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Abstract— Recht, Fazel, and Parrilo provided an analogy
between rank minimization and ℓ0-norm minimization. Subject
to the rank-restricted isometry property, nuclear norm min i-
mization is a guaranteed algorithm for rank minimization. The
resulting semidefinite formulation is a convex problem but in
practice the algorithms for it do not scale well to large instances.
Instead, we explore missing terms in the analogy and propose
a new algorithm which is computationally efficient and also has
a performance guarantee. The algorithm is based on the atomic
decomposition of the matrix variable and extends the idea in
the CoSaMP algorithm for ℓ0-norm minimization. Combined
with the recent fast low rank approximation of matrices based
on randomization, the proposed algorithm can efficiently handle
large scale rank minimization problems.

I. I NTRODUCTION

Recent studies in compressed sensing have shown that
a sparsity prior in the representation of the unknowns can
guarantee unique and stable solutions to underdetermined
linear systems. The idea has been generalized to linear rank
minimization by Recht, Fazel, and Parrilo [1]. Rank minimiza-
tion has important applications such as matrix completion,
linear system identification, Euclidean embedding, and image
compression.

The rank minimization problem is formally written as:

P1:
min

X∈Cm×n
rank(X)

subject to AX = b,

for a given linear operatorA : Cm×n → Cp andb ∈ Cp.
Fazel, Hindi, and Boyd [2] proposed a convex relaxation of

the rank minimization problem. They minimized the nuclear
norm‖X‖∗, which is the sum of all singular values of matrix
X , and is the convex envelop of the non-convex function
rank(X). Rank minimization is related toℓ0-norm minimiza-
tion, which has been the focus of compressed sensing. Recht,
Fazel, and Parrilo [1] provided an analogy between the two
problems and their respective solutions by convex relaxation.

In the analogy,ℓ1-norm minimization for theℓ0-norm min-
imization problem is replaced by nuclear norm minimization
for P1. Both are efficient algorithms, with guaranteed perfor-
mance under certain conditions, to solve NP-hard problems:
ℓ0-norm minimization and rank minimization, respectively.
The respective conditions are given by the restricted isometry
property and its generalization. However, whereasℓ1-norm
minimization corresponds to a linear program, nuclear norm
minimization is formulated as a convex semidefinite program

(SDP). Although there exist polynomial time algorithms to
solve SDP, in practice they do not scale well to large problems.

Recently, several authors proposed methods for solving
large scale SDP derived from rank minimization. These in-
clude interior point methods for SDP, projected subgradient
methods, and low-rank parametrization [1] and a customized
interior point method [3] These methods can solve larger
rank minimization problems, which the general purpose SDP
solvers cannot. However, the dimension of the problem is
still restricted and some of these methods do not guarantee
convergence to the global minimum. Other methods solve
nuclear norm minimization in a penalized form using singular
value thresholding (SVT) [4] or fixed point and Bregman
iterations [5]. It has been shown that the sequence of solutions
converges to the solution to nuclear norm minimization as the
penalty parameter increases. However, an analysis of the con-
vergence rate is missing and hence the quality of the solution
obtained by these methods is not guaranteed. Furthermore,
the efficiency of these methods is restricted to the case of
an affine (i.e., linear equality) constraint. Mekaet. al. [6]
used multiplicative updates and online convex programming
to provide an approximate solution to rank minimization.
However, their result depends on the (unverified) existenceof
an oracle that provides the solution to the rank minimization
problem with a single linear constraint in constant time.

For ℓ0-norm minimization, besidesℓ1-norm minimization,
there are recent algorithms, which are more efficient and
also have performance guarantees. These include Compressive
Sampling Matching Pursuit (CoSaMP) [7] and Subspace Pur-
suit (SP) [8]. To date, no such algorithms have been available
for rank minimization.

In this paper, we propose an iterative algorithm to solve
the rank minimization problem, which is a generalization1

of the CoSaMP algorithm forℓ0-norm minimization to the
rank minimization problem. We call this algorithm “Atomic
Decomposition for Minimum Rank Approximation,” abbre-
viated as ADMiRA. In CoSaMP, theℓ0-norm minimization
problem with equality constraints is recast into ans-term
vector approximation problem. Similarly, in ADMiRA we

1 There is another generalization of CoSaMP, namely model-based CoSaMP
[9]. However, this generalization addresses a completely different and unre-
lated problem: sparse vector approximation subject to a special (e.g., tree)
structure. Furthermore, the extensions of CoSaMP to model-based CoSaMP
and to ADMiRA are independent: neither one follows from the other, and
neither one is a special case of the other.
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recast P1 into the rank-r matrix approximation problem

P2:
min

X∈Cm×n
‖AX − b‖2

subject to rank(X) 6 r.

The performance guarantee of ADMiRA states that the ap-
proximate solution to P2 obtained by ADMiRA coincides with
the true solutionX to P1 for anyr > rank(X) that satisfies
the ADMiRA assumptions.

II. V ECTOR VSMATRIX

A. Preliminaries

Throughout this paper, we use two vector spaces: the space
of column vectorsCp and the space of matricesCm×n. For
Cp, the inner product is defined by〈x, y〉Cp = yHx for x, y ∈
Cp whereyH denotes the Hermitian transpose ofy, and the
induced Hilbert-Schmidt norm is the Euclidean orℓ2-norm
given by‖x‖22 = 〈x, x〉Cp for x ∈ Cp.

For Cm×n, the inner product is defined by〈X,Y 〉Cm×n =
tr(Y HX) for X,Y ∈ C

m×n, and the induced norm is the
Frobenius norm given by‖X‖2F = 〈X,X〉Cm×n for X ∈
Cm×n.

B. Atomic Decomposition

Let S denote the set of all nonzero rank-one matrices in
Cm×n. We can refineS so that any two distinct elements are
not collinear. The resulting subsetO is referred to as theset of
atoms2 of Cm×n. Then theset of atomic spacesA of Cm×n

is defined by

A , {span(ψ) : ψ ∈ O}. (1)

Each subspaceV ∈ A is one-dimensional and hence is
irreducible in the sense thatV = V1+V2 for someV1, V2 ∈ A

implies V1 = V2 = V . SinceO is a uncountably infinite set
in a finite dimensional spaceCm×n, the elements inO are
not linearly independent. Regardless of the choice ofO, A

is uniquely determined. Without loss of generality, we fixO
such that all elements have the unit Frobenius norm.

Given a matrixX ∈ Cm×n, its representationX =∑
j αjψj as a linear combination of atoms is referred to as an

atomic decompositionof X . SinceO spansCm×n, an atomic
decomposition ofX exists for all X ∈ Cm×n. A subset
Ψ = {ψ ∈ O : 〈ψj , ψk〉Cm×n = δjk} of unit-norm and
pairwise orthogonal atoms inO will be called anorthonormal
set of atoms.

Definition 2.1: Let O be a set of atoms ofCm×n. Given
X ∈ Cm×n, we defineatoms(X)

atoms(X) , argmin
Ψ
{|Ψ| : Ψ ⊂ O, X ∈ span(Ψ)} . (2)

Note thatatoms(X) is not unique.
An orthonormal setatoms(X) is given by the singular value

decomposition ofX . Let X =
∑rank(X)

k=1 σkukv
H
k denote

the singular value decomposition ofX with singular values

2The “atom” in this paper is different from Mallat and Zhang’s“atom”
[10], which is an element in the dictionary, a finite set of vectors. In both
cases, however, an atom denotes an irreducible quantity.

in decreasing order. For eachk, there existsρk ∈ C such
that |ρk| = 1 and ρkukvHk ∈ O. Then an orthonormal set
atoms(X) is given by

atoms(X) = {ρkukvHk }rank(X)
k=1 .

Remark 2.2:atoms(X) and rank(X) = |atoms(X)| of
a matrix X ∈ Cm×n are the counterparts ofsupp(x) and
‖x‖0 = |supp(x)| for a vectorx ∈ Cp, respectively.

C. Generalized Correlation Maximization

Recht, Fazel, and Parrilo [1] showed an analogy between
rank minimization P1 andℓ0-norm minimization. We consider
instead the rank-r matrix approximation problem P2 and its
analogue – thes-term vector approximation problem

P3:
min
x∈Cn

‖Ax− b‖2
subject to ‖x‖0 6 s.

In Problem P3, variablex lives in the union ofs dimensional
subspaces ofCn, each spanned bys elements in the finite
set E = {e1, . . . , en}, the standard basis ofCn. Thus the
union contains alls-sparse vectors inCn. Importantly, finitely
many (

(
n
s

)
, to be precise) subspaces participate in the union.

Therefore, it is not surprising that P3 can be solved exactlyby
exhaustive enumeration, and finite selection algorithms such as
CoSaMP are applicable.

In the rank-r matrix approximation problem P2, the matrix
variableX lives in the union of subspaces ofCm×n, each
of which is spanned byr atoms in the setO. Indeed, if
X ∈ Cm×n is spanned byr atoms inO, thenrank(X) 6 r
by the subadditivity of the rank. Conversely, ifrank(X) = r,
then X is a linear combination of rank-one matrices and
hence there existr atoms that spanX . Note that uncountably
infinitely many subspaces participate in the union. Therefore,
some selection rules in the greedy algorithms forℓ0-norm min-
imization ands-term vector approximation do not generalize in
a straightforward way. None the less, using our formulationof
the rank-r matrix approximation problem in terms of an atomic
decomposition, we extend the analogy between the vector and
matrix cases, and propose a way to generalize these selection
rules to the rank-r matrix approximation problems.

First, consider the correlation maximization in greedy algo-
rithms for the vector case. Matching Pursuit (MP) [10] and
Orthogonal Matching Pursuit (OMP) [11] choose the index
k ∈ {1, . . . , n} that maximizes the correlation

∣∣aHk (b−Ax̂)
∣∣

between thek-th columnak of A and the residual in each
iteration, wherex̂ is the solution of the previous iteration.
Given a setΨ, let PΨ denote the projection operator onto
the subspace spanned byΨ in the corresponding embedding
space. WhenΨ = {ψ} is a singleton set,Pψ will denote
PΨ. For example,Pek denotes the projection operator onto
the subspace inCn spanned byek. From
∣∣aHk (b −Ax̂)

∣∣ =
∣∣〈AH(b −Ax̂), ek〉Cn

∣∣ =
∥∥PekAH(b −Ax̂)

∥∥
2
,

it follows that maximizing the correlation implies maximizing
the norm of the projection of the image underAH of the



residualb−Ax̂ onto the selected one dimensional subspace.
The following selection rule generalizes the correlation

maximization to the matrix case. We maximize the norm of
the projection over all one-dimensional subspaces spannedby
an atom inO:

max
ψ∈O

∣∣∣〈b−AX̂,Aψ〉Cm×n

∣∣∣ = max
ψ∈O

∥∥∥PψA∗(b−AX̂)
∥∥∥
F
,

(3)
whereA∗ : Cp → Cm×n denotes the adjoint operator ofA.
By the Eckart-Young Theorem, the basis of the best subspace
is obtained from the singular value decomposition ofM =
A∗(b−AX̂), asψ = u1v

H
1 , whereu1 andv1 are the principal

left and right singular vectors.
Remark 2.3:Applying the selection rule (3) to updatêX

recursively leads to greedy algorithms generalizing MP and
OMP to rank minimization.

Next, consider the rule in recent algorithms such as
CoSaMP, and SP. The selection rule chooses the subsetJ of
{1, . . . , n} with |J | = s defined by

∣∣aHk (b−Ax̂)
∣∣ >

∣∣aHj (b−Ax̂)
∣∣ , ∀k ∈ J, ∀j 6∈ J. (4)

This is equivalent to maximizing
∑

k∈J

∣∣aHk (b−Ax̂)
∣∣2 =

∥∥P{ek}k∈J
AH(b−Ax̂)

∥∥2
2
.

In other words, selection rule (4) finds the best subspace
spanned bys elements inE that maximizes the norm of
the projection ofM = AH(b − Ax̂) onto thats-dimensional
subspace.

The following selection rule generalizes the selection rule
(4) to the matrix case. We maximize the norm of the projection
over all subspaces spanned by a subset with at mostr atoms
in O:

max
Ψ⊂O

{∥∥∥PΨA∗(b−AX̂)
∥∥∥
F
: |Ψ| 6 r

}

A basisΨ of the best subspace is again obtained from the
singular value decomposition ofM = A∗(b − AX̂), as
Ψ = {ρkukvHk }rk=1, whereuk and vk, k = 1, . . . , r are the
r principal left and right singular vectors, respectively and
for eachk, ρk ∈ C satisfies|ρk| = 1 3 . Note thatΨ is an
orthonormal set although this is not enforced as an explicit
constraint in the maximization.

III. A LGORITHM

Algorithm 1 describes ADMiRA. Steps 4 and 7 involve
finding a best rank-2r or rank-r approximation to given
matrix (e.g., by truncating the SVD), while Step 6 involves
the solution of a linear least-squares problem – all standard
numerical linear algebra problems. Step 5 merges two given
sets of atoms inO by taking their union.

Most steps of ADMiRA are similar to those of CoSaMP
except Step 4 and Step 7. The feasible sets of the maximization
problems in Step 4 and Step 7 of ADMiRA are infinite while
those in the analogous steps of CoSaMP are finite. In CoSaMP,

3 Once the best subspace is determined, it is not required to compute the
constantsρk ’s.

Algorithm 1 ADMiRA

Input: A : Cm×n → Cp, b ∈ Cp, and target rankr ∈ N

Output: rank-r solutionX̂ to P2
1: X̂ ← 0
2: Ψ̂← ∅
3: while stop criterion is falsedo
4: Ψ′ ← argmax

Ψ⊂O

{∥∥∥PΨA∗(b −AX̂)
∥∥∥
F
: |Ψ| 6 2r

}

5: Ψ̃← Ψ′ ∪ Ψ̂
6: X̃ ← argmin

X

{
‖b−AX‖2 : X ∈ span(Ψ̃)

}

7: Ψ̂← argmax
Ψ⊂O

{∥∥∥PΨX̃
∥∥∥
F
: |Ψ| 6 r

}

8: X̂ ← PbΨX̃
9: end while

10: return X̂

a greedy selection is employed to solve the combinatorial
problem and provides the exact solution owing to the orthog-
onality of the feasible set. The maximization problem over the
infinite set in ADMiRA may look even more difficult than the
combinatorial problem in CoSaMP. However, singular value
decomposition can solve the maximization problem over the
infinite set efficiently.

IV. M AIN RESULTS: PERFORMANCEGUARANTEE

A. Rank-Restricted Isometry Property (R-RIP)

Rechtet al [1] generalized the sparsity-restricted isometry
property (RIP) defined for sparse vectors to low rank matrices.
4 In order to draw the analogy with known results inℓ0-
norm minimization, we slightly modify their definition by
squaring the norm in the inequality. Given a linear operator
A : Cm×n → Cp, the rank-restricted isometry constantδr(A)
is defined as the minimum constant that satisfies

(1− δr(A)) ‖X‖2F 6 ‖γAX‖22 6 (1 + δr(A)) ‖X‖2F , (5)

for all X ∈ Cm×n with rank(X) 6 r for some constantγ >
0. Throughout this paper, we assume that the linear operator
A is scaled appropriately so thatγ = 1 in (5) 5 .

B. Performance Guarantee

Subject to the R-RIP, the Atomic Decomposition for Min-
imum Rank Approximation Algorithm (ADMiRA) has a per-
formance guarantee analogous to that of CoSaMP.

The followings are the assumptions in ADMiRA:

A1: The target rank is fixed asr.
A2: The linear operatorA satisfiesδ7r(A) 6 0.043.
A3: The measurement is obtained by

b = AX + ν, (6)

4They also demonstrated “nearly isometric families” satisfying this R-
RIP (with overwhelming probability). These include randomlinear operators
generated from i.i.d. Gaussian or i.i.d. symmetric Bernoulli distributions.

5 If γ 6= 1, then only the constant for the noise gain will be scaled
accordingly.



whereν is the discrepancy between the measurement
and the linear modelAX .

Assumption A2 plays a key role in deriving the performance
guarantee of ADMiRA. This enforces the rank-restricted isom-
etry property of the linear operatorA. Although the verifica-
tion of the satisfiability of A2 is as difficult as or more difficult
than the recovery problem itself, nearly isometric families that
satisfy the condition in A2 have been demonstrated [1].

The performance guarantees are specified in terms of a mea-
sure of inherent approximation error, termedunrecoverable
energydefined by

ǫ = ‖X −Xr‖F +
1√
r
‖X −Xr‖∗ + ‖ν‖2 ,

whereXr denotes the best rank-r approximation ofX . The
first two terms inǫ define a metric of the minimum distance
between the “true” matrixX and a rank-r matrix. This is
analogous to the notion of a measure of compressibility of
a vector in sparse vector approximation. No solution of P2
can come any closer toX . The third term is the norm of the
measurement noise, which must also limit the accuracy of the
approximation provided by a solution to P2.

Theorem 4.1:Let X̂k denote the estimate ofX in the k-
th iteration of ADMiRA. For eachk > 0, X̂k satisfies the
following recursion:

‖X − X̂k+1‖F 6 0.5‖X − X̂k‖F + 10ǫ,

whereǫ is the unrecoverable energy. From the above relation,
it follows that

‖X − X̂k‖F 6 2−k ‖X‖F + 20ǫ, ∀k > 0.

Theorem 4.1 shows the geometric convergence of ADMiRA.
In fact, convergence in a finite number of steps can be achieved
as stated by the following theorem.

Theorem 4.2:After at most6(r + 1) iterations, ADMiRA
provides a rank-r approximationX̂ of X , which satisfies

‖X − X̂‖F 6 20ǫ,

whereǫ is the unrecoverable energy.
Depending on the spectral properties of the matrixX , even
faster convergence is possible.

C. Relationship between P1, P2, and ADMiRA

The approximationX̂ given by ADMiRA is a solution to
P2. When there is no noise in the measurement, i.e.,b = AX ,
whereX is the solution to P1, Theorem 4.1 states that if the
ADMiRA assumptions are satisfied withr > rank(X), then
X̂ = X . An appropriate value can be assigned tor by an
incremental search overr.

For the noisy measurement case, the linear constraint in P1
is replaced by a quadratic constraint and the rank minimization
problem is written as:

P1′:
min

X∈Cm×n
rank(X)

subject to ‖AX − b‖2 6 η.

Let X ′ denote a minimizer to P1′. In this case, the approxi-
mationX̂ produced by ADMiRA is not necessarily equivalent
to X ′, but by Theorem 4.1 the distance between the two is
bounded by‖X ′ − X̂‖F 6 20η for all r > rank(X ′) that
satisfies the ADMiRA assumptions.

V. PROPERTIES OF THERANK -RESTRICTED ISOMETRY

We introduce a number of properties of the rank-restricted
isometry. These properties serve as key tools for proving the
performance guarantees for ADMiRA in this paper. These
properties further extend the analogy between the sparse vector
and the low-rank matrix approximation problems (P3 and
P2, respectively), and are therefore also of interest in their
own right. An operator satisfying the R-RIP satisfies, as a
consequence, a number of other properties when composed
with other linear operators defined by the atomic decompo-
sition. Most properties are inherited from the vector case.
However, the generalization of therestricted orthogonality
property to the matrix case is not straightforward and shows
some nontrivial differences. The following Proposition isan
extension of Lemma 2.1 in [12] for the vector case to the
matrix case.

Proposition 5.1:Suppose that linear operatorA : Cm×n →
C
p has the rank-restricted isometry constantδr(A). Let

X,Y ∈ Cm×n such that〈X,Y 〉Cm×n = 0 and rank(X) +
rank(Y ) 6 r. Then

|〈AX,AY 〉Cp | 6
√
2δr(A) ‖X‖F ‖Y ‖F . (7)

Remark 5.2:For the real matrix case, Proposition 5.1 can
be improved by dropping the constant

√
2. This improvement

is achieved by replacing the parallelogram identity in the proof
to the version for the real scalar field case.

Remark 5.3:For the vector case, the representation of a
vectorx ∈ Cn in terms of the standard basis{ej}nj=1 of Cn

determines‖x‖0. Let J1, J2 ⊂ {1, . . . , n} be arbitrary. Then
the projection operatorsP{ej}j∈J1

and P{ej}j∈J2

commute.
Furthermore,P⊥

{ej}j∈J1

x is s-sparse (or sparser) ifx is s-
sparse. These properties follow from the orthogonality of
the standard basis. Proposition 3.2 in [7], corresponding in
the vector case to our Proposition 5.1 requires these two
properties. However, these properties do not hold for the
matrix case. ForΨ1,Ψ2 ⊂ O, the projection operatorsPΨ1

andPΨ2
do not commute in general andrank(PΨX) can be

greater thanr even thoughrank(X) 6 r. Proposition 5.1 is
a stronger version of the corresponding proposition for the
vector case in the sense that it requires a weaker condition
(orthogonality between two low-rank matrices), which can be
satisfied without these properties.

VI. I MPLEMENTATION AND SCALABILITY

Most of the computation in ADMiRA lies in the truncated
singular value decomposition. The fact that ADMiRA keeps
the matrix variables in their atomic decomposition is advanta-
geous for this procedure. Only a few dominant singular triplets
are necessary, which can be computed by the Lanczos method
in O((m+n)rL) time, whereL is the number of the iterations



that depends on the singular value distribution.. An alternative
approach is to use a randomized algorithm [14] that computes
the low-rank approximation of a given matrix in atomic
decomposed form inO((m + n)r3 log r) time. In this case,
ADMiRA has complexity ofO((m+n)r3 log r) per iteration,
orO((m+n)r4 log r) to achieve the guarantee in Theorem 4.2,
and scales well to large problems. Another consideration isthe
computation of the proxy matrix. This involves applyingA
andA∗, the complexity of which isO(rpmn). If A consists
of sparse matrices, then the complexity can be as small as
O(rp(m+n)). In particular, in the matrix completion problem,
AX is sampling the entries of matrixX and hence there is
no multiplication in this procedure.

VII. N UMERICAL EXPERIMENT

We study reconstructions by ADMiRA with a generic ma-
trix completion example. Our preliminary Matlab implemen-
tation uses ARPACK [13] to compute partial SVDs in Steps 4
and 7 of ADMiRA. The test matrixX ∈ R

n×n is generated
as the productX = YLY

H
R whereYL, YR ∈ Rn×r has entries

following an i.i.d. Gaussian distribution. The measurement b is
p randomly chosen entries ofX , which may be contaminated
with an additive white Gaussian noise. The reconstruction
error and measurement noise level are measured in terms of
SNRrecon , 20 log10(‖X‖F /‖X − X̂‖F ) and SNRmeas ,
20 log10(‖b‖2 / ‖ν‖2), respectively. Computational efficiency
is measured by the number of iterations. The results in Fig. 1
and Table I have been averaged over 20 trials.

Fig. 1 shows that bothSNRrecon and the number of iter-
ations improve asp/dr increases. Heredr is the number of
degrees of freedom defined bydr = r(n+m−r) and denotes
the essential number of unknowns. Fig. 1 suggests that we
needp/dr > 20 for n = 500.

Table I shows that ADMiRA provides slightly better per-
formance with less computation than SVT [4]. Roughly, the
computational complexity of a single iteration of ADMiRA
can be compared to three times of that of SVT.

Fig. 2 compares the phase transitions of ADMiRA and
SVT. We count the number of successful matrix completion
(SNRrecon > 70dB) out of 10 trials for each triplet(n, p, r).
The brighter color implies more success. ADMiRA performed
better than SVT for this example.
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Fig. 1. Matrix completion by ADMiRA:n = 500, r = 2.

We note though, that the performance guarantee in the previ-
ous sections is not directly applicable to the experiments in this
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Fig. 2. Phase transition of matrix completion:n = m = 100.

r p/n2 p/dr
SNRrecon (dB) #iter

ADMiRA SVT ADMiRA SVT

2 0.20 50.05 82 79 11 54
5 0.20 20.05 81 78 15 64
10 0.20 10.05 79 77 19 80

TABLE I

COMPARISON OFADM IRA AND SVT: NO NOISE,n = m = 1000.

section since the linear operator in the matrix completion does
not satisfy the R-RIP. It seems that a performance guarantee
without using the R-RIP might be possible.

VIII. C ONCLUSION

We propose a new algorithm, ADMiRA, which extends both
the efficiency and the performance guarantee of the CoSaMP
algorithm forℓ0-norm minimization to matrix rank minimiza-
tion. The proposed generalized correlation maximization can
be also applied to MP, OMP, and SP to similarly extend
the known algorithms and theory from thes-term vector
approximation problem to the rank-r matrix approximation.
ADMiRA can handle large scale rank minimization problems
efficiently by using recent linear time algorithms for low rank
approximation. More detailed arguments and missing proofs
are available in [15].
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[12] E. Candes,Comptes rendus-Mathématique, vol. 346, no. 9-10, pp. 589–

592, 2008.
[13] R. Lehoucq, D. Sorensen, and C. Yang, “ARPACK Users’ Guide”.
[14] S. Har-Peled, “Low rank matrix approximation in lineartime,” note,

2006.
[15] K. Lee and Y. Bresler,Arxiv preprint arXiv:0905.0044, 2009.

http://arxiv.org/abs/0706.4138
http://arxiv.org/abs/0810.3286
http://arxiv.org/abs/0803.2392
http://arxiv.org/abs/0803.0811
http://arxiv.org/abs/0808.3572
http://arxiv.org/abs/0905.0044

	Introduction
	Vector vs Matrix
	Preliminaries
	Atomic Decomposition
	Generalized Correlation Maximization

	Algorithm
	Main Results: Performance Guarantee
	Rank-Restricted Isometry Property (R-RIP)
	Performance Guarantee
	Relationship between P1, P2, and ADMiRA

	Properties of the Rank-Restricted Isometry
	Implementation and Scalability
	Numerical Experiment
	Conclusion
	References

