informed encoder or
informed decoder can be found in [4]. It is a remarkable fact
that the proof of the coding theorem for an informed encoder
is not, as in the classical case, just a trivial modification of
the one for Theorem 3.1.

IV. ONE-SHOT RESULTS

This section contains essentially two statements. The first
gives an estimate on the performance of universal recovery
operations for a given finite set of channels. The second relates
the entanglement fidelity of a coding-decoding procedure to
that of a disturbed version of the procedure, where disturbance
means application of a projection after using the channel.
Both results give rather loose bounds that become sharp
enough only in the asymptotic limit.

A. Performance of Recovery Operations

Before we turn our attention to quantum compound channels
we will shortly describe a part of recent developments in cod-
ing theory for single (i.e. perfectly known) channels as given in
[7] and [6]. Both approaches are based on a decoupling idea
which is closely related to approximate error correction. In
order to state this decoupling lemma we need some notational
preparation.
Let ρ ∈ S(H) be given and consider any purificationψ ∈
Ha ⊗H, Ha = H, of ρ. According to Stinespring’s represen-
tation theorem anyN ∈ C↓(H,K) is given by

N ( · ) = trHe
((1H ⊗ pe)v( · )v∗), (1)

whereHe is a suitable finite-dimensional Hilbert space,pe is
a projection onto a subspace ofHe, andv : H → K⊗He is
an isometry.
Let us define a pure state onHa ⊗K ⊗He by the formula

ψ′ :=
1

√

tr(N (ρ))
(1Ha⊗K ⊗ pe)(1Ha

⊗ v)ψ.

We set

ρ′ := trHa⊗He
(|ψ′〉〈ψ′|), ρ′ae := trK(|ψ′〉〈ψ′|),

ρa := trK⊗He
(|ψ′〉〈ψ′|), ρ′e := trHa⊗K(|ψ′〉〈ψ′|).

The announced decoupling lemma can now be stated as
follows.

Lemma 4.1 (Cf. [7], [6]): For any N ∈ C↓(H,K) there
exists a recovery operationR ∈ C(K,H) with

Fe(ρ,R ◦N ) ≥ w − ||wρ′ae − wρa ⊗ ρ′e||1,
wherew = tr(N (ρ)).
We will make use of this lemma in the proof of the following
theorem, which is the heart of the proof of Theorem 3.1. In
order to state the theorem, we need to introduce the code
entanglement fidelity which is, forρ ∈ S(H),N ∈ C(H,K)
(referring toρ as the code) given by

Fc,e(ρ,N ) := max
R∈C(K,H)

Fe(ρ,R ◦N ).

Theorem 4.1 (One-Shot Result for Averaged Channel):
Let the Hilbert spaceH be given and consider subspaces
E ⊂ G ⊂ H with dim E = k. For any choice of
N1, . . . ,NN ∈ C↓(H,K) each allowing a representation
with nj Kraus operators,j = 1, . . . , N , and and for any
u ∈ U(G) we set

N :=
1

N

N
∑

j=1

Nj , Nu :=
1

N

N
∑

j=1

Nj ◦ U . Then

∫

U(G)

Fc,e(πE ,Nu)du ≥ tr(N (πG))− 2

N
∑

j=1

√

knj||Nj(πG)||2,

where the integration is with respect to the normalized Haar
measure onU(G) andπE , πG are the maximally mixed states
on E andG.
Remark. The above Theorem gives a lower bound on the code
entanglement fidelity of an averaged channel. Since entangle-
ment fidelity is affine in the operation,Fe(πFl

, 1
N

∑N
i=1 N⊗l

i ◦
P l) ≥ 1− ǫl impliesFe(πFl

,N⊗l
i ◦ P l) ≥ 1−Nǫl for every

i ∈ {1, . . . , N}. If I is finite andǫl becomes arbitrarily small
for good codes, this Theorem gives a sufficient estimate. The
case of generalI exploits the difference in polynomial growth
of the numberNl of approximating channels forI versus
exponential decay ofǫl.
For the proof of this Theorem, we shall need the following
two lemmata:

Lemma 4.2 (Cf. [3]):LetL andD beN×N matrices with
non-negative entries which satisfy

Ljl ≤ Ljj , Ljl ≤ Lll, and Djl ≤ max{Djj , Dll} (2)

for all j, l ∈ {1, . . . , N}. Then

N
∑

j,l=1

1

N

√

LjlDjl ≤ 2
N
∑

j=1

√

LjjDjj .

Lemma 4.3 (Cf. [4]):Let E andG be subspaces ofH with
E ⊂ G ⊂ H where k := dim E , dG := dimG. p and pG
will denote the orthogonal projections ontoE and G. For a



Haar distributed random variableU with values inU(G) and
x, y ∈ B(H) we define a random sesquilinear form

bUpU∗(x, y) := tr(UpU∗x∗UpU∗y)− 1

k
tr(UpU∗x∗)tr(UpU∗y).

Then

E{bUpU∗(x, y)} =
k2 − 1

d2 − 1
tr(pGx∗pGy)

+
1− k2

d(d2 − 1)
tr(pGx

∗)tr(pGy).

Proof of Theorem 4.1:We can assume without loss of gen-
erality that the numbering of the channels is chosen in such
a way thatn1 ≤ n2 ≤ . . . ≤ nN holds for the numbers of
Kraus operators of the mapsN1, . . . ,NN . From Lemma 4.1
we know that for everyu ∈ U(G) there is a recovery operation
R such that

Fe(πE ,R ◦Nu) ≥ w − ||wρ′ae − wρa ⊗ ρ′e||1, (3)

where we have used the notation introduced in the paragraph
preceding Lemma 4.1 and the states on the RHS of equation
(3) now depend onu.
For eachj ∈ {1, . . . , N} let {bj,i}nj

i=1 be the set of Kraus
operators ofNj . ThenNj ◦ U has Kraus operators{aj,i}nj

i=1

given by aj,i = bj,iu. Let {f1, . . . , fN} and {e1, . . . , enN
}

be arbitrary orthonormal bases ofCN and CnN with only
imposed restriction thate1 ⊗ f1 = ψe. Let the projectionpe
and unitaryv in (1) be chosen in such a way that for each
φ ∈ H the relation

(1H⊗pe)v(φ⊗e1⊗f1) =
N
∑

j=1

nj
∑

i=1

1√
N

(bj,iφ)⊗ei⊗fj, (4)

holds. For a purificationψ ∈ Ha ⊗ H of the stateπE we
consider a Schmidt representation

ψ =
1√
k

k
∑

m=1

hm ⊗ gm,

with suitable orthonormal systems{h1, . . . , hk} and
{g1, . . . , gk}.
We use this representation to derive explicit representations
of the statesρ′ae, ρa, ρ

′
e in terms of the Kraus operators

of the operationsNi and insert them into (3). If we
perform the unitary conjugation induced by the unitary map
xs,i,j = hs ⊗ ei ⊗ fj 7→ x′s,i,j = gs ⊗ ei ⊗ fj followed by
the complex conjugation of the matrix elements with respect
to the matrix units{|x′s,i,j〉〈x′t,k,l|}s,i,j,t,k,l we obtain an
anti-linear isometryI with respect to the metrics induced by
the trace distances on the operator spaces under consideration.
A calculation identical to that performed by Klesse [7] and
additionally using the triangle inequality for|| · ||1 as well as
the relation||a||1 ≤

√
d||a||2, d being the number of non-zero

singular values of the operatora shows that

Fc,e(πE ,Nu) ≥ tr(Nu(πE ))−
N
∑

j,l=1

1

N

√

1

k
LjlDjl(u), (5)

where

Djl(u) :=

nj ,nl
∑

i=1,r=1

(tr(p(a∗j,ial,r)
∗pa∗j,ial,r)−

1

k
|tr(pa∗j,ial,r)|2)

(dependence onu is through ai,j = bi,ju) and Ljl :=
min{nj, nl}.
Let U be a random variable taking values inU(G) according
to the Haar measure ofU(G). Then we can infer from (5) that

EFc,e(πE ,N ◦ U) ≥ Etr(N ◦ U(πE )) (6)

−
N
∑

j,l=1

1

N

√

1

k
LjlE(Djl(U)),

where we have used concavity of the function√ · and Jensen’s inequality. Now, settingDjl :=
〈Nj(πG),Nl(πG)〉HS , where 〈 · , · 〉HS denotes the
Hilbert-Schmidt inner product, and using Lemma 4.3 we
obtain

EDjl(U) ≤ tr(Nj(πG)Nl(πG)) = Djl. (7)

It is obvious thatLjl ≤ Ljj andLjl ≤ Lll hold. Moreover,
the Cauchy-Schwarz inequality for the Hilbert-Schmidt inner
product justifies the inequalityDjl ≤ max{Djj , Dll}.
Therefore, an application of Lemma 4.2 allows us to conclude
from (6) that

E(Fc,e(πE ,N ◦ U)) ≥ tr(N (πG))− 2

N
∑

j=1

√

knj ||Nj(πG)||2,

which is what we aimed to prove.�

B. Projections and Entanglement Fidelity

Lemma 4.4:Let ρ ∈ S(H) for some Hilbert spaceH. Let,
for some other Hilbert spaceK, A ∈ C(H,K), D ∈ C(K,H),
q ∈ B(K) be an orthogonal projection. If for someǫ > 0 the
relationFe(ρ,D ◦ Q ◦ A) ≥ 1− ǫ holds, then

Fe(ρ,D ◦ A) ≥ 1− 3ǫ. (8)
The following Lemma 4.5 contains an inequality which will
be needed in the proof of Lemma 4.4.

Lemma 4.5 (Cf. [4]):Let D ∈ C(K,H) andx1 ⊥ x2, z be
state vectors,x1, x2 ∈ K, z ∈ H. Then

|〈z,D(|x1〉〈x2|)z〉| ≤
√

|〈z,D(Px1
)z〉| · |〈z,D(Px2

)z〉|,
wherePy := |y〉〈y| for arbitrary state vectorsy ∈ H,K.

Proof of Lemma 4.4.Let dimH = h, dimK = κ, |ψ〉〈ψ| ∈
Ha ⊗ H be a purification ofρ (w.l.o.g.Ha = H). Set D̃ :=
idHa

⊗D, Ã := idHa
⊗A, q̃ := 1Ha

⊗ q and, as usual,̃q⊥

the orthocomplement of̃q within Ha ⊗K. Obviously,

Fe(ρ,D ◦ A) =

= 〈ψ, D̃ ◦ Ã(|ψ〉〈ψ|)ψ〉
= 〈ψ, D̃(q̃Ã(|ψ〉〈ψ|)q̃)ψ〉 + 〈ψ, D̃(q̃⊥Ã(|ψ〉〈ψ|)q̃⊥)ψ〉

+〈ψ, D̃(q̃Ã(|ψ〉〈ψ|)q̃⊥)ψ〉+ 〈ψ, D̃(q̃⊥Ã(|ψ〉〈ψ|)q̃)ψ〉
≥ 〈ψ, D̃(q̃Ã(|ψ〉〈ψ|)q̃)ψ〉 − 2|〈ψ, D̃(q̃Ã(|ψ〉〈ψ|)q̃⊥)ψ〉|
= Fe(ρ,D ◦ Q ◦ A)− 2|〈ψ, D̃(q̃Ã(|ψ〉〈ψ|)q̃⊥)ψ〉|. (9)



We establish a lower bound on the second term on the RHS
of (9). Let

Ã(|ψ〉〈ψ|) =
κ·h
∑

i=1

λi|ai〉〈ai|,

where {a1, . . . , aκ·h} are assumed to form an orthonormal
basis. Now everyai can be written asai = αixi+βiyi where
xi ∈ supp(q̃) andyi ∈ supp(q̃⊥), i ∈ {1, ..., κ · h}, are state
vectors andαi, βi ∈ C. Defineσ := Ã(|ψ〉〈ψ|), then

σ =

κ·h
∑

j=1

λj(|αj |2|xj〉〈xj |+ αjβ
∗
j |xj〉〈yj |

+βjα
∗
j |yj〉〈xj |+ |βj |2|yj〉〈yj |). (10)

SetX := |〈ψ, D̃(q̃Ã(|ψ〉〈ψ|)q̃⊥)ψ〉|. Then, using the decom-
position (10) and the abbreviationPw := |w〉〈w| (for w ∈ K
being a state-vector)

X = |〈ψ, D̃(q̃σq⊥)ψ〉|

≤
κ·h
∑

i=1

|λiαiβ
∗
i | · |〈ψ, D̃(|xi〉〈yi|)ψ〉|

a

≤
κ·h
∑

i=1

|αiβ
∗
i |λi

√

|〈ψ, D̃(Pxi
)ψ〉〈ψ, D̃(Pyi

)ψ〉|

b

≤
κ·h
∑

i=1

λi|αi|2〈ψ, D̃(Pxi
)ψ〉

κ·h
∑

j=1

λj |βj |2〈ψ, D̃(Pyj
)ψ〉.

= Fe(ρ,D ◦ Q ◦ A) · Fe(ρ,D ◦ Q⊥ ◦ A)
c

≤ ǫ. (11)

Here,a follows from utilizing Lemma 4.5,b is an application
of the Cauchy-Schwarz inequality andc is true by assumption.
The inequality (11) establishes (8).�

V. TYPICAL PROJECTIONS ANDOPERATIONS

At this point, we introduce the minimal amount of state-
ments about typical projections and operations that is needed
for the proof of Theorem 3.1. The reader interested in more
details is referred to [3], [4] and references therein. The basic
idea is that we throw away some non-essential information
about an object and get nice estimates in return.

Lemma 5.1:There is a real numberc > 0 such that for
every two Hilbert spacesH,K the following hold:
There are functionsh : N → R+ andϕ : (0, 1/2) → R+ with
h(l) ց 0 andϕ(δ) ց 0 (Settingd := dimH, κ := dimK,
h and ϕ are given byh(l) := d·κ

l log(l + 1) ∀l ∈ N and
ϕ(δ) := −δ log δ

d·κ ∀δ ∈ (0, 1/2)) such that
A) For any ρ ∈ S(H), δ ∈ (0, 1/2), l ∈ N there is an
orthogonal projectionqδ,l ∈ B(H)⊗l called frequency-typical
projection that satisfies

1) tr(ρ⊗lqδ,l) ≥ 1− 2−l(cδ2−h(l)),
2) qδ,lρ⊗lqδ,l ≤ 2−l(S(ρ)−ϕ(δ))qδ,l.

The inequality 2) implies

||qδ,lρ⊗lqδ,l||22 ≤ 2−l(S(ρ)−ϕ(δ)).

B) For eachN ∈ C(H,K), δ ∈ (0, 1/2), l ∈ N and maximally
mixed stateπG on some subspaceG ⊂ H there is an operation
Nδ,l ∈ C↓(H⊗l,K⊗l) called reduced operation with respect to
N andπG that satisfies

3) tr(Nδ,l(π
⊗l
G )) ≥ 1− 2−l(cδ2−h(l)),

4) Nδ,l has a Kraus representation with at mostnδ,l ≤
2l(Se(πG,N )+ϕ(δ)+h(l)) Kraus operators.

5) For every stateρ ∈ S(H⊗l) and every two channelsI ∈
C↓(H⊗l,H⊗l) and L ∈ C↓(K⊗l,H⊗l) the inequality
Fe(ρ,L ◦ Nδ,l ◦ I) ≤ Fe(ρ,L ◦ N⊗l ◦ I) is fulfilled.

VI. PROOF OFTHEOREM 3.1

We will restrict our proof to the case thatI consists
of finitely many elements. Also, we only prove the direct
partQ(I) ≥ liml→∞

1
l infN∈I maxρ∈S(H⊗l) Ic(ρ,N⊗l). The

converse part for finiteI follows from an application of
Lemma 6 in [5]. In order to pass on to the case of generalI

one approximatesI by a sequence(Il)l∈N of finite compound
channels. It has to be taken care that the numbersNl := |Il|
increase subexponentially fast inl. All calculations are carried
out in our papers [4] and [3].
Let us consider a compound channel given by a finite set
I := {N1, . . . ,NN} ⊂ C(H,K) and a subspaceG ⊂ H. For
every l ∈ N, we choose a subspaceFl ⊂ G⊗l. As usual,πFl

andπG denote the maximally mixed states onFl, respectively
G while kl := dimFl gives the dimension ofFl.
For j ∈ {1, . . . , N}, δ ∈ (0, 1/2), l ∈ N and statesNj(πG) let
qj,δ,l ∈ B(K)⊗l be the frequency-typical projection ofNj(πG)
andNj,δ,l be the reduced operation associated withNj and
πG as given in Lemma 5.1.
For an arbitrary unitary operationul ∈ B(H⊗l) we set

N̂ l
j,ul,δ := Qj,δ,l ◦ Nj,δ,l ◦ U l, N̂ l

ul,δ :=
1

N

N
∑

j=1

N̂ l
j,ul,δ,

N̂ l
j,δ := Qj,δ,l ◦ Nj,δ,l, N̂ l

δ :=
1

N

N
∑

j=1

N̂ l
j,δ.

Let U l be a random variable taking values inU(G⊗l) which
is distributed according to the Haar measure. Application of
Theorem 4.1 yields

EFc,e(πFl
, N̂ l

Ul,δ) ≥ tr(N̂ l
δ(π

⊗l
G )) (12)

−2

N
∑

j=1

√

klnj,δ,l||N̂ l
j,δ(π

⊗l
G )||2,

wherenj,δ,l is the number of Kraus operators ofNj,δ,l. Notice
thatQj,δ,l◦Nj,δ,l has a Kraus representation containing exactly
nj,δ,l elements. We will use inequality (12) in the proof of the
following Lemma.

Lemma 6.1 (Direct Part for maximally mixed states):Let
I = {N1, ...,NN} ⊂ C(H,K) be a compound channel andπG
the maximally mixed state associated to a subspaceG ⊂ H.
Then

Q(I) ≥ min
Ni∈I

Ic(πG ,Ni).



Proof. We show that for everyǫ > 0 the number
minNi∈I Ic(πG ,Ni)− ǫ is an achievable rate forI.
1) If minNi∈I Ic(πG ,Ni)− ǫ ≤ 0, there is nothing to prove.
2) Let minNi∈I Ic(πG ,Ni)− ǫ > 0.
Chooseδ ∈ (0, 1/2) and l0 ∈ N satisfying2 · ϕ(δ) + h(l0) <
ǫ/2 with functionsϕ, h from Lemma 5.1.
For everyl ∈ N let the dimension of the subspaceFl ⊂ G⊗l

be given by

kl = ⌊2l(minNi∈I Ic(πG ,Ni)−ǫ)⌋.
By S(πG) ≥ Ic(πG ,Nj) (see [1]), this is always possible.
We will now give lower bounds on the terms in (12), thereby
making use of Lemma 5.1:

tr(N̂ l
δ(π

⊗l
G )) ≥ 1− 2 · 2−l(cδ2−h(l)). (13)

A more detailed calculation can be found in [3] or [7]. Further,
using that||A+ B||22 ≥ ||A||22 + ||B||22 holds for nonnegative
operatorsA,B ∈ B(K⊗l) (see [7]), we get the inequality

||N̂ l
j,δ(π

⊗l
G )||22 ≤ 2−l(S(Nj(πG))−ϕ(δ)). (14)

From (12), (13), (14) and our specific choice ofkl we get for
every l ≥ l0

EFc,e(πFl
, N̂ l

Ul,δ) ≥ 1− 2 · 2−l(cδ2−h(l)) − 2N
√

2−lǫ/2.

This shows the existence of at least one sequence(W l,Rl)l∈N

of (l, kl)− entanglement transmission codes forI and

lim inf
l→∞

1

l
log kl = min

Ni∈I

Ic(πG ,Ni)− ǫ

as well as (using that entanglement fidelity is affine in the
channel), for everyl ∈ N with l ≥ l0

min
j∈{1,...,N}

Fe(πFl
,Rl ◦ N̂ l

j,δ ◦W l) ≥ 1−N
1

3
ǫl (15)

whereW l(·) = wl(·)wl∗, wl ∈ U(G⊗l) ∀l ∈ N, and

ǫl = 3 · (2 · 2−l(cδ2−h(l)) + 2N
√

2−lǫ/2). (16)

For everyj ∈ {1, . . . , N} and l ∈ N\{1, . . . , l0 − 1} we thus
have, by property 5) of Lemma 5.1, construction ofN̂ l

j,wj,δ,
and equation (15),

Fe(πFl
,Rl ◦ Qj,δ,l ◦ N⊗l

j ◦W l) ≥
≥ Fe(πFl

,Rl ◦ Qj,δ,l ◦ Nj,δ,l ◦W l)

= Fe(πFl
,Rl ◦ N̂ l

j,wj ,δ)

≥ 1−N
1

3
ǫl.

By Lemma 4.4, this immediately implies

min
Nj∈I

Fe(πFl
,Rl◦N⊗l

j ◦W l) ≥ 1−Nǫl ∀l ∈ N\{1, . . . , l0−1}.

Since ǫ > 0 was arbitrary, we have shown that
minNi∈I Ic(πG ,Ni) is an achievable rate.�

For the proof of Theorem 3.1 we only need one more
ingredient, which is a generalization of the well known BSST
Lemma of [2]:

Lemma 6.2 (Compound BSST Lemma, Cf. [3]):Let I ⊂
C(H,K) be an arbitrary set of channels. For anyρ ∈ S(H)
let qδ,l ∈ B(H⊗l) be the frequency-typical projection ofρ and
set

πδ,l :=
qδ,l

tr(qδ,l)
∈ S(H⊗l).

Then there is a positive sequence(δl)l∈N satisfying
liml→∞ δl = 0 with

lim
l→∞

1

l
inf
N∈I

Ic(πδl,l,N⊗l) = inf
N∈I

Ic(ρ,N ).

From Lemma 6.1 and the fact that

Q(I⊗l) = lQ(I) (17)

holds for everyl ∈ N we get independent from the value ofl
and for every maximally mixed stateπFl

∈ S(H⊗l) supported
on a subspaceFl ⊂ H⊗l the inequality

Q(I) ≥ 1

l
min
Ni∈I

Ic(πFl
,N⊗l

i ). (18)

Let ρ ∈ S(H) be arbitrary and(δl)l∈N, (πδl,l)l∈N as in Lemma
6.2. Then by (18) and Lemma 6.2 we have

Q(I) ≥ lim
l→∞

1

l
min
Ni∈I

Ic(πδl,l,N⊗l
i )

= min
Ni∈I

Ic(ρ,Ni)

= min
Ni∈I

Ic(ρ,Ni). (19)

Thus,Q(I) ≥ maxρ∈S(H) minNi∈I Ic(ρ,Ni) has to hold. A
second application of equation (17) and taking the limitl → ∞
yields the desired result.�
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