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Abstract— Recht, Fazel, and Parrilo provided an analogy (SDP). Although there exist polynomial time algorithms to
between rank minimization and £o-norm minimization. Subject solve SDP, in practice they do not scale well to large proklem
to the rank-restricted isometry property, nuclear norm mini- Recently, several authors proposed methods for solving
mization is a guaranteed algorithm for rank minimization. T he ' . L .
resulting semidefinite formulation is a convex problem but h large scale SDP derived from rank minimization. These in-
practice the algorithms for it do not scale well to large insances. clude interior point methods for SDP, projected subgradien
Instead, we explore missing terms in the analogy and propose methods, and low-rank parametrization [1] and a customized
a new algorithm which is computationally efficient and also s interior point method [3] These methods can solve larger
3 performance guarantee. The algorithm is based on the atormi o minimization problems, which the general purpose SDP

ecomposition of the matrix variable and extends the idea in . . .
the CoSaMP algorithm for £o-norm minimization. Combined ~SOIVers cannot. However, the dimension of the problem is
with the recent fast low rank approximation of matrices basel  Still restricted and some of these methods do not guarantee

on randomization, the proposed algorithm can efficiently hadle convergence to the global minimum. Other methods solve

large scale rank minimization problems. nuclear norm minimization in a penalized form using singula
value thresholding (SVT) [4] or fixed point and Bregman
|. INTRODUCTION iterations [5]. It has been shown that the sequence of solsiti

Recent studies in compressed sensing have shown #Qpverges to the solution to nuclear norm minimization &s th
a sparsity prior in the representation of the unknowns Cgﬁ,nalty param_eter_mqeasez. rl;|owevehr, an alr_1alysf|sh0f llhrle co
guarantee unique and stable solutions to underdetermirlt aggncde l;ater:s mlssmgr]] a(;‘ X ence the qualtydo t ehsoutlo
linear systems. The idea has been generalized to linear r%‘ 'r;? ' oy t efseh metho Sh 'Z nc_)t guaff”‘”tze ' Fhurt ermor(:,
minimization by Recht, Fazel, and Parrilo [1]. Rank minimiz '€ €fficiency of these methods Is restricted to the case o

tion has important applications such as matrix completioﬂ,n affine (i.e., linear equality) constraint. Mela al. [6]

linear system identification, Euclidean embedding, anog'mnaused mpltiplicative up(jates and qnline convex Pr‘?gr_ammi”g
compression to provide an approximate solution to rank minimization.

The rank minimization problem is formally written as: However, their resullt depends on the (unverified) e_x[ste.mcg
an oracle that provides the solution to the rank minimizatio

P1- Xgéﬁlm rank(X) problem with a single linear constraint in constant time.
’ subject to AX = b, For ¢3-norm minimiza_tion, besideél—norm minimi_za}tion,
. . y there are recent algorithms, which are more efficient and
for a given linear operatar : C — Crandb e C”. also have performance guarantees. These include Conygressi

Fazel, Hindi, and Boyd [2] proposed a convex relaxation &ampling Matching Pursuit (CoSaMP) [7] and Subspace Pur-
the rank minimization problem. They minimized the nucleayit (SP) [8]. To date, no such algorithms have been availabl
norm| X ||,, which is the sum of all singular values of matriXor rank minimization.

X, and is the convex envelop of the non-convex function | this paper, we propose an iterative algorithm to solve
rank(X). Rank minimization is related t-norm minimiza- the rank minimization problem, which is a generalizatfbn
tion, which has been the focus of compressed sensing. Regfitihe CoSaMP algorithm fofy-norm minimization to the
Fazel, and Parrilo [1] provided an analogy between the twgnk minimization problem. We call this algorithm “Atomic
problems and their respective solutions by convex relarati pecomposition for Minimum Rank Approximation,” abbre-
~ In the analogy/,-norm minimization for the/p-norm min- - viated as ADMIRA. In CoSaMP, thé,-norm minimization
imization problem is replaced by nuclear norm minimizatiogroblem with equality constraints is recast into arierm
for P1. Both are efficient algorithms, with guaranteed perfoyector approximation problem. Similarly, in ADMIRA we
mance under certain conditions, to solve NP-hard problems:

{o-norm m|r.1|m|zat|o_n. and ranlf minimization, respeptlvely. 1 There is another generalization of CoSaMP, namely modetdb&oSaMP
The respective conditions are given by the restricted isgme[9]. However, this generalization addresses a completéfgrent and unre-

property and its generalization. However, wheréasorm lated problem: sparse vector approximation subject to @iaipée.g., tree)
structure. Furthermore, the extensions of CoSaMP to moastd CoSaMP

m!n!m!zat!on _corresponds to a linear progra_m, _mjldear NOMEHd to ADMIRA are independent: neither one follows from ttthes, and
minimization is formulated as a convex semidefinite prograneither one is a special case of the other.


http://arxiv.org/abs/0901.1898v2

recast P1 into the rank-matrix approximation problem in decreasing order. For eadh there existsp, € C such
— H
min IAX — b, that |py| = 1 gnd prurvy € O. Then an orthonormal set
pP2: XeCmxn atoms(X) is given by
subject to rank(X) < r. rdnk
. atoms(X) = {prurvy }io
The performance guarantee of ADMIRA states that the ap-
proximate solution to P2 obtained by ADMiRA coincides with Remark 2.2:atoms(X) and rank(X) = |atoms(X)| of

the true solutionX to P1 for anyr > rank(X) that satisfies a matrix X € C™*™ are the counterparts ofupp(x) and

the ADMIRA assumptions. llz|, = [supp(x)| for a vectorz € CP, respectively.
Il. VECTOR VSMATRIX C. Generalized Correlation Maximization
A. Preliminaries Recht, Fazel, and Parrilo [1] showed an analogy between

Throughout this paper, we use two vector spaces: the sps@ek minimization P1 andy-norm minimization. We consider
of column vectorsC? and the space of matricg&™>". For instead the rank-matrix approximation problem P2 and its
CP, the inner product is defined by, y)cr = y 2 for 2,y € analogue — the-term vector approximation problem
C» wherey™ denotes the Hermitian transposegfand the

) / . ; . min [Az — bl|,
induced Hilbert-Schmidt norm is the Euclidean ©rnorm P3: zeCr
given by ||z = (x,z)c» for z € CP. subject to |z, <'s
For C™*™, the inner product is defined byX,Y)cmxn =  In Problem P3, variable lives in the union ofs dimensional

tr(YX) for X, Y € C™*", and the induced norm is thesubspaces of:", each spanned by elements in the finite
Frobenius norm given byl X |7 = (X, X)cmxn for X € setE = {e1,...,e,}, the standard basis df”. Thus the
cmxm, union contains alk-sparse vectors ift™. Importantly, finitely
many ((’S‘) to be precise) subspaces participate in the union.
Therefore, it is not surprising that P3 can be solved exdwtly
Let S denote the set of all nonzero rank-one matrices #khaustive enumeration, and finite selection algorithroh sis
Cm>™. We can refineS so that any two distinct elements areCoSaMP are applicable.
not collinear. The resulting subs@tis referred to as thset of In the ranks matrix approximation problem P2, the matrix
atomsd of C*". Then theset of atomic spaces of C"™*" yariable X lives in the union of subspaces 6f"*", each
is defined by of which is spanned by atoms in the setD. Indeed, if
A2 {span(¢) : ¥ € O} 1) X e C™*"is §pa_1nned by- atoms inQ, thenr.ank(X) <r
by the subadditivity of the rank. Converselyrink(X) = r,
Each subspacd” € A is one-dimensional and hence ighen X is a linear combination of rank-one matrices and
irreducible in the sense th&t = V; + 15 for someV;, Vo € A hence there exist atoms that spark. Note that uncountably
implies v, = 1, = V. SinceO is a uncountably infinite set infinitely many subspaces participate in the union. Thegsfo
in a finite dimensional spac&€™*", the elements i) are some selection rules in the greedy algorithmsffenorm min-
not linearly independent. Regardless of the choicédofA  imization ands-term vector approximation do not generalize in
is uniquely determined. Without loss of generality, we @x a straightforward way. None the less, using our formulatibn
such that all elements have the unit Frobenius norm. the ranks matrix approximation problem in terms of an atomic
Given a matrix X € C™*", its representationX = decomposition, we extend the analogy between the vector and
>_; a;1; as alinear combination of atoms is referred to as anatrix cases, and propose a way to generalize these selectio
atomic decompositionf X. SinceOQ spansC™*", an atomic rules to the rank- matrix approximation problems.
decomposition ofX exists for all X e C™*". A subset First, consider the correlation maximization in greedyoalg
U ={yY e O0: @,r)cmxn = d;,} Of unit-norm and rithms for the vector case. Matching Pursuit (MP) [10] and
pairwise orthogonal atoms i@ will be called anorthonormal Orthogonal Matching Pursuit (OMP) [11] choose the index

B. Atomic Decomposition

set of atoms k € {1,...,n} that maximizes the correlatio|rm,§(b — Az)
Definition 2.1: Let O be a set of atoms o€™*". Given between thek-th columna, of A and the residual in each
X e Cm*", we defineatoms(X) iteration, wherez is the solution of the previous iteration.

Given a setV, let Py denote the projection operator onto

. A : . .
atoms(X) = argm\ﬁn“qj' W CO, Xespan(P)}. (2) the subspace spanned Byin the corresponding embedding

Note thatatoms(X) is not unique. space. When = {4} is a singleton setP, will denote
An orthonormal setitoms (X )'5 9'Ve'}(8¥)the smgular value p;,. For example,P,, denotes the projection operator onto
oy ran
decomposition ofX. Let X = >3™ " opurvfl denote the subspace it spanned by;,. From

the singular value decomposition &f with singular values

(b— Ak), ex)cn| = || Py AT (b -

’ak (b —

2The “atom” in this paper is different from Mallat and Zhangstom” . foll h L h lati . l L
[10], which is an element in the dictionary, a finite set of tees. In both It follows that maximizing the correlation implies maxirmg

cases, however, an atom denotes an irreducible quantity. the norm of the projection of the image undéf’ of the



residualb — A% onto the selected one dimensional subspac@lgorithm 1 ADMiRA

The following selection rule generalizes the correlatiomput: A : C™*"™ — CP, b € CP, and target rank € N
maximization to the matrix case. We maximize the norm @utput: rank+ solution X to P2
the projection over all one-dimensional subspaces spaoyed 1: X +~0

an atom inQ: 22 U<
b— AR A B PoA*(b— AR 3: while stop criterion is falselo
?f?g (b—  Ab)emscn | = %168% H AT (b= )HF’ 4. U« argmaX{HP\p.A* (b-— .AX)HF LIS 2T}
3)

where A* : CP — C™*" denotes the adjoint operator gf. > ‘Ii « v U‘If ~
By the Eckart-Young Theorem, the basis of the best subspad& X < arg g Ib—AX]l,: X € Span(‘l’)}

is obtained from the smgular value decompositionddf= .. G . argmaX{HPq;)zH L] < ,,}
A*(b—AX), asyh = uyv!, whereu; andv; are the principal . vco F
left and right singular vectors. 8 X PgX

Remark 2.3:Applying the selection rule(13) to updat§  9: end while
recursively leads to greedy algorithms generalizing MP ari: return X
OMP to rank minimization.
Next, consider the rule in recent algorithms such as
CoSaMP, and SP. The selection rule chooses the subsét a greedy selection is employed to solve the combinatorial
{1,...,n} with |J| = s defined by problem and provides the exact solution owing to the orthog-
|aH(b _ A:E)| - |aH(b _ Ad) VkeJvidJ (4) onality of the feasible set. The maximization problem oWer t
k =17 ’ »¥J ' infinite set in ADMIRA may look even more difficult than the
This is equivalent to maximizing combinatorial problem in CoSaMP. However, singular value
= i 2 decomposition can solve the maximization problem over the
> lal (b- [Preyic, A (0= AD)][; infinite set efficiently.
keJ

In other words, selection ruld](4) finds the best subspace |V. MAIN RESULTS: PERFORMANCE GUARANTEE
spanned bys elements inE that maximizes the norm of
the projection ofM = A (b — A%) onto thats-dimensional
subspace. Rechtet al [1] generalized the sparsity-restricted isometry

The following selection rule generalizes the selectiore ruproperty (RIP) defined for sparse vectors to low rank madrice
(@) to the matrix case. We maximize the norm of the projectichIn order to draw the analogy with known results fg-

over all subspaces spanned by a subset with at magpms norm minimization, we slightly modify their definition by
in Q: squaring the norm in the inequality. Given a linear operator

max{HPq,A* b AX)H L] < T} A : C™*n — CP, the rank-restricted isometry constainf.A)
is defined as the minimum constant that satisfies
A basis ¥ of the best subspace is agam obtained from the 2
singular value decomposition of/ = A*(b — AX), as (1= 8 () X[ < 2 AX ;< (14 8:(AD [ X7 (5)
U = {ppurvf }i_,, whereu, andwvy, k = 1,...,r are the for all X € C™*"™ with rank(X) < r for some constant >
r principal left and right singular vectors, respectivelydan0. Throughout this paper, we assume that the linear operator
for eachk, p, € C satisfies|pi| = 18 . Note that¥ is an A is scaled appropriately so that= 1 in (]H)ﬁ

orthonormal set although this is not enforced as an explicit
constraint in the maximization. B. Performance Guarantee

A. Rank-Restricted Isometry Property (R-RIP)

I1l. ALGORITHM Subject to the R-RIP, the Atomic Decomposition for Min-

Algorithm [ describes ADMIRA. StepEl 4 ard 7 involve imum Rank Approximation Algorithm (ADMIRA) has a per-
finding a best rank+ or ranks+ approximation to given formance guarantee analogous to that of CoSaMP.

matrix (e.g., by truncating the SVD), while StEp 6 involves The followings are the assumptions in ADMIRA:
the solution of a linear least-squares problem — all stahdar Al: The target rank is fixed as
numerical linear algebra problems. Sfdp 5 merges two giverA2:  The linear operatos satisfiessz,(A) < 0.043.
sets of atoms irD by taking their union. A3:  The measurement is obtained by

Most steps of ADMIRA are similar to those of CoSaMP b= AX + v 6)
except Stepl4 and StEp 7. The feasible sets of the maximizatio ’
problems in SteEM and Stﬁ) 7 of ADMIRA are infinite while “They also demonstrated “nearly isometric families” syiigf this R-

those in the analogous steps of CoSaMP are finite. In CoSaM® (with overwhelming probability). These include randtinear operators
generated from i.i.d. Gaussian or i.i.d. symmetric Berhalistributions.
3 Once the best subspace is determined, it is not requiredrpuie the 51f 4 # 1, then only the constant for the noise gain will be scaled
constantspy’s. accordingly.



wherev is the discrepancy between the measuremelngt X' denote a minimizer to P1In this case, the approxi-
and the linear moded X . mation X produced by ADMIRA is not necessarily equivalent

Assumption A2 plays a key role in deriving the performand® X', but by 'I;heoLenﬂ]l the distance between Ithe two is
guarantee of ADMiRA. This enforces the rank-restrictedriso bounded by[[ X" — X||p < 205 for all » > rank(X") that
etry property of the linear operatot. Although the verifica- Satisfies the ADMIRA assumptions.

tion of the satisfiability of A2 is as difficult as or more diffilt V. PROPERTIES OF THERANK -RESTRICTED | SOMETRY
than the recovery problem itself, nearly isometric fansilibat We introduce a number of properties of the rank-restricted

satisfy the condition in A2 have been demonstrated [1]. . ) .
e isometry. These properties serve as key tools for provieg th
The performance guarantees are specified in terms of a mea-, . ' .
X o performance guarantees for ADMIRA in this paper. These
sure of inherent approximation error, termadrecoverable

energydefined by properties further extend the analogy between the spacserve
and the low-rank matrix approximation problems (P3 and

e=|X - X,|p+ 1 I1X = X, + |17 P2, re_spectively), and are _the_refore also of inte_regt inr the
VT * 2 own right. An operator satisfying the R-RIP satisfies, as a

where X, denotes the best rankapproximation ofX. The Cconsequence, a number of other properties when composed
first two terms ine define a metric of the minimum distanceWith other linear operators defined by the atomic decompo-
between the “true” matrixX and a ranke matrix. This is Sition. Most properties are inherited from the vector case.
analogous to the notion of a measure of compressibility bfowever, the generalization of thestricted orthogonality
a vector in sparse vector approximation. No solution of pyroperty to the matrix case is not straightforward and shows
can come any closer t& . The third term is the norm of the SOMe nontrivial differences. The following Propositionas
measurement noise, which must also limit the accuracy of tRtension of Lemma 2.1 in [12] for the vector case to the
approximation provided by a solution to P2. matrix case. _ §

Theorem 4.1:Let X, denote the estimate of in the k- Proposition 5.1: Suppose that linear operatdr: C™*" —

th iteration of ADMIRA. For eachk > 0, X, satisfies the €’ has the rank-restricted isometry constah{(A). Let
following recursion: X,Y € €™ such that(X,Y)em«n = 0 and rank(X) +

N N rank(Y) < r. Then
[X — Xiv1llr < 0.5]]X — Xk F + 10€,
, _ [{(AX, AY )er| < V28, (A) I X |2 1Y || - @)
wherec is the unrecoverable energy. From the above relation,
it follows that Remark 5.2:For the real matrix case, Propositibnl5.1 can
be improved by dropping the constayi2. This improvement

is achieved by replacing the parallelogram identity in theop

TheorenT 41l shows the geometric convergence of ADMIRAC the verS|on.for the real scalar field case. .
. 2= . Remark 5.3:For the vector case, the representation of a
In fact, convergence in a finite number of steps can be acathieve o n "
. vectorz € C™ in terms of the standard basfs;}"”_, of C
as stated by the following theorem. determines|z||,. Let Jy, Jo» C {1 n} be afbi%rar Then
Theorem 4.2:After at most6(r + 1) iterations, ADMiRA 0 L2 e y

. o : e the projection operator$’, 1. and Py, . commute.
provides a rank- approximationX of X, which satisfies proJ Lp > lesbien {esbies =2 10
Furthermore,P{e_}_E, x is s-sparse (or sparser) if is s-

HX—)A(IIF < 20€, sparse. These Jprjoplerties follow from the orthogonality of
the standard basis. Proposition 3.2 in [7], correspondmg i
the vector case to our Proposition ]5.1 requires these two
properties. However, these properties do not hold for the
matrix case. Forw,, ¥, C O, the projection operatorfy,
. . . and Py, do not commute in general andnk(Pg X) can be
C. Relationship bethen P1, P2, and ADMIRA greater than- even thoughrank(X) < r. Propositio 5.1l is
The approximationX given by ADMIRA is a solution to a stronger version of the corresponding proposition for the
P2. When there is no noise in the measurementi-e.,AX, vector case in the sense that it requires a weaker condition
where X is the solution to P1, Theoreln 4.1 states that if tf@rthogonality between two low-rank matrices), which can b
ADMIRA assumptions are satisfied with > rank(X), then satisfied without these properties.
X = X. An appropriate value can be assignedrtdy an
incremental search ovet
For the noisy measurement case, the linear constraint in PAMost of the computation in ADMiRA lies in the truncated
is replaced by a quadratic constraint and the rank miniraizat Singular value decomposition. The fact that ADMIRA keeps

IX = Xillp <277 || X || p +20e, VE>0.

wheree is the unrecoverable energy.
Depending on the spectral properties of the mafXix even
faster convergence is possible.

VI. IMPLEMENTATION AND SCALABILITY

problem is written as: the matrix variables in their atomic decomposition is adaan
. geous for this procedure. Only a few dominant singularétgl
PY: et rank(X) are necessary, which can be computed by the Lanczos method

subject to || AX —b||, < 7. in O((m+n)rL) time, whereL is the number of the iterations



that depends on the singular value distribution.. An altdve
approach is to use a randomized algorithm [14] that compute
the low-rank approximation of a given matrix in atomic
decomposed form iO((m + n)r®logr) time. In this case, &
ADMIRA has complexity ofO((m +n)r® logr) per iteration, ™
or O((m+n)r*logr) to achieve the guarantee in Theorfen 4.2,
and scales well to large problems. Another consideratidimes
computation of the proxy matrix. This involves applyiog

0.

0.

and.4*, the complexity of which iO(rpmn). If A consists 0.2 gﬁ;z 0.6 0t 0.2 2}‘;2 06 08
of sparse matrices, then the complexity can be as small as ADMIRA SVT
O(rp_(m—i—n))..ln pamCUIar’ in the mat_”X completion prObIe_m’ Fig. 2. Phase transition of matrix completion:= m = 100.
AX is sampling the entries of matriX and hence there is
no multiplication in this procedure. ., 2 | pd SNRyecon (dB) FHiter
P P/% "ADMIRA | SVT | ADMIRA [ SVT
VII. NUMERICAL EXPERIMENT 2 | 0.20 | 50.05 82 79 11 54
We study reconstructions by ADMIRA with a generic ma- 8'%8 ig'gg % ;g ig gg
trix completion example. Our preliminary Matlab implemen- TABLE |

tation uses ARPACK [13] to compute partial SVDs in StEps 4
and[T of ADMIRA. The test matrixX € R"*" is generated COMPARISON OFADMIRA AND SVT:NO NOISE, n = m = 1000.
as the produck = YLYIQ’ whereY;,, Y € R™*" has entries
following an i.i.d. Gaussian distribution. The measuretitlee ~ section since the linear operator in the matrix completioesd
p randomly chosen entries df, which may be contaminatednot satisfy the R-RIP. It seems that a performance guarantee
with an additive white Gaussian noise. The reconstructigvithout using the R-RIP might be possible.
error and measurement noise level are measured in terms of
SNRyecon = 201ogyo([ X | /|X — X|[r) and SNRineas = : . .
201log,o([|b]l, / |[¥]l,), respectively. Computational efficiency We propose a new algorithm, ADMiRA, which extends both
is measured by the number of iterations. The results in[Frigthe efficiency and the performance guarantee of the CoSaMP
and Tabld]l have been averaged over 20 trials. algorithm for£y,-norm minimization to matrix rank minimiza-
Fig. @ shows that botSNR,.con and the number of iter- tion. The proposed generalized correlation maximizatian c
ations improve ag/d, increases. Herd, is the number of be also applied to MP, OMP, and SP to similarly extend
degrees of freedom defined By = r(n+m—r) and denotes the known algorithms and theory from theterm vector
the essential number of unknowns. FIg. 1 suggests that @Proximation problem to the rankmatrix approximation.
needp/d, > 20 for n = 500. ADMIRA can handle large scale rank minimization problems
Table[l shows that ADMIRA provides slightly better per_efficiently by using recent linear time algorithms for lownka
formance with less computation than SVT [4]. Roughly, th@PProximation. More detailed arguments and missing proofs
computational complexity of a single iteration of ADMiRA&re available in [15].
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