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Abstract— Motivated by recommendation systems, we consider
the problem of estimating block constant binary matrices (of size
m × n) from sparse and noisy observations. The observations
are obtained from the underlying block constant matrix after
unknown row and column permutations, erasures, and errors.
We derive upper and lower bounds on the achievable probability
of error. For fixed erasure and error probability, we show that
there exists a constantC1 such that if the cluster sizes are less
than C1 ln(mn), then for any algorithm the probability of error
approaches one asm,n → ∞. On the other hand, we show that
a simple polynomial time algorithm gives probability of error
diminishing to zero provided the cluster sizes are greater than
C2 ln(mn) for a suitable constantC2.

I. I NTRODUCTION

Recommender systems are commonly used to suggest con-
tent (movies, books, etc.) that is relevant to a given buyer.The
most common approach is topredict the rating that a potential
buyer might assign to an item and use the predicted ratings to
recommend items. The problem thus reduces to completion of
the rating matrix based on a sparse set of observations. This
problem has been popularized by the Netflix Prize ([1]). A
number of methods have been suggested to solve this problem;
see for example [2], [3], [4] and references therein. Recently,
several authors ([5], [6] [7]) have used the assumption of a
low-rank rating matrix to propose provably good algorithms.
For example, in [5], [6], a “compressed sensing” approach
based on nuclear-norm minimization is proposed. It is shown
in [6] that if the number of samples is larger than a lower
bound (depending on the matrix size and rank), then with
high probability, the proposed optimization problem exactly
recovers the underlying low-rank matrix from the samples. In
[7], the relationship between the “fit-error” and the prediction
error is studied for large random matrices with bounded rank.
An efficient algorithm for matrix completion is also proposed.

In this paper, we consider a different setup. We assume that
there is an underlying “true” rating matrix, which has block
constant structure. In other words, buyers (respectively items)
are clustered into groups of similar buyers (respectively items),
and similar buyers rate similar items by the same value. The
observations are obtained from this underlying matrix (sayM)
as described below.

1) The rows and columns ofM are permuted with un-
known permutations, that is, the clusters are not known.

2) Many entries ofM are erased by a memoryless era-
sure channel. This models the sparsity of the available
ratings.

3) The non-erased entries are observed through a discrete
memoryless channel (DMC). This channel models

• the residual error in the block constant model, and,
• the “noisy” behavior of buyers who may rate the

same item differently at different times.

One may also treat these two channels as a single effective
DMC, but we prefer the above break-up for conceptual rea-
sons. Our goal is to identify conditions on the cluster sizes
under which the underlying matrix can be recovered with small
probability of error. Our recommendation system model differs
from [5], [6], and in particular, we do not seek completion of
the observed matrix, but rather the recovery of the underlying
M. As described above, our goal reduces to analyzing the
error performance of the code of block-constant matrices over
the channel described above.

From a practical stand-point, it is desirable to consider the
case when the parameters of the erasure channel and DMC are
not known. However, in this paper, we consider the simpler
case when these channel parameters are known. In particular,
for simplicity, we consider the case whenM is anm×n matrix
with entries in{0, 1} and the DMC is a binary symmetric
channel (BSC) with error probabilityp. The erasure probability
is ǫ. Our main results are of the following nature.

• If the “largest cluster size” (defined precisely in Section
III) is less thanC1 ln(mn)), then the probability of error
approaches unity forany estimator ofM asmn → ∞
(Corollary 2, Part 2)).

• We analyze a simple algorithm, which clusters rows and
columns first, and then estimates the cluster values. We
show that if the “smallest cluster size” is greater than a
constant multiple ofln(mn), then the probability of error
for this algorithm (averaged over the rating matrices),
approaches zero asmn → ∞ (Theorem 3, Part 2)). Com-
bined with the previous result, this implies thatln(mn)
is a sharp threshold for exact recovery asymptotically.

http://arxiv.org/abs/0901.1753v1


• If we consider the probability of error for a fixed
rating matrix, then the algorithm needs the smallest
cluster size to be larger than a constant multiple of
√

mn ln(m) ln(n).

While we obtain the asymptotic results for fixedp andǫ, the
bounds we obtain in the process also apply to the case when
p, ǫ depend onm, n.

The paper is organized as follows. In Section II, we describe
our model. The main results are stated and proved in Section
III. We conclude in Section IV.

II. OUR MODEL AND NOTATION

SupposeX is the unknownm×n rating matrix with entries
in {0, 1}, wheren is the number of buyers andm is the number
of items. LetA = {Ai}

r
i=1 andB = {Bj}

t
j=1 be partitions

of [1 : m] and [1 : n] respectively. The setsAi × Bj are the
clusters in the matrixX. We callAi’s (Bj ’s) the row (column)
clusters. We denote the corresponding row and column cluster
sizes bymi and nj , and the number of row clusters and
the number of column clusters byr and t respectively. (We
note that theAi’s (respectivelyBi’s) need not consist of
adjacent rows (respectively columns) and hence this notation
is different from that in the introduction). The entries of
X are passed through the cascade of a memoryless erasure
channel with erasure probabilityǫ and a memoryless BSC
with error probabilityp. While the erasure channel models
the missing ratings, the BSC models noisy behavior of the
buyers. The output of the channel, i.e. the observed rating
matrix, is denoted byY and its entries are in{0, 1, e}, where
e denotes an erasure. We analyze the probability of error for a
fixed rating matrix as well as the probability of error averaged
over the rating matrices. We use the following probability law
on the rating matrices. We assume that all row and column
clusters have the same sizem0 andn0 respectively, and the
rt constant blocks (of sizem0n0) contain i.i.d. Bernoulli 1/2
random variables.

III. M AIN RESULTS

In Section III-A, we study the probability of error of
the maximum likelihood decoder when the clustersA,B are
known. This result provides a lower bound on the cluster size
that ensures diminishing probability of error. In Section III-B,
we analyze the probability of error in identifying the clusters
for a specific algorithm. These results are integrated in Section
III-C to obtain conditions on the cluster sizes for the overall
probability of error to diminish to zero.

A. Probability of Error When Clustering is Known

In this section, we study the probability of error of the
maximum likelihood decoder for a given rating matrixX when
A andB are known. We denote this probability byPe|A,B(X).
We note that the ML decoder ignores the erasures, counts the
number of 0’s and 1’s in each clusterAi × Bj , and takes a
majority decision. Ties are resolved by tossing a fair coin.The
following theorem provides simple upper and lower bounds on
Pe|A,B.

Theorem 1: Let 0 ≤ p ≤ 1/2, and let

p1 = ǫ+ 2(1− ǫ)
√

p(1− p)

G(u) = 1−

r,t
∏

i=1,j=1

(1− uminj ) .

Then the probability of error of the ML decoder satisfies the
following bounds:

G(ǫ) ≤ Pe|A,B(X) ≤ G(p1). (1)
Proof: We note that whenp = 0, we make an error in

a cluster iff all the entries in the cluster are erased. Sincethe
erasures in different clusters are independent, it followsthat
Pe|A,B(X) = G(ǫ) for p = 0. This gives the lower bound on
Pe|A,B(X) for p ≥ 0.

Next we prove the upper bound. Suppose in clusterAi×Bj

we haves non erased samples. Then the probability of correct
decision in this cluster is given by

Pr(Ec
i,j,s) =

⌊ s
2
⌋

∑

q=0

(

s

q

)

pq(1 − p)s−q if s is odd

=

s
2
−1
∑

q=0

(

s

q

)

pq(1− p)s−q

+
1

2

(

s
s
2

)

p
s
2 (1 − p)

s
2 if s is even.

(2)

Averaging over the number of non erased samples, the prob-
ability of correct decision in clusterAi ×Bj is given by

Pr(Ec
i,j) =

minj
∑

s=0

(

minj

s

)

ǫminj−s(1− ǫ)sPr(Ec
i,j,s). (3)

Since the erasure and BSC are memoryless

Pe|A,B(X) = Pr
(

∪r,t
i=1,j=1Ei,j

)

= 1−

r,t
∏

i=1,j=1

Pr
(

Ec
i,j

)

. (4)

Equations (4), (3), and (2) specify the probability of error. The
desired upper bound is obtained by deriving an upper bound
on Pr(Ec

i,j,s). First we note that from (2),

1− Pr(Ec
i,j,s) ≤

s
∑

⌈ s
2
⌉

(

s

q

)

pq(1 − p)s−q.

But for 0 ≤ p ≤ 1
2 and q ≥ s

2 , pq(1 − p)s−q ≤ p
s
2 (1 − p)

s
2 .

Substituting this in the previous equation, we have

Pr(Ec
i,j,s) ≥ 1− (2

√

p(1− p))s. (5)

From Equations (3) and (5), we have Pr(Ec
i,j) ≥ 1−p

minj

1 and
so from (4),Pe|A,B(X) ≤ G(p1). This completes the proof
for the upper bound onPe|A,B(X).

Let us define thesmallest cluster size as

s∗(X) := min
i,j

minj,

(6)



and thelargest cluster size as

s∗(X) := max
i,j

minj .

The following corollary gives simpler bounds onPe|A,B(X).
Corollary 1: Let NX(s) be the number of clusters inX

with exactlys elements. Let

s∗(X) ≥
ln(2)

ln(1/p1)
.

Then

Pe|A,B(X) ≥ 1− exp

(

−

∞
∑

s=1

NX(s)ǫs

)

,

Pe|A,B(X) ≤ 1− exp

(

−2 ln(2)

∞
∑

s=1

NX(s)ps1

)

.

(7)

In particular,

Pe|A,B(X) ≥ 1− exp

(

−
mnǫs

∗(X)

s∗(X)

)

,

Pe|A,B(X) ≤ 1− exp

(

−
2 ln(2)mnp

s∗(X)
1

s∗(X)

)

.

(8)

Proof: The proof is based on upper and lower bounds for
G(u). We note that(1 − x) ≤ exp(−x) and forx ∈ [0, 1/2],
1− x ≥ exp(−2 ln(2)x). Hence

exp



−2 ln(2)

r,t
∑

i=1,j=1

uminj



 ≤

r,t
∏

i=1,j=1

(1− uminj )

≤ exp



−

r,t
∑

i=1,j=1

uminj



 .

Where the first inequality holds foruminj ≤ 1
2 . The sum in

the exponent can be written in terms of the size of the clusters:
r,t
∑

i=1,j=1

uminj =
∞
∑

s=1

NX(s)us.

The bounds (7) now follow from Theorem 1 by noting that
p
minj

1 ≤ 1/2 for s∗(X) ≥ ln(2)/ln(1/p1).
To prove (8), we note that

∞
∑

s=1

NX(s)us ≤ rtus∗(X) ≤
mn

s∗(X)
us∗(X).

This gives the upper bound in (8). The lower bound in (8)
follows similarly.

We are interested in studying the cluster sizes that guarantee
correct decisions asymptotically. Though (7) is tighter than
(8), the conditions arising out of (8) are cleaner and are stated
below.

Corollary 2: Suppose we are given a sequence of rating
matrices of increasing size, that is,mn → ∞. Then the
following are true.

1) If

s∗(X) ≥
ln(mn)

ln(1/p1)

thenPe|A,B(X) → 0.
2) If

s∗(X) ≤
(1− δ) ln(mn)

ln(1/ǫ)
, for some δ > 0,

thenPe|A,B(X) → 1.
Proof: First consider Part 1. From (8), usinge−x ≥ 1−x

we get

Pe|A,B(X) ≤
2 ln(2)mnp

s∗(X)
1

s∗(X)
.

The RHS is a decreasing function ofs∗(X) and hence substi-
tuting the lower bound ons∗(X) we get

Pe|A,B(X) ≤
2 ln(2) ln(1/p1)

ln(mn)
→ 0.

For Part 2, we note that1 − exp
(

−mnǫs
∗(X)/s∗(X)

)

is a
decreasing function ofs∗(X), and hence substituting the upper
bound, we have from (8)

Pe|A,B(X) ≥ 1− exp

(

−
ln(1/ǫ)(mn)δ

(1− δ) ln(mn)

)

.

But since(mn)δ/ lnmn → ∞, we havePe|A,B → 1.

B. Probability of Error in Clustering

Data mining researchers have developed several techniques
for clustering data; see for example [8, Chapter 4]. In this
section, we analyze a simple polynomial time clustering algo-
rithm. The algorithm clusters rows and columns separately.To
cluster rows, we compute the normalized Hamming distance
between two rows over commonly sampled entries. For rows
i, j, this distance is:

dij =
1

n

n
∑

k=1

1 (Yik 6= e, Yjk 6= e) 1(Yik 6= Yjk).

If this is less than a thresholdd0, then the two rows are
declared to be in the same cluster and otherwise they are
declared to be in different clusters. We apply this process to
all pairs of rows and all pairs of columns. LetIij be equal
to 1 if rows i, j belong to the same cluster and let it be 0
otherwise. The algorithm gives an estimate:

Îij =

{

1, dij < d0,

0, dij ≥ d0.

We are interested in the probability that we make an error in
row clustering averaged over the probability law on the rating
matrices described in Section II:

P̄e,rc = Pr
(

Îij 6= Iij for somei, j
)

.

Once the rows are clustered, we can apply the same procedure
to cluster columns. Below we analyze the error probability
P̄e,rc; the probability of error in finding column clusters has
similar behavior.



Theorem 2: Suppose we are given a sequence of rating
matrices with n → ∞ and tn column clusters, such that
lim supn→∞ m/n < ∞. Let

µ := 2p(1− p)(1− ǫ)2, δ := (1− ǫ)2(1− 2p)2

and choosed0 = µ+δ/3. Then there exists a positive constant
C0 such that iftn > C0 ln(n), thenP̄e,rc → 0.

Proof: We start by considering the choice of the threshold.
When i, j are in the same cluster,

E[dij |Iij = 1,X] = 2p(1− p)(1− ǫ)2 = µ.

When i, j are in different clusters, letsij be the number of
columns in whichi, j disagree. Then

E[dij |Iij = 0,X]

=
(1 − ǫ)2

n

[

(p2 + (1− p)2)sij + 2p(1− p)(n− sij)
]

= µ+
sij
n
δ.

We choose
d0 = µ+

αn

n
δ,

whereαn is chosen below to obtain diminishing probability
of error.

First we bound the probability of error whenIij = 1. We
note that in this casedij is the average ofn i.i.d. Bernoulli
random variables with meanµ = 2p(1− p)(1− ǫ)2. Hence

Pr
(

Îij 6= 1
∣

∣Iij = 1,X
)

= Pr
(

dij − µ ≥
αn

n
δ
∣

∣

∣Iij = 1,X
)

≤ exp

(

−
δ2α2

n

µn

)

(9)

where in the last step we have used the Chernoff bound [9,
Theorem 4.4, pp. 64].

Next consider the caseIij = 0. In this case,dij is the
average ofn − sij identically distributed Bernoulli random
variables with meanµ andsij identically distributed Bernoulli
random variables with meanν = (1 − ǫ)2[p2 + (1 − p)2], all
the random variables being independent. So we have

Pr
(

Îij 6= 0
∣

∣Iij = 0,X
)

≤
(1 − µ+ µeθ)n−sij (1 − ν + νeθ)sij

end0θ
, θ < 0 (10)

≤ exp
(

n(eθ − 1)βij − nd0θ
)

, βij = µ+ δ
sij
n

(11)

where in (10) we have used the Chernoff bound and in (11)
we have used the inequality1 + x ≤ exp(x). Choosingθ =
max(0, ln(d0/βij)) (which is the optimal choice), we have

Pr
(

Îij 6= 0
∣

∣Iij = 0,X
)

≤

{

exp
(

n(d0 − βij) + nd0 ln
(

βij

d0

))

if sij ≥ αn

1 if sij < αn.

(12)

Note that forsij ≥ αn, we have0 ≤ (βij − d0)/d0 ≤ 1, and
so

ln

(

βij

d0

)

≤
βij − d0

d0
−

1

6

(

βij − d0
d0

)2

.

Substituting in (12), ifsij ≥ αn, then

Pr
(

Îij 6= 0
∣

∣Iij = 0,X
)

≤ exp

(

−
δ2(sij − αn)

2

6(nµ+ δαn)

)

. (13)

Taking expectation in (12) and using (13), we get,

E
[

Pr
(

Îij 6= 0
∣

∣Iij = 0,X
)]

≤ Pr(sij ≤ αn) + E

[

exp

(

−
δ2(sij − αn)

2

6(nµ+ δαn)

)]

=: T1 + T2.

We note thatsij = n0X , whereX is Binomial(tn,1/2). Thus
E[sij ] = n0tn/2 = n/2 and var{sij} = nn0/4. Thus if n0 =
o(n), then sij concentrates around its mean. Hence to get a
diminishingT1, we chooseαn = n/3. Then

T1 = P
(

sij ≤
n

3

)

= P

(

X ≤
tn
3

)

≤ P

(

|X − tn/2| ≥
tn
6

)

≤ 2 exp

(

−
tn
54

)

(14)

where we have used the Chernoff bound [9, Corollary 4.6, pp.
67].

Substituting forαn in T2, we see that for a suitable positive
constantc,

T2 = E

[

exp

(

−cn0
(X − tn/3)

2

tn

)]

=

tn
∑

s=0

(

tn
s

)

2−tn exp

(

−cn0
(s− tn/3)

2

tn

)

=
∑

|s−tn/3|>tn/9

(

tn
s

)

2−tn exp

(

−c
n0(s− tn/3)

2

tn

)

+
∑

|s−tn/3|≤tn/9

(

tn
s

)

2−tn exp

(

−c
n0(s− tn/3)

2

tn

)

≤ exp (−cn/81) +
∑

|s−tn/3|≤tn/9

2−tn2tnh(s/tn)

≤ exp (−cn/81) + tn2
−tn(1−h(4/9)). (15)

From (14) and (15), it follows that

E
[

Pr
(

Îij 6= 0
∣

∣Iij = 0,X
)]

≤ T1 + T2 ≤ nc1 exp(−c2tn).

(16)
wherec1, c2 are positive constants. Since there are onlym(m−
1)/2 pairs of rows, the desired result follows.
Remark: If we consider the probability of error in clustering
for a fixed rating matrix, then to get diminishing probability
of error asymptotically, we need

m0n0 > C
√

mn ln(m) ln(n).



C. Estimation Under Unknown Clustering

In this section, we consider our full problem - estimation of
the underlying rating matrix from noisy, sparse observations
when clustering is not known. Our result is the following.

Theorem 3: Consider the collection of block constant ma-
trices with the probability law described in Section II. Let
m = βn, β > 0 fixed. Then there exist constantsCi, 1 ≤ i ≤ 4
such that the following holds fort > C3 ln(n), r > C4 ln(m).

1) If m0n0 ≤ C1 ln(mn), then for any estimator ofX,
P̄e → 1 asn → ∞.

2) Consider an estimator which first clusters the rows and
columns using the algorithm described in Section III-B
and then uses ML decoding as in Section III-A assuming
that the clustering is correct. Ifm0n0 ≥ C2 ln(mn), then
for this algorithmP̄e → 0 asn → ∞.

Proof: When A,B are known, then under our model
all feasible rating matrices are equally likely. Hence the ML
decoder gives the minimum probability of error and so we
have P̄e ≥ E[Pe|A,B(X)]. To prove Part 1), we next lower
boundE[Pe|A,B(X)]. Let T be the event thats∗(X) > m0n0.
We note thatX ∈ T iff for some pair of row clusters all the
t column clusters have been generated equal or for some pair
of columns all ther row clusters have been generated equal.
Using the union bound, we get that,

Pr(T ) ≤

(

r
2

)

2t
+

(

t
2

)

2r
≤ m22−t + n22−r. (17)

We chooseC1, C2 to ensure that the above bound decays to
zero and hence Pr(T ) → 0. Now,

E[Pe|A,B(X)] ≥ E[Pe|A,B(X);T c].

But on the eventT c, s∗(X) = m0n0 and from the lower
bound in (8) we get

P̄e ≥ E[Pe|A,B(X)] ≥

(1− Pr(T ))

[

1− exp

(

−
ln(1/ǫ)(mn)δ

(1− δ) ln(mn)

)]

(18)

which → 1 asmn → ∞. This proves Part 1).
Next we prove Part 2). LetD denote the event that the

clustering is identified correctly. We note that the probability
of error in estimatingX averaged over the probability law on
the block constant matrices satisfies

P̄e ≤ E
[

Pe|A,B(X)Pr(D) + Pr(Dc)
]

≤ E
[

Pe|A,B(X)
]

+
(

P̄e,rc + P̄e,cc

)

where P̄e,cc is the probability of error in column clustering.
The desired result follows from Part 1) of Corollary 2, and
Theorem 2.

Remark: The above result states that for a fixedp, ǫ, the
smallest cluster size that leads to zero error asymptotically is
O(ln(mn)) = O(ln(n)). Whenp = 0, then we can also apply
the method in [6] to our model, and this yields a smallest
cluster size ofO(n1/2(ln(n))2), which is strictly worse than
our result.
Remark: In [7], the focus is on rating matrices of rankO(1)
and ǫ = c/n, which leads toO(n) observations. For our
model, O(1) rank corresponds to a cluster size ofΘ(mn),
and forǫ = c/n, our algorithm can be seen to give zero error
asymptotically for any fixed rating matrix.

IV. CONCLUSION

We considered the problem of estimating a block constant
rating matrix. The observed matrix is obtained through un-
known relabeling of the rows and columns of the underlying
matrix, followed by an error and erasure channel. Our prob-
ability of error analysis showed that if the number of row
clusters and the number column clusters areΩ(ln(m)) and
Ω(ln(n)) respectively, then the matrix can be clustered and
estimated with vanishing probability of error if the cluster sizes
areΩ(ln(mn)).
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