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Abstract

The degrees-of-freedom of a K-user Gaussian interference channel (GIFC) has been defined

to be the multiple of (1/2) log
2
P at which the maximum sum of achievable rates grows with

increasing P . In this paper, we establish that the degrees-of-freedom of three or more user, real,

scalar GIFCs, viewed as a function of the channel coefficients, is discontinuous at points where

all of the coefficients are non-zero rational numbers. More specifically, for all K > 2, we find

a class of K-user GIFCs that is dense in the GIFC parameter space for which K/2 degrees-of-

freedom are exactly achievable, and we show that the degrees-of-freedom for any GIFC with

non-zero rational coefficients is strictly smaller than K/2. These results are proved using new

connections with number theory and additive combinatorics.

1 Introduction

The time-invariant, real, scalar K-user Gaussian interference channel (GIFC), as introduced in [1],

involves K transmitter-receiver pairs in which each transmitter attempts to communicate a uni-

formly distributed, finite-valued message to its corresponding receiver by sending a signal comprised

of n real numbers. Each receiver observes a component-wise linear combination of possibly all of the

transmitted signals plus additive memoryless Gaussian noise, and seeks to decode, with probability

close to one, the message of its corresponding transmitter, in spite of the interfering signals and

noise. The time averages of the squares of the transmitted signal values are required to not exceed

certain power constraints. A K-tuple of rates (R1, . . . , RK) is said to be achievable for a GIFC

if the transmitters can increase the sizes of their message sets as 2nRi with the signal length n,

and signal in such a way that the power constraints are met and the receivers are able to correctly

decode their corresponding messages with probability converging to 1, as n grows to infinity. The

set of all achievable K-tuples of rates is known as the capacity region of the GIFC. Determining

it, as a function of the channel coefficients (specifying the linear combinations mentioned above),
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power constraints, and noise variances, has been an open problem in information theory for over

30 years.

A complete solution for even the two-user case, which has received the most attention to date, is still

out of reach. The best known coding scheme for two users is that presented in [2]. In some ranges

of channel coefficients, such as for strong interference, the capacity region is completely known for

two users [1]. Still for other ranges, the maximum achievable sum-of-rates is known [3, 4, 5, 6]. For

the general two-user case, the strongest known result is that of [7], which determines the capacity

region to within a 1/2 bit margin (1 bit for the complex case) using a carefully chosen version of

the scheme of [2], and a new genie-aided outerbound.

The case of K > 2 users has, until very recently, received less attention. Much of the recent

effort on K > 2, beginning with [8] and continuing in e.g., [9, 10] has focused on characterizing the

growth of the capacity region in the limit of increasing signal-to-noise ratio (SNR) corresponding, for

example, to fixing the noise variances and channel coefficients and letting the power constraints tend

to infinity. Specific attention has been directed at the growth of the maximum sum of achievable

rates. If there were no interference, the maximum achievable rate corresponding to each transmitter-

receiver pair would grow like (1/2) log2 P in the limit of increasing power, which follows from the

well known formula of (1/2) log2(1+P/N) for the capacity of a single user additive Gaussian noise

channel with power constraint P and noise variance N . Thus, the maximum sum of achievable rates

would grow as (K/2) log2 P if there were no interference. This motivates the expectation that, in

the general case, the maximum sum of achievable rates would grow as (d/2) log2 P for some constant

d ≤ K, depending on the channel coefficients, where d has been dubbed the degrees-of-freedom

of the underlying GIFC. Although determining d for a given GIFC is, in principle, simpler than

determining the capacity region, it has turned out to be a difficult problem in its own right, for

K > 2.1

A positive development in the study of the degrees-of-freedom of GIFCs with more than two users

has been the discovery of a new coding technique known as interference alignment, which involves

carefully choosing the transmitted signals so that the interfering signals “align” benignly at each

receiver [9]. Interference alignment has been shown, under some conditions which we summarize

below, to achieve nearly d = K/2 degrees-of-freedom, which is half of the degrees-of-freedom in the

case of no interference at all. Interference alignment is not possible to implement for two users and

its discovery thus had to wait until the focus shifted to more users. Another new phenomenon in

network information theory that has recently emerged as the number of users studied was increased,

is the technique of indirect decoding, which is crucial for achieving the capacity region of certain

three-user broadcast channels [12]. Again, this technique is not relevant in the two-user case, and

could not have been discovered in the study thereof.

In this paper, we find a new information theoretic phenomenon concerning interference channels

that is not manifest in the two-user case. In particular, we find that the degrees-of-freedom (and

1The degrees-of-freedom is known to be 1 for all two-user GIFCs, unless there is no interference [8].
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therefore the capacity region at high signal-to-noise ratio) of real, scalar GIFCs with K > 2 users

is very sensitive to whether the channel coefficients determining the linear combinations of signals

at each receiver are rational or irrational numbers. Next, we formally explain our results and their

significance in the context of the growing literature on K > 2 user GIFCs.

We shall use a matrix H to denote the direct and cross gains of a time invariant, real, scalar

K-user (GIFC) [1] with the (i, j)-th entry hi,j specifying the channel gain from transmitter i to

receiver j. Thus, the signal observed by receiver j ∈ {1, . . . ,K} at time index t = 1, 2, . . . is given

by zj,t +
∑K

i=1 xi,thi,j where xi,t is the real valued signal of transmitter i ∈ {1, . . . ,K} at time t

and zj,t is additive Gaussian noise with variance σ2
j , independent across time and users. Fixing a

block length n, the transmitted signals {xi,t} are required to satisfy the average power constraints
∑n

t=1 x
2
i,t ≤ nPi for some collection of powers P1, . . . , PK . For H ∈ RK×K, and σ,P ∈ RK

+ , we

let C(H,σ,P) denote the capacity region of a GIFC with gain matrix H, receiver noise variances

given by the corresponding components of σ, and average (per codeword) power constraints given

by the components of P. Following [8], we define the degrees-of-freedom of H as

DoF (H) = lim sup
P→∞

maxR∈C(H,1,P1) 1
tR

(1/2) log2 P
, (1)

where 1 denotes the vector of all ones. The degrees-of-freedom of a GIFC characterizes the behavior

of the maximum achievable sum rate as the SNR tends to infinity, with the gain matrix fixed.

A fully connected GIFC is one for which hi,j 6= 0 for all i and j. It was shown in [8] that for

fully connected H, DoF (H) ≤ K/2. If H is not fully connected, the degrees-of-freedom can be

as high as K, such as when H is the identity matrix where all cross gains are zero. Little was

known about tightness of the K/2 bound for K > 2 until it was shown in [9] that for vector GIFCs

and an appropriate generalization of DoF (·) to include a normalization by the input/output vector

dimension, the degrees-of-freedom of “almost all” fully connected vector GIFCs approaches K/2

when the vector dimension tends to infinity.2 In addition, an example of a fully connected two-

dimensional vector GIFC achieving exactly K/2 degrees-of-freedom was also given in [9]. The key

tool introduced in [9] to establish these results is the technique of interference alignment, which

involves the transmitters signaling over linear subspaces that, after component-wise scaling by

the cross gains, align into interfering subspaces which are linearly independent with the directly

received subspaces, allowing for many interference free dimensions over which to communicate. For

real, scalar GIFCs, it was shown in [10], using a different type of interference alignment, that the

degrees-of-freedom of certain fully connected GIFCs also approaches K/2 when the cross gains tend

to zero. Yet a different type of interference alignment is used in [11] to find new achievable rates for

a non-fully connected GIFC in which interference occurs only at one receiver. To our knowledge,

the problem of determining or computing the degrees-of-freedom of general GIFCs is still open.

As in [10], in this paper we consider only fully connected scalar, real GIFCs and establish the

following results on the degrees-of-freedom.

2The K/2 bound of [8] extends to the fully connected vector case as well.
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Theorem 1 If all diagonal components of a fully connected H are irrational algebraic numbers

and all off-diagonal components are rational numbers then DoF (H) = K/2.

Theorem 2 For K > 2, if all elements of a fully connected H are rational numbers then DoF (H) <

K/2.

The following corollary is then immediate from Theorems 1 and 2, and the well known fact that

irrational algebraic numbers are dense in the real numbers.

Corollary 1 For K > 2, the function DoF (H) is discontinuous at all fully connected H with

rational components.

Theorem 1 demonstrates the existence of fully connected, real K-user GIFCs with exactly K/2

degrees-of-freedom. In contrast to the result of [10], Theorem 1 is non-asymptotic (in H). The

underlying achievability scheme is based on an interference alignment phenomenon that differs from

the ones used in [9] and [10], and relies on number theoretic lower bounds on the approximability

of irrational algebraic numbers by rationals.

Theorem 2 reveals a surprising limitation on DoF (H) when the components are non-zero rational

numbers (up to arbitrary pre-post multiplication by diagonal matrices - see Lemma 1 in Section 3).

In this case, DoF (H) is strictly bounded away from K/2. Previously known techniques for finding

outer-bounds to the capacity regions of GIFCs, such as cooperative encoding and decoding [13, 14],

genie aided decoding [7, 15, 16], and multiple access bounds [1, 17] are not sensitive to the rationality

of the channel parameters and hence do not suffice to establish Theorem 2. Instead, our proof of

this theorem is based on a new connection between GIFCs with rational H and results from additive

combinatorics [20], a branch of combinatorics that is concerned with the cardinalities of sum sets,

or sets obtained by adding (assuming an underlying group structure) any element of a set A to any

element of a set B.

The remainder of the paper is organized as follows. The next section clarifies some notation and

gives the formal definition of the capacity region of a GIFC that will apply in this paper. In

Section 3, we present the proof of Theorem 1. This is followed by the proof of Theorem 2 in

Section 4, which further consists of subsections collecting various intermediate results. Each of

these sections is prefaced with a high level outline of the respective proofs. In Section 5, we

determine lower and upper bounds on DoF (H) for a simple three-user rational H by improving on

the scheme of [10], and evaluating an upper bound implicit in the proof of Theorem 2. We conclude

in Section 6 with some final observations and directions for future work.
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2 Notation and definitions

We adopt the usual notation for the information theoretic quantities of discrete and differential

entropy (resp. H(X) and h(X)), and mutual information (I(X;Y )), which shall all be measured in

bits (i.e. involve logarithms to the base two) [18]. We shall use the standard notation ⌈x⌉ and ⌊x⌋
to respectively denote the smallest integer not smaller than x and the greatest integer not larger

than x. The cardinality of a set A shall be denoted as |A|.

Next, we review the definition of the capacity region of a K-user GIFC with power constraints

P = (P1, . . . , PK) and noise variances σ = (σ2
1 , . . . , σ

2
K) that will apply in this paper. Fixing a

block length n and a rate-tuple R1, . . . , RK , the random message Wi of the i-th transmitter is

assumed to be uniformly distributed in the set Wi
△
= {1, . . . , 2⌈nRi⌉}. The messages are further

assumed to be independent from one user to the next. A coding scheme consists of K encoding

functions f1, . . . , fK where fi maps Wi into the n-dimensional ball of radius
√
nPi of real vectors,

the components of which specify the signal value xi,t that the i-th transmitter will send at each

time index.3 The set {fi(1), fi(2), . . . , fi(2⌈nRi⌉)} constitutes the codebook of transmitter i. There

is also a corresponding set of K decoding functions g1, . . . , gK where gi maps n-dimensional real

vectors into the message set Wi. The function gi is applied by receiver i to the n received signal

values yn
i = yi,1, . . . , yi,n, which, as specified in the introduction, are formed as a component-wise

linear combination, according the gain matrix H, of the transmitted signals and Gaussian noise.

Definition 1 The capacity region C(H,σ,P) of the GIFC is defined as the set of rate-tuples

R1, . . . , RK for which there exists a sequence of block length n message sets and power-constrained

coding schemes satisfying limn→∞max1≤i≤K Pr(Wi 6= gi(y
n)) = 0, where the probability of error

is taken with respect to the distribution induced by the random messages, the coding scheme, and

the channel, as specified above.

The degrees-of-freedom DoF (H) of a GIFC, as defined in (1) above, will be assumed to be based

on this formal definition of C(H,σ,P).

3 Real, scalar GIFCs with exactly K/2 degrees-of-freedom

In this section, we prove Theorem 1 demonstrating the existence of fully connected, real, scalar

K-user GIFCs with exactly K/2 degrees-of-freedom. An outline of the proof is as follows. First,

we prove a simple lemma (which will also be useful in the next section) showing that DoF (H) =

DoF (DtHDr) for any diagonal matrices Dt and Dr with positive diagonal components. This, in

turn, implies that we can transform any H satisfying the assumptions of Theorem 1 to one with

3For simplicity, in this paper, we formally adopt a per codeword average power constraint, as opposed to the more

conventional expected average power constraint. We note that the degrees-of-freedom of a GIFC can be shown to be

the same under both types of power constraints.

5



irrational, algebraic numbers along the diagonal and integer values in off-diagonal components,

while preserving the degrees-of-freedom. We then focus on coding schemes for the new H in which

each transmitter is restricted to signaling over the scalar lattice {zP 1/4+ǫ : z ∈ Z} intersected

with the interval [−P 1/2, P 1/2]. The idea is that the integer valued cross gains guarantee that the

interfering signal values at each receiver will also be confined to this scalar lattice (though may fall

outside of the P 1/2 interval), while the irrational direct gains place the directly transmitted signal

values on a scaled lattice that “stands out” from the interfering lattice. Specifically, this scaled

lattice has the property that offsetting the interfering lattice (equal to the original lattice) by each

point in the scaled lattice results in disjoint sets. A non-empty intersection would imply that the

direct gain could be written as the ratio of two integers, which would contradict its irrationality.

An even stronger property holds for algebraic irrational direct gains: the distance between any pair

of points obtained by adding a point from the scaled lattice to a point from the interfering lattice

actually grows with P . This is shown to follow from a major result in number theory stating that

for any irrational algebraic number α and any γ > 0, a rational p/q approximation will have an

error of at least δ/q2+γ for some δ depending only on α and γ.4 The next step in the proof is to

deal with the noise by coupling this inter-point distance growth with Fano’s inequality to show that

the mutual information induced between each transmitter-receiver pair by independent, uniform

distributions on the original power-constrained lattices, taking interference into account, grows like

(1/4 − ǫ) log2 P , for arbitrarily small ǫ. This, in turn, implies the existence of a sequence of block

codes (with symbols from the original lattice) with sum rate approaching (K/4) log2 P , and which

are correctly decodeable, with high probability, by treating interference as noise.

As mentioned, we begin with an invariance property of DoF (H).

Lemma 1 (Invariance property) For any matrix H and diagonal matrices Dt and Dr with

positive diagonal components DoF (DtHDr) = DoF (H).5

Proof: Let Dt = diag(dt1, . . . , dtK) Dr = diag(dr1, . . . , drK). In the matrix multiplication DtHDr,

dti scales the channel gains from transmitter i to the different receivers, while drj scales the channel

gains from all transmitters to receiver j. By scaling the input signals and noise variances instead

of the channel gains, we can write

C(DtHDr,1, P1) = C(H,1tD−2
r , P1tD2

t ). (2)

Let ďt = min1≤i≤K dti, d̂t = max1≤i≤K dti, ďr = min1≤i≤K dri, d̂r = max1≤i≤K dri. Since increasing

the power constraints and reducing the noise variances cannot reduce the capacity region of the

4For irrational algebraic numbers of degree two (solutions to quadratic equations with integer coefficients), such

as
√

2, the approximation bound holds with γ = 0 and is known as Liouville’s Theorem (established in 1844). The

validity of the bound for general algebraic numbers was a longstanding open problem in number theory and was

finally established in 1955 by K. F. Roth, for which he was awarded the Fields Medal.
5The matrices Dt and Dr need only have non-zero diagonal components for the result to hold. We assume

positivity for simplicity, as this is all we shall require in this paper.
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GIFC we have

C(H, (1/ď2r)1, P ď2t1) ⊆ C(H,1tD−2
r , P1tD2

t ) ⊆ C(H, (1/d̂2r)1, P d̂2t1). (3)

Furthermore, once all the noise variances are equal, they can be normalized to 1 by scaling the

power constraints, leading to

C(H, (1/ď2r)1, P ď2t1) = C(H,1, P ď2r ď
2
t1)

C(H, (1/d̂2r)1, P d̂2t1) = C(H,1, P d̂2r d̂
2
t1). (4)

Using (2), (3) and (4) we can write

max
R∈C(H,1,P ď2rď

2
t1)

1tR

1
2 log2 P

≤
maxR∈C(DtHDR,1,P1) 1

tR
1
2 log2 P

≤
max

R∈C(H,1,P d̂2rd̂
2
t1)

1tR

1
2 log2 P

which can be rewritten as

1
2 log2(P ď2r ď

2
t )

1
2 log2 P

max
R∈C(H,1,P ď2r ť

2
t1)

1tR

1
2 log2(P ď2r ď

2
t )

≤
maxR∈C(DtHDR,1,P ) 1

tR
1
2 log2 P

≤
1
2 log2(P d̂2r d̂

2
t )

1
2 log2 P

max
R∈C(H,1,P d̂2rd̂

2
t1)

1tR

1
2 log2(P d̂2r d̂

2
t )

.

Taking lim sup of all three terms as P → ∞ implies DoF (H) ≤ DoF (DtHDr) ≤ DoF (H).

Proof: (of Theorem 1) By Lemma 1 we can scale H (by post multiplying by an integer valued Dr)

so that all off-diagonal elements are integers and all diagonal elements remain irrational algebraic.

In addition, from (1) we only need to consider channels where all the inputs have the same power

constraint P and all the noise processes have variance 1.

For any ǫ > 0, we will present a communication scheme that achieves 1tR = (K/4 −Kǫ) log2 P −
o(log2 P ), implying that DoF (H) ≥ K/2. Consider the scalar lattice

ΛP,ǫ = {x : x = P 1/4+ǫz, z ∈ Z}

and let CP,ǫ = ΛP,ǫ ∩ [−
√
P ,

√
P ]. Note that

|CP,ǫ| = 2

⌊ √
P

P 1/4+ǫ

⌋

+ 1 ≤ 2P 1/4−ǫ + 1. (5)

The users communicate using codebooks of block length n, obtained by uniform i.i.d. sampling

CP,ǫ. Note that due to the truncation of the lattice to the interval [−
√
P ,

√
P ], the symbol power

(x2i,t) never exceeds P at any time index, and hence the average codeword power does not exceed

P . Each receiver decodes the signal of its transmitter, treating the interfering signals as i.i.d. noise.

With this scheme, as n → ∞ we can achieve:

Ri = I(Xi;Yi) = H(Xi)−H(Xi|Yi) , i = 1, . . . ,K,
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where Xi ∼ Uniform(CP,ǫ), Yi =
∑K

j=1 hjiXj + Zi, and Zi ∼ N (0, 1), i = 1, . . . ,K.

First we note that H(Xi) = log2 |CP,ǫ| ≈ (14 − ǫ) log2 P + log2 2. We will show that

lim sup
P→∞

H(Xi|Yi) ≤ 1 , i = 1, . . . ,K,

and as a result, Ri = (14−ǫ) log2 P−o(log2 P ) can be achieved. It would then follow that DoF (H) ≥
K/2, and, from the upper bound of [8], that DoF (H) = K/2.

We will use the following lemma to upper bound H(Xi|Yi) for i = 1, . . . ,K.

Lemma 2 Let ΣP,ǫ = {αx+ s : x ∈ CP,ǫ, s ∈ ΛP,ǫ}, with α being any real, irrational, and algebraic

number. For any y ∈ ΣP,ǫ there exists a unique pair (x, s) ∈ CP,ǫ × ΛP,ǫ such that y = αx + s. In

addition, if y1, y2 ∈ ΣP,ǫ, y1 6= y2, then |y1 − y2| > P ǫ for any given ǫ > 0 and large enough P .

Proof: Let y = αx + s with x ∈ CP,ǫ, s ∈ ΛP,ǫ. To get a contradiction, assume that there

exists (x̃, s̃) ∈ CP,ǫ × ΛP,ǫ with (x̃, s̃) 6= (x, s) such that αx̃ + s̃ = y. Without loss of generality

we can assume x̃ ≥ x. Since α 6= 0 we have s̃ 6= s and x̃ > x. In addition, since by assumption

αx+ s = αx̃+ s̃, we have

α =
s− s̃

x̃− x
=

(zs − zs̃)P
1/4+ǫ

(zx̃ − zx)P 1/4+ǫ
=

zs − zs̃
zx̃ − zx

∈ Q

where zx, zx̃, zs, zs̃ ∈ Z, which contradicts the assumption of irrational α.

To prove the second part of the lemma, let ŷ = αx̂+ ŝ, where x̂ ∈ CP,ǫ, ŝ ∈ ΛP,ǫ, and ŷ ∈ ΣP,ǫ, with

ŷ 6= y. If ŝ = s then

|ŷ − y| = α|x̂− x| = α|zx̂ − zx|P 1/4+ǫ > P ǫ,

where zx, zx̂ ∈ Z, as long as P is sufficiently large. Similarly, if x̂ = x and P is large enough we

have

|ŷ − y| = |ŝ− s| = |zŝ − zs|P 1/4+ǫ > P ǫ,

where zs, zŝ ∈ Z. So it remains to consider the case x̂ 6= x and ŝ 6= s. Without loss of generality

we can assume x̂ > x. To get a contradiction, we assume that |ŷ − y| ≤ P ǫ, and write:

|ŷ − y| ≤ P ǫ

|αx̂+ ŝ− αx− s| ≤ P ǫ

|αzx̂ + zŝ − αzx − zs| ≤ P ǫ

P 1/4+ǫ
∣

∣

∣

∣

α− zs − zŝ
zx̂ − zx

∣

∣

∣

∣

≤ P−1/4

zx̂ − zx
, (6)

where zx, zx̃, zs, zs̃ ∈ Z.

On the other hand there are bounds on how well an irrational algebraic number can be approximated

with a rational number. The most refined of those bounds, due to Roth, 1955, states that for any
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irrational algebraic α, and any γ > 0, there exists δ > 0 such that
∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

>
δ

q2+γ
(7)

for all p, q ∈ Z, q > 0 [19].

Combining (6) and (7) we have

δ

(zx̂ − zx)2+γ
<

∣

∣

∣

∣

α− zs − zŝ
zx̂ − zx

∣

∣

∣

∣

≤ P−1/4

zx̂ − zx

so that

0 < δ < P−1/4(zx̂ − zx)
1+γ

(a)

≤ P−1/4
(

2P 1/4−ǫ + 1
)1+γ

= 21+γP γ/4−ǫ(1+γ) + o(1) (8)

where we used (5) in step (a). But the right hand side of (8) goes to 0 as P → ∞ whenever ǫ ≥ 1/4

or γ < ǫ/(1/4 − ǫ). Since we can choose any γ > 0, we can obtain a contradiction in (8) for any

ǫ > 0, for large enough P .

We will use Lemma 2 to build an estimator that can identify Xi in Yi with high probability.

Let Si,
∑

j 6=i hjiXj , and note that since hji ∈ Z for j 6= i we have that Si ∈ ΛP,ǫ. In addition, let

ΣP,ǫ,i = {hiix+y : x ∈ CP,ǫ, y ∈ ΛP,ǫ}, and let vi : CP,ǫ×ΛP,ǫ → ΣP,ǫ,i be defined as vi(x, s) = hiix+s.

Using Lemma 2 and the fact that hii is real, algebraic and irrational we have that vi is invertible,

i.e. there exists v−1
i : ΣP,ǫ,i → CP,ǫ×ΛP,ǫ such that v−1

i (vi(x, s)) = (x, s) for any (x, s) ∈ CP,ǫ×ΛP,ǫ.

Let u : R2 → R be defined as u(x, s) = x, and let X̂i = u(v−1
i (argminx∈ΣP,ǫ,i

|x − Yi|)). We have

X̂i 6= Xi whenever Yi is closer to some other point in ΣP,ǫ,i than it is to hiiXi + Si. From Lemma

2, this can only occur if |Zi| ≥ P ǫ/2 for large enough P . It follows that

Pr(X̂i 6= Xi) ≤ Pr

(

|Zi| ≥
P ǫ

2

)

= 2QN (0,1)

(

P ǫ

2

)

≤ 2 exp

(

−P 2ǫ

8

)

,

where QN (0,1)(x) is the probability that a Gaussian random variable with zero mean and variance

one exceeds x. Using the data processing and Fano’s inequalities we obtain

H(Xi|Yi) ≤ H(Xi|X̂i)

≤ 1 + Pr(X̂i 6= Xi) log(|CP,ǫ|)

≤ 1 + 2 exp

(

−P 2ǫ

8

)[(

1

4
− ǫ

)

log2 P + log2 2 + o(1)

]

(9)

which goes to 1 as P → ∞.

4 Degrees-of-freedom for rational H

In this section, we give the proof of Theorem 2, establishing that the degrees-of-freedom of any

fully connected, real, scalar GIFCs is bounded strictly below K/2, for K > 2. As in the previous

section, we begin with a sketch of the proof.
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Most of the work in the proof is to establish the theorem for K = 3 users. The theorem for K > 3

will then follow from an extension of the averaging argument of [8], used therein to obtain the K/2

degrees-of-freedom upper bound from a bound of 1 on the degrees-of-freedom for K = 2. In this

case, the K = 3 bound is averaged over all three-tuples of users (transmitters and corresponding

receivers), as opposed to pairs of users in [8].

Given a K = 3 user GIFC with fully connected, rational H, using Lemma 1 (invariance property)

and eliminating cross links, we can upper bound DoF (H) by DoF (H̃) where

H̃ =
[

h̃ij
]

=







1 0 0

1 p 0

1 q 1






,

where p and q are integers (see Figure 2 in Subsection 4.3). The main step in the proof of the

overall theorem is establishing that DoF (H̃) < 3/2, which is formally carried out in Lemma 11

below, and proceeds as follows. First, it is shown (Lemma 4) that a deterministic channel obtained

by eliminating all noise sources and restricting the power-constrained codewords to have integer

valued symbols results in at most a power-constraint-independent loss in the achievable sum rate.

Therefore, the degrees-of-freedom (according to the obvious generalization) of this deterministic

interference channel (IFC) is no smaller than DoF (H̃). Next, it is shown using a Fano’s inequality

based argument that if the degrees-of-freedom of the deterministic IFC is at least 3/2 there would

exist finite sets of n-dimensional integer valued vectors X2 and X3 such that the corresponding

independent random variables xn
2 and xn

3 , uniformly distributed on these sets, induce discrete

entropies satisfying H(xn
2 ) ≈ n(1/4) log2 P , H(xn

3 ) ≈ n(1/4) log2 P , H(xn
2 + xn

3 ) ≈ n((1/4) +

ǫ) log2 P , and H(p · xn
2 + q · xn

3 ) ≈ n((1/2)− ǫ) log2 P , for the integers p and q defining the channel

and ǫ arbitrarily small. These entropy relations suggest that the cardinality of the support of

p · xn
2 + q · xn

3 is much larger than that of xn
2 + xn

3 . However, tools from additive combinatorics

(through Lemma 7) can be used to show that this is impossible for integer valued p and q, leading to

a contradiction, and thereby implying that the deterministic channel must have degrees-of-freedom

strictly smaller than 3/2. Unfortunately, the link between the entropy and the cardinality of the

support of a sum of independent, uniformly distributed random variables is sufficiently weak that a

somewhat more involved argument (incorporating Lemma 10 and Theorem 3) is ultimately required

to reach the above conclusions. The overall intuition behind the proof, however, is as outlined.

The rest of the section is organized as follows. Subsections 4.1 and 4.2 respectively collect supporting

results of an information theoretic nature and results from additive combinatorics. The proof of

the main lemma on the K = 3 user IFC is presented in Subsection 4.3. Finally, the extension to

K > 3 is presented in Subsection 4.4. Throughout, the capacity region of a K-user GIFC will be

taken as in Definition 1.
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4.1 Supporting information theoretic results

Lemma 3 The capacity region of a K-user memoryless IFC,6 where the codebook of user i is

subject to an average power constraint Pi, is given by the limiting expression:

CIFC =

∞
⋃

n=1

⋃

P
x
n
1
...xn

K
=P

x
n
1

···P
x
n
K

Pr(‖xn
i ‖

2

2
≤nPi)=1 , i=1,...,K

{

R ∈ RK
+ : Ri ≤

1

n
I(xn

i ;y
n
i ), i = 1, . . . ,K

}

(10)

Proof: The lemma can be proved by extending the argument of [23] to K-user memoryless IFCs

with possibly continuous alphabets and average power constraints on the inputs. The details are

omitted.

Lemma 4 Given a gain matrix H and power constraints P = (P1, . . . , PK), let CD(H,P) denote

the capacity region of the deterministic IFC defined by

ȳi(t) =

K
∑

j=1

hjix̄j(t) , i = 1, . . . ,K

where the inputs are constrained to be integers (i.e. x̄i(t) ∈ Z, i = 1, . . . ,K, t = 1, 2 . . .) and satisfy

an average power constraint 1
n

∑n
t=1 x̄i(t)

2 ≤ Pi for all i.

Then, R ∈ C(H,1,P) ⇒ (R −∆) ∈ CD(H,P) with ∆ = (δ1, . . . , δK), δi =
1
2 log2(1 + 2

∑K
j=1 h

2
ji),

i = 1, . . . ,K, where C(H,1,P) is the capacity region of the corresponding GIFC (see Definition 1).

Proof: Let f : R → R be defined as f(x),⌊x⌋ · 1(x > 0) + ⌈x⌉ · 1(x < 0), and let g : R → R

be defined as g(x) = x − f(x). In addition, let xi1 = f(xi), xi2 = g(xi), yi1 =
∑K

j=1 hjixj1 + zi1,

and yi2 =
∑

j=1K hjixj2 + zi2, where zi1, zi2 ∼ N (0, 1/2) are independent. Then the outputs of the

K-user Gaussian IFC can be written as yi = yi1 + yi2, for i = 1, . . . ,K (see Figure 1).

If R = (R1, . . . , RK) ∈ C(H,1,P), then for any η > 0 there exists a family of codebooks

{C1,n, . . . , CK,n}n satisfying the average power constraints, and decoding functions {g1,n, . . . , gK,n}n
with average decoding error probability going to 0 as n → ∞, such that limn→∞

1
n log2 |Ci,n| ≥

Ri − η. For block-length n we have:

n(Ri − η−ǫn)

≤I(xn
i ;y

n
i ) (11)

≤I(xn
i1,x

n
i2;y

n
i1,y

n
i2) (12)

=h(yn
i1,y

n
i2)− h(yn

i1,y
n
i2|xn

i1,x
n
i2)

6Here we are considering more general IFCs than the Gaussian case. Definition 1 still applies, but with the

appropriate conditional probability distribution of channel outputs given channel inputs.
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Figure 1: A decomposition of a K-user Gaussian IFC.

=h(yn
i1) + h(yn

i2|yn
i1)− h

(

K
∑

j=1

j 6=i

hjix
n
j1 + zni1,

K
∑

j=1

j 6=i

hjix
n
j2 + zni2

)

≤h(yn
i1) + h(yn

i2)− h

(

K
∑

j=1

j 6=i

hjix
n
j1 + zni1

)

− h

(

K
∑

j=1

j 6=i

hjix
n
j2 + zni2

∣

∣

∣

∣

K
∑

j=1

j 6=i

hjix
n
j1 + zni1

)

(13)

≤h(yn
i1) + h(yn

i2)− h

(

K
∑

j=1

j 6=i

hjix
n
j1 + zni1

)

− h

(

K
∑

j=1

j 6=i

hjix
n
j2 + zni2

∣

∣

∣

∣

K
∑

j=1

j 6=i

hjix
n
j1 + zni1,x

n
12, . . . ,x

n
K2

)

(14)

=h(yn
i1) + h

(

K
∑

j=1

hjix
n
j2 + zni2

)

− h

(

K
∑

j=1

j 6=i

hjix
n
j1 + zni1

)

− h(zni2)

≤I(xn
i1;y

n
i1) +

n

2
log2

[

2πe

( K
∑

j=1

h2ji +
1

2

)]

− n

2
log2

(

2πe
1

2

)

(15)

≤I(xn
i1; ȳ

n
i1) +

n

2
log2

(

1 + 2
K
∑

j=1

h2ji

)

(16)

where ǫn → 0 as n → ∞. We used Fano’s inequality in (11), the data processing inequality in (12),

the fact that conditioning reduces entropy in (13) and (14), the Gaussian bound for differential

entropies in (15), noting that |xj2(t)| ≤ 1, t = 1, . . . , n, and used the data processing inequality in

(16), where we defined ȳn
i1,

∑n
j=1 hjix

n
j1.

Since ‖xn
i1‖22 ≤ ‖xn

i ‖22 ≤ nPi when the channel is used with codebooks satisfying the power con-
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straints, it follows that the codebooks {C1,n, . . . , CK,n}n induce distributions on xn
i1, i = 1, . . . ,K,

that satisfy the power constraints {Pi}Ki=1. These distributions can be used in (10) to conclude

that (R1 − η − δ1, . . . , RK − η − δK , . . .) is an achievable rate vector in CD(H,P). Since η > 0 is

arbitrary, the result follows.

Lemma 5 Let {(Ci,n, gi,n, Pe,i,n)}Ki=1 denote a block length n coding scheme for a K-user interfer-

ence channel satisfying average (per codeword) power constraints {Pi}Ki=1 with rates {Ri}Ki=1 and

average error probabilities {Pe,i,n}Ki=1. If {C̃1,n, . . . , C̃K,n} is any set of codebooks with C̃i,n ⊆ Ci,n,

|C̃i,n| ≥ |Ci,n|/αi and αi ≥ 1, for all i = 1, . . . ,K, then {(C̃i,n, gi,n, P̃e,i,n)}Ki=1 is a coding scheme

with rates no smaller than {Ri − 1
n log2 αi}Ki=1 and average error probabilities {P̃e,i,n}Ki=1 satisfying

P̃e,i,n ≤ (
∏K

j=1 αj)Pe,i,n, and also satisfying the power constraints {Pi}Ki=1.

Proof: Since Ci,n has rate Ri, we have that for i = 1, . . . ,K the rate R̃i of C̃i,n satisfies:

R̃i =
1

n
log2 |C̃i,n| ≥

1

n
log2

( |Ci,n|
αi

)

= Ri −
1

n
log2 αi. (17)

During communication with the codebooks {C1,n, . . . , CK,n} the transmitted messages (and hence

the codewords) are chosen uniformly and independently, and as a result we have:

Pe,i,n =
1

∏K
j=1 |Cj,n|

∑

c1∈C1,n

· · ·
∑

cK∈CK,n

Pe,i,n(c1, . . . , cK)

≥ 1
∏K

j=1 |Cj,n|
∑

c1∈C̃1,n

· · ·
∑

cK∈C̃K,n

Pe,i,n(c1, . . . , cK)

=
1

∏K
j=1 αj

∏K
j=1 αj

∏K
j=1 |Cj,n|

∑

c1∈C̃1,n

· · ·
∑

cK∈C̃K,n

Pe,i,n(c1, . . . , cK)

≥ 1
∏K

j=1 αj

1
∏K

j=1 |C̃j,n|
∑

c1∈C̃1,n

· · ·
∑

cK∈C̃K,n

Pe,i,n(c1, . . . , cK)

=
1

∏K
j=1 αj

P̃e,i,n (18)

where we denoted by Pe,i,n(c1, . . . , cK) the probability of decoding error when the codewords

c1, . . . , cK are transmitted.

Finally, since every codeword of Ci,n satisfies the power constraint Pi, the codewords of C̃i,n satisfy

the power constraint Pi.

Lemma 6 Any achievable rate vector in a K-user IFC can be achieved by codebooks with no re-

peated codewords, i.e. for every n = 1, 2, . . . and k = 1, . . . ,K, the codebook Ck,n is such that

ci, cj ∈ Ck,n ⇒ ci 6= cj .
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Proof: Since (R1, . . . , RK) is achievable, for any η > 0 there exists a family of codebooks

{C1,n, . . . , CK,n}n with 1
n log2 |Ci,n| ≥ Ri− η satisfying the average power constraints, and a family

of decoding functions achieving average error probabilities Pe,i,n going to 0 as n → ∞ for every

i = 1, . . . ,K.

Consider the single user channel between transmitter i and receiver i obtained from the interference

channel by removing all the interfering signals at receiver i. Since the interference cannot help

receiver i decode the message of its own transmitter, it follows that Ri can be achieved in the

single user channel with the family of codebooks {Ci,n}i,n, for some decoding functions {g′i,n}i,n
with average error probabilities no larger than Pe,i,n, i = 1, . . . ,K, n = 1, 2, . . .. Let C̃i,n ⊂ Ci,n

be obtained by removing the worst (i.e. leading to the largest error probability in the single user

channel) half of the codewords in Ci,n. It is easy to see that C̃i,n and g′i,n achieve a maximal error

probability in the single user channel no larger than 2Pe,i,n, and in particular, C̃i,n has no repeated

codewords for n large enough. The result follows by using Lemma 5 with {C̃i,n}i,n as defined here,

and αi = 2, i = 1, . . . ,K, noting that as n → ∞, 1
n log2 αi → 0 and (

∏K
j=1 αj)Pe,i,n → 0 for

i = 1, . . . ,K.

4.2 Supporting results from additive combinatorics

Given an abelian group G and two sets A,B ⊆ G let A +B denote the set of sums obtainable by

adding one element from A to one element from B.7 Formally, A + B = {a + b : a ∈ A, b ∈ B}.
The set of differences A − B can be defined analogously. For any integer p and set A ⊆ G, we

denote by p · A the set consisting of all p-multiples of elements of A or p · A = {pa : a ∈ A}.
For a non-negative integer p and A ⊆ G we denote by p ⋆ A the set of p-fold sums of A or

p ⋆ A = {a1 + a2 + . . .+ ap : ai ∈ A for i = 1, . . . , p}. We shall also require the concept of a partial

sum set. Given A,B ⊆ G, let F ⊆ A × B. The partial sum set of A and B with respect to F ,

denoted as A
F
+ B, is defined as A

F
+ B = {a+ b : (a, b) ∈ F}. If F = A×B, then A

F
+ B = A+B.

We shall later need the following result on sum sets.

Lemma 7 Let p, q ∈ Z and K ∈ R with K ≥ 1. If |A +B| ≤ K|A|1/2|B|1/2 then |p · A+ q · B| ≤
Kd(p,q)|A|1/2|B|1/2 for d(p, q) = 2max{|p|, |q|} + 5.

Our proof, stated below, follows fairly standard arguments from additive combinatorics (see Chap-

ters 2 and 6 of [20]) and is based on the following key results concerning non-empty subsets

A,B ⊆ G. Proofs of these results can be found in [20].

Lemma 8 (Rusza’s covering lemma) There exists a subset X ⊆ B such that |X| ≤ |A+B|/|A|
and B ⊆ A−A+X.

7We shall apply these results to the group of vectors of integers with component-wise addition.
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Lemma 9 (Plünnecke-Rusza inequality) For positive integers p, q and any real valued K̃ ≥ 1,

if |A+B| ≤ K̃|A| then |p ⋆ B − q ⋆ B| ≤ K̃p+q|A|.

Proof: (of Lemma 7.) By Lemma 8, there exists a set X ⊆ q · B with |X| ≤ |A + q · B|/|A|
satisfying q ·B ⊆ A−A+X. This, in turn, implies that p ·A+ q ·B ⊆ p ·A+A−A+X. Therefore,

|p · A+ q ·B| ≤ |p ·A+A−A||X|

≤ |p ·A+A−A| |A+ q ·B|
|A| , (19)

where we have used the trivial inequality |S + T | ≤ |S||T | in the first step. Again, by Lemma 8,

there exists a set Y ⊆ A with |Y | ≤ |A + B|/|B| satisfying A ⊆ B − B + Y , which implies that

A+ q · B ⊆ q ·B +B −B + Y . Proceeding as above, we then have

|A+ q ·B| ≤ |q ·B +B −B||Y |

≤ |q ·B +B −B| |A+B|
|B| . (20)

Combining (19) and (20) gives

|p · A+ q · B| ≤ |p ·A+A−A||q ·B +B −B| |A+B|
|A||B|

≤ |p ·A+A−A||q ·B +B −B|K|A|−1/2|B|−1/2 (21)

≤ |p ⋆ A+A−A||q ⋆ B +B −B|K|A|−1/2|B|−1/2 (22)

where (21) follows from the assumption of the lemma and (22) follows from the trivial inclusions

p · A+A −A ⊆ p ⋆ A+ A−A and q · B + B − B ⊆ q ⋆ B +B −B. Rewriting the assumption of

the lemma as |A + B| ≤ K|A|−1/2|B|1/2|A|, we can apply Lemma 9 with K̃ = K|A|−1/2|B|1/2 to

conclude that

|q ⋆ B +B −B| ≤ K |q|+2|A|−(|q|+2)/2|B|(|q|+2)/2|A|. (23)

Similarly, rewriting the assumption of the lemma as |A + B| ≤ K|A|1/2|B|−1/2|B|, we can apply

Lemma 9, with the roles of A and B switched, to obtain

|p ⋆ A+A−A| ≤ K |p|+2|A|(|p|+2)/2|B|−(|p|+2)/2|B|. (24)

Combining (22) with (23) and (24) gives

|p · A+ q · B| ≤ K |p|+2|A|(|p|+2)/2|B|−(|p|+2)/2K |q|+2|A|−(|q|+2)/2|B|(|q|+2)/2K|A|1/2|B|1/2

≤ K2max{|p|,|q|}+5|A|1/2|B|1/2, (25)

where (25) follows from K|A|−1/2|B|1/2 ≥ 1 and K|A|1/2|B|−1/2 ≥ 1, which in turn follow from

the lemma’s assumption |A + B| ≤ K|A|−1/2|B|1/2|A| = K|A|1/2|B|−1/2|B| together with the

obvious relations |A + B| ≥ |A| and |A + B| ≥ |B|. The lemma is thus established with d(p, q) =

2max{|p|, |q|} + 5.
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Remark 1 A considerably smaller d(p, q) for larger p and q can be obtained by applying the bounds

of [21] to the factors |p ·A+A−A| and |q ·B+B−B| appearing in (21). These bounds are obtained

through a more sophisticated application of Lemma 9, that takes greater advantage of the structure

of sets like p1 ·A+ ...+ pm ·A. The resulting d(p, q) grows logarithmically in |p| and |q|. It is likely

that a direct application of the technique of [21] to p ·A+ q ·B would even further improve d(p, q)

for large p and q.

We shall also make use of the following lemma relating the entropy of a sum of uniformly distributed

independent random variables to a partial sum set involving their supports.

Lemma 10 Let X and Y be independent uniform random variables with support sets A ⊆ G and

B ⊆ G for some abelian group G, with |A| ≥ |B|, such that

H(X + Y ) ≤ (1 + ǫ) log2 |A|

for some ǫ > 0. Then, for any given c > 1 there exists a set F ⊆ A×B such that

|F | ≥ |A||B|c− 1

c
and |A

F
+ B| ≤

(

|A|1/2+cǫ|B|−1/2
)

|A|1/2|B|1/2.

Proof: Define T (s) = {(a, b) ∈ A × B : a + b = s}. Define S, {s : |T (s)| ≥ |B||A|−cǫ} and

F, {(a, b) ∈ A×B : a+ b ∈ S}. From these definitions we have |A
F
+ B| = |S|. In addition,

|A||B| ≥
∑

s∈S

|T (s)|

≥ |S||B||A|−cǫ,

where the last step follows from the definition of S. As a result, |S| ≤ |A|1+cǫ, giving the required

upper bound for |A
F
+ B| = |S|.

To get a lower bound on |F | we start by rewriting it as follows:

|F | =
∑

(x,y)∈A×B

1((x, y) ∈ F )

= |A||B|Pr((X,Y ) ∈ F )

= |A||B|Pr(X + Y ∈ S)

= |A||B| [1− Pr (X + Y ∈ Sc)]

= |A||B|
[

1− Pr
(

|T (X + Y )| < |B||A|−cǫ
)]

. (26)

The probability term can be upper bounded using Markov’s inequality, noting that |B| ≥ |T (s)|
for all s.

Pr
(

|T (X + Y )| < |B||A|−cǫ
)

= Pr

(

log2
|B|

|T (X + Y )| > cǫ log2 |A|
)
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≤
E
[

log2
|B|

|T (X+Y )|

]

cǫ log2 |A|
. (27)

To bound the expectation in (27) we note that for any (x, y) ∈ A×B, Pr(X = x, Y = y) = 1
|A||B| ,

and expand I(X + Y ;Y ) in two different ways

I(X + Y ;Y ) = H(X + Y )−H(X + Y |Y ) = H(X + Y )−H(X) = H(X + Y )− log2 |A|
≤ ǫ log2 |A|

I(X + Y ;Y ) = H(Y )−H(Y |X + Y ) = log2 |B| − E
[

− log2 pY |X+Y (Y |X + Y )
]

= log2 |B| − E

[

− log2
pY,X+Y (Y,X + Y )

pX+Y (X + Y )

]

= log2 |B| − E

[

− log2
1

|A||B|
|A||B|

|T (X + Y )|

]

= E

[

log2
|B|

|T (X + Y )|

]

to obtain

E

[

log2
|B|

|T (X + Y )|

]

≤ ǫ log2 |A|. (28)

From (26), (27) and (28) we obtain:

|F | ≥ |A||B|
(

1− 1

c

)

.

Finally, we shall also rely on the following important theorem from additive combinatorics, as stated

in [20], relating partial sum sets to full sum sets.

Theorem 3 (Balog-Szemerédi-Gowers theorem) Let A ⊆ G and B ⊆ G for some abelian

group G and let F ⊆ A×B be such that

|F | ≥ |A||B|/K and |A
F
+ B| ≤ K ′|A|1/2|B|1/2

for some K ≥ 1 and K ′ > 0. Then there exists A′ ⊆ A,B′ ⊆ B such that

|A′| ≥ |A|
4
√
2K

|B′| ≥ |B|
4K

|A′ +B′| ≤ 212K5(K ′)3|A|1/2|B|1/2.

Theorem 3 is proved in Chapter 6 of [20].
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Figure 2: A three-user Gaussian IFC with channel matrix H̃ .

4.3 Main lemma

In this subsection, we state and prove the main lemma at the core of our proof of Theorem 2.

Lemma 11 Let p, q ∈ Z, p, q 6= 0, and

H̃ =
[

h̃ij
]

=







1 0 0

1 p 0

1 q 1






,

with the corresponding GIFC depicted in Figure 2. Then DoF (H̃) ≤ 3
2 − ǫ(p, q), with ǫ(p, q) > 0.

In particular, this holds for

ǫ(p, q) =
1

12d(p, q) + 2
,

where d(p, q) is as in Lemma 7.

Proof: We start by extending the definition of degrees-of-freedom to deterministic interference

channels. Consider a K-user deterministic interference channel with input and output alphabets

{Xi}Ki=1,{Yi}Ki=1, defined by

yi(t) = vi(x1(t), . . . , xK(t)) , i = 1, . . . ,K; t = 1, 2, . . . ,

where for each i, xi(t) ∈ Xi must satisfy an average power constraint
∑n

t=1 x
2
i (t) ≤ nP , and

vi : X1 × · · · ×XK → Yi is a deterministic function. Let C(P ) be the capacity region of the channel

with power constraint P . We define the degrees-of-freedom of the deterministic channel by

DoF, lim sup
P→∞

maxR∈C(P ) 1
tR

(1/2) log2 P
.

Due to Lemma 4, the degrees-of-freedom of the GIFC with channel matrix H̃ is upper bounded by

the degrees-of-freedom of the deterministic channel

yi(t) =
3
∑

j=1

h̃jixj(t) , i = 1, 2, 3, (29)
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where xi(t), yi(t) ∈ Z, and where the channel inputs are subject to the average power constraint
1
n

∑n
t=1 x

2
i (t) ≤ P , for i = 1, 2, 3. We will prove by contradiction that the degrees-of-freedom of

this deterministic channel is strictly smaller than 3/2. Therefore, to get a contradiction, we assume

that as P goes to infinity, there are achievable rates (R1(P ), R2(P ), R3(P )) satisfying

lim sup
P→∞

R1(P ) +R2(P ) +R3(P )

(1/2) log2 P
=

3

2
.

This implies that there exists an increasing sequence of power constraints {Pm}∞m=1 with limm→∞ Pm

= ∞, such that

lim
m→∞

R1(Pm) +R2(Pm) +R3(Pm)

(1/2) log2 Pm
=

3

2
. (30)

For a power constraint Pm, consider a set of codebooks {X1,n,m,X2,n,m,X3,n,m} of block-length

n with rates {R1,m, R2,m, R3,m} in the deterministic channel (29), and with decoding functions

{g1,n,m, g2,n,m, g3,n,m} that achieve average error probabilities {Pe,1,n,m, Pe,2,n,m, Pe,3,n,m}. We as-

sume that {R1,m, R2,m, R3,m} satisfy (30) as m → ∞ and that {Pe,1,n,m, Pe,2,n,m, Pe,3,n,m} go to 0 as

n → ∞ for fixed m. In addition, let xn
i , i = 1, 2, 3, be the independent random vectors induced by

the codebooks resulting from the uniform distribution of the messages. It follows that Xi,n,m ∈ Zn

is the support set of xn
i , i = 1, 2, 3. Due to Lemma 6 we can assume without loss of generality that

the codebooks do not have repeated codewords. This implies that each xn
i is chosen uniformly in

Xi,n,m, or equivalently that Pr(xn
i ) =

1
|Xi,n,m| , for x

n
i ∈ Xi,n,m, i = 1, 2, 3.

Using Fano’s inequality we write (where, for simplicity, we suppress the dependence on m of the

variables x1,x2, etc.).

n(R1,m +R2,m +R3,m − δn) ≤
3
∑

i=1

I(xn
i ;y

n
i )

=

3
∑

i=1

[

H(yn
i )−H(yn

i |xn
i )
]

= H(xn
1 + xn

2 + xn
3 )−H(xn

2 + xn
3 ) +H(pxn

2 + qxn
3 )

−H(qxn
3 ) +H(xn

3 )

= H(xn
1 + xn

2 + xn
3 )−H(xn

2 + xn
3 ) +H(pxn

2 + qxn
3 ). (31)

To handle the first term of (31), we use the following lemma, which follows from exercise 8.7 of [18]

and Jensen’s inequality.

Lemma 12 Let Xn = (X1, . . . ,Xn) be a discrete random vector on Zn. Then,

H(Xn) ≤ n

2
log2

[

2πe

(

1

n

n
∑

i=1

V ar(Xi) +
1

12

)]

,

where V ar(Xi) = E(X2
i )−E2(Xi) is the variance of Xi. Therefore, using the independence among

the input signals and the fact that
∑n

t=1 V ar(xi,t) ≤ E‖xn
i ‖22 ≤ nPm we obtain

H(xn
1 + xn

2 + xn
3 ) ≤

n

2
log

[

2πe

(

3Pm +
1

12

)]

. (32)
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The remaining two terms in (31) will be bounded in two different ways. First we use the following

simple bounds on H(aX + bY ), valid for any a, b 6= 0 and independent random variables X and Y :

H(aX + bY ) ≤ H(aX + bY, aX) = H(aX) +H(aX + bY |aX) = H(X) +H(Y )

H(aX + bY ) ≥ H(aX + bY |bY ) = H(aX) = H(X). (33)

Using these bounds we get

H(pxn
2 + qxn

3 )−H(xn
2 + xn

3 ) ≤ H(xn
2 ) +H(xn

3 )−max
{

H(xn
2 );H(xn

3 )
}

= min
{

H(xn
2 );H(xn

3 )
}

= log2 min{|X2,n,m|; |X3,n,m|}. (34)

We define fmin(n,m) such that log2min{|X2,n,m|; |X3,n,m|} = (14 + fmin(n,m))n log2 Pm. Note that

by the assumed dependence of Xi,n,m on Ri, limn→∞ fmin(n,m) exists for each m. Then, using

(30), (31), (32), and (34), we have

3

2
= lim

m→∞

limn→∞(R1,m +R2,m +R3,m − δn)

(1/2) log2 Pm

≤ 1 +
1

2
+ lim inf

m→∞

limn→∞ fmin(n,m) log2 Pm

(1/2) log2 Pm

which implies

lim inf
m→∞

lim
n→∞

fmin(n,m) ≥ 0. (35)

As a second option, we use Lemma 12 to get the upper bound

H(pxn
2 + qxn

3 ) ≤
n

2
log2

[

2πe

(

(p2 + q2)Pm +
1

12

)]

(36)

which we use to get

H(pxn
2 + qxn

3 )−H(xn
2 + xn

3 ) ≤ n

2
log2

[

2πe

(

(p2 + q2)Pm +
1

12

)]

− log2max
{

|X2,n,m|; |X3,n,m|
}

.

(37)

We define fmax(n,m) such that log2 max{|X2,n,m|; |X3,n,m|} = (14 + fmax(n,m))n log2 Pm. Note, as

above, that limn→∞ fmax(n,m) exists for each m. Then, using (30), (31), (32), and (37), we have

3

2
= lim

m→∞

limn→∞(R1,m +R2,m +R3,m − δn)

(1/2) log2 Pm

≤ 1 + 1− 1

2
− lim sup

m→∞

limn→∞ fmax(n,m) log2 Pm

(1/2) log2 Pm

which implies

lim sup
m→∞

lim
n→∞

fmax(n,m) ≤ 0. (38)
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Since fmax(n,m) ≥ fmin(n,m), (35) and (38) imply

lim
m→∞

lim
n→∞

fmax(n,m) = lim
m→∞

lim
n→∞

fmin(n,m) = 0 (39)

and, as a result, for any ξ > 0, there exist m0(ξ) and n0(ξ,m) such that, |fmin(n,m)| ≤ ξ and

|fmax(n,m)| ≤ ξ for all m ≥ m0(ξ) and n ≥ n0(ξ,m). Therefore, for any ξ > 0, m ≥ m0(ξ) and

n ≥ n0(ξ,m) we have

(

1

4
− ξ

)

n log2 Pm ≤ log2 (min{|X2,n,m|; |X3,n,m|}) ≤

≤ log2 (max{|X2,n,m|; |X3,n,m|}) ≤
(

1

4
+ ξ

)

n log2 Pm. (40)

We define g(n,m) ≥ 0 such that H(xn
2 + xn

3 ) = (1 + g(n,m)) log2(max{|X2,n,m|; |X3,n,m|}). Then,

using (30), (31), (36), and (39) we have

3

2
= lim

m→∞

limn→∞(R1,m +R2,m +R3,m − δn)

(1/2) log2 Pm

≤ 1 + 1− 1

2
− 0− lim sup

m→∞

lim supn→∞ g(n,m)((1/4) + fmax(n,m)) log2 Pm

(1/2) log2 Pm
(41)

which, together with (39) and the condition g(n,m) ≥ 0, imply

lim
m→∞

lim sup
n→∞

g(n,m) = 0 (42)

and, as a result, for any ǫ > 0, there exist m0(ǫ) and n0(ǫ,m) such that, 0 ≤ g(n,m) ≤ ǫ for all

m ≥ m0(ǫ) and n ≥ n0(ǫ,m).

Therefore, for any ǫ > 0, m ≥ m0(ǫ) and n ≥ n0(ǫ,m) we have

H(xn
2 + xn

3 ) ≤ (1 + ǫ) log2 max{|X2,n,m|, |X3,n,m|}.

For any given c > 1, Lemma 10 guarantees the existence of Fc,n,m ⊆ X2,n,m × X3,n,m such that

|Fc,n,m| ≥ |X2,n,m||X3,n,m|
K

and

∣

∣

∣

∣

X2,n,m

Fc,n,m

+ X3,n,m

∣

∣

∣

∣

≤ K ′
n,m|X2,n,m|1/2|X3,n,m|1/2

with K = c/(c − 1) and K ′
n,m = (max{|X2,n,m|; |X3,n,m|})1/2+cǫ(min{|X2,n,m|; |X3,n,m|})−1/2. Using

Theorem 3 with Fc,n,m, it follows that there exist X ′
2,n,m ⊆ X2,n,m, and X ′

3,n,m ⊆ X3,n,m such that

|X ′
2,n,m| ≥ |X2,n,m|

4
√
2K

(43)

|X ′
3,n,m| ≥ |X3,n,m|

4
√
2K

(44)

|X ′
2,n,m +X ′

3,n,m| ≤ 212K5(K ′
n,m)3|X2,n,m|1/2|X3,n,m|1/2. (45)

From (43) and (44) and Lemma 5 it follows that the set of codebooks {X1,n,m,X ′
2,n,m,X ′

3,n,m}
has rates (R1,m, R2,m − 1

n log2(4
√
2K), R3,m − 1

n log2(4
√
2K)), and using the decoding functions
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{g1,n,m, g2,n,m, g3,n,m} the average error probabilities are no larger than {Pe,1,n,m ∗ 32K2, Pe,2,n,m ∗
32K2, Pe,3,n,m ∗ 32K2}. Let x̃n

1 , x̃
n
2 , x̃

n
3 be the random vectors induced by the codebooks {X1,n,m,

X ′
2,n,m, X ′

3,n,m}. Using Fano’s inequality and absorbing in δ′n all the constants that vanish with

n → ∞ we write:

n(R1,m +R2,m +R3,m − δ′n) ≤
3
∑

i=1

I(x̃n
i ;y

n
i )

=

3
∑

i=1

[

H(yn
i )−H(yn

i |x̃n
i )
]

=H(x̃n
1 + x̃n

2 + x̃n
3 )−H(x̃n

2 + x̃n
3 ) +H(px̃n

2 + qx̃n
3 )−H(qx̃n

3 ) +H(x̃n
3 )

=H(x̃n
1 + x̃n

2 + x̃n
3 )−H(x̃n

2 + x̃n
3 ) +H(px̃n

2 + qx̃n
3 ). (46)

To bound the first term of (46), as before, we use Lemma 12, obtaining

H(x̃n
1 + x̃n

2 + x̃n
3 ) ≤

n

2
log

[

2πe

(

3Pm +
1

12

)]

. (47)

To bound the remaining two terms of (46) we use techniques from additive combinatorics to upper

bound the cardinality of the support set of (px̃n
2 + qx̃n

3 ) in terms of the cardinality of the support

set of (x̃n
2 + x̃n

3 ).

From Lemma 7, (43), (44) and (45) we have

|p · X ′
2,n,m + q · X ′

3,n,m| ≤ |X ′
2,n,m + X ′

3,n,m|d(p,q)|X ′
2,n,m|[1−d(p,q)]/2|X ′

3,n,m|[1−d(p,q)]/2

≤
{

212K5(K ′
n,m)3|X2,n,m|1/2|X3,n,m|1/2

}d(p,q)

·
( |X2,n,m|

4
√
2K

)[1−d(p,q)]/2( |X3,n,m|
4
√
2K

)[1−d(p,q)]/2

(48)

which together with the bound H(X) ≤ log2 |X | results in

H(px̃n
2 + qx̃n

3 ) ≤ 1

2
log2 |X2,n,m|+ 1

2
log2 |X3,n,m|+ 3d(p, q) log2 K

′
n,m + K̃c,p,q

=
1

2
log2 |X2,n,m|+ 1

2
log2 |X3,n,m|+ 3

2
d(p, q) (1 + 2cǫ) log2 (max{|X2,n,m|; |X3,n,m|})

−3

2
d(p, q) log2 (min{|X2,n,m|; |X3,n,m|}) + K̃c,p,q (49)

where K̃c,p,q is some constant independent of n and m.

On the other hand using (43) and (44) we have

H(x̃n
2 + x̃n

3 ) ≥ max{H(x̃n
2 );H(x̃n

3 )}
= log2

(

max{|X ′
2,n,m|; |X ′

3,n,m|}
)

≥ log2 (max{|X2,n,m|; |X3,n,m|}) − log2

(

4
√
2K
)

. (50)
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Therefore

H(px̃n
2 + qx̃n

3 )−H(x̃n
2 + x̃n

3 ) ≤ 1

2
log2 (min{|X2,n,m|; |X3,n,m|})− 1

2
log2 (max{|X2,n,m|; |X3,n,m|})

+
3

2
d(p, q) (1 + 2cǫ) log2 (max{|X2,n,m|; |X3,n,m|})

−3

2
d(p, q) log2 (min{|X2,n,m|; |X3,n,m|}) + K̃ ′

c,p,q

≤ 0 +
3

2
d(p, q) (1 + 2cǫ) log2 (max{|X2,n,m|; |X3,n,m|})

−3

2
d(p, q) log2 (min{|X2,n,m|; |X3,n,m|}) + K̃ ′

c,p,q (51)

where K̃ ′
c,p,q is some other constant independent of n and m. Using the bounds in (40) we obtain:

H(px̃n
2 + qx̃n

3 )−H(x̃n
2 + x̃n

3 ) ≤
[

3ξd(p, q) + 3cǫd(p, q)

(

1

4
+ ξ

)]

n log2 Pm + K̃ ′
c,p,q, (52)

which, together with (46) and (47), imply

R1,m +R2,m +R3,m

(1/2) log2(Pm)
≤

1
2 log2

[

2πe
(

3Pm + 1
12

)]

+
[

3ξd(p, q) + 3cǫd(p, q)
(

1
4 + ξ

)]

log2 Pm +
K̃ ′

c,p,q

n + δ′n
(1/2) log2 Pm

(53)

which is strictly smaller than (3/2) for small enough ξ and ǫ, and large enough m and n. This

contradicts (30).

We can refine the above analysis to find the smallest ǫ(p, q) such that assuming that DoF (H̃) =

3/2 − ǫ(p, q) does not lead to a contradiction. The expression for ǫ(p, q) in the statement of the

lemma is obtained by avoiding bounds on H(xn
2 + xn

3 ) until the last step in the analysis. For

example, Lemma 10 is applied with

H(xn
2 + xn

3 ) =

(

H(xn
2 + xn

3 )

log2(max{|X2,n,m|; |X3,n,m|})

)

log2(max{|X2,n,m|; |X3,n,m|}).

Note that H(xn
2 +xn

3 ) 6= H(x̃n
2 + x̃n

3 ) and we still rely on the lower bound (50) for the latter entropy.

The entropy H(xn
2 + xn

3 ) and cardinalities in the final expression are bounded by assuming that

DoF (H̃) = 3/2−ǫ(p, q), which can easily be shown, following steps similar to those leading to (40),

to imply
H(xn

2 + xn
3 )

n log2 P
≤
(

1

4
+

ǫ(p, q)

2

)

+ o(1),

and
(

1

4
− ǫ(p, q)

2

)

+ o(1) ≤ log2(min{|X2,n,m|; |X3,n,m|})
n log2 P

≤

log2(max{|X2,n,m|; |X3,n,m|})
n log2 P

≤
(

1

4
+

ǫ(p, q)

2

)

+ o(1).

The details are omitted.
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4.4 Proof of Theorem 2

By assumption all the entries of H are non-zero and rational, and therefore, there exists a diagonal

matrix Dr with positive diagonal entries such that H̄,HDr has non-zero integer entries. From

Lemma 1 it follows that

DoF (H) = DoF (H̄). (54)

Consider the channel formed by the transmitters and receivers of users i, j and k. Let H̄i,j,k ∈ Z3×3

be the principal minor (matrix) of H̄ corresponding to the (i, j, k)-th rows and columns. Due to

the independence of the signals of the different users it follows that

max
(R1,...,RK)∈C(H̄,1,P1)

Ri +Rj +Rk = max
(Ri,Rj ,Rk)∈C(H̄i,j,k ,1,P1)

Ri +Rj +Rk, (55)

i.e. the other users cannot help users i, j, and k to improve their rates. In addition, since interference

cannot help a given receiver in decoding the signal of interest it follows that we can set some of the

cross-gains in H̄i,j,k to zero without reducing the maximum achievable sum rate. More specifically,

defining Ĥi,j,k = [ĥi,j,k(m,n)] by ĥi,j,k(m,n),h̄i,j,k(m,n) · 1(m ≥ n) we have

max
(Ri,Rj ,Rk)∈C(H̄i,j,k ,1,P1)

Ri +Rj +Rk ≤ max
(Ri,Rj ,Rk)∈C(Ĥi,j,k ,1,P1)

Ri +Rj +Rk. (56)

Furthermore, it is easy to see8 that there exist diagonal matrices D̂t, D̂r with positive diagonal

entries such that D̂tĤi,j,kD̂r = H̃i,j,k where

H̃i,j,k =







1 0 0

1 pi,j,k 0

1 qi,j,k 1







for some pi,j,k, qi,j,k ∈ Z, pi,j,k, qi,j,k 6= 0. Using (56), Lemma 1 and Lemma 11 we have

DoF (H̄i,j,k) ≤ DoF (Ĥi,j,k) = DoF (H̃i,j,k) ≤
3

2
− ǫ(pi,j,k, qi,j,k) (57)

where ǫ(pi,j,k, qi,j,k) > 0.

Considering every possible subset of users {i, j, k} ⊆ {1, . . . ,K} and adding the corresponding sum

rates, the rate of each user appears
(K−1

2

)

times in the sum. Therefore, we have

(

K − 1

2

)

DoF (H)
(a)
=

(

K − 1

2

)

DoF (H̄)

= lim sup
P→∞

max(R1,...,RK)∈C(H̄,1,P1)

(K−1
2

)
∑K

i=1Ri

1
2 log2 P

≤ lim sup
P→∞

∑

{i,j,k}⊆{1,...,K}max(R1,...,RK)∈C(H̄,1,P1) (Ri +Rj +Rk)
1
2 log2 P

8Letting Ĥi,j,k = [a, 0, 0; b, c, 0; d, e, f ] in Matlab matrix notation, we can choose D̂t = [bd, 0, 0; 0, ad, 0; 0, 0, ab] and

D̂r = [1/(abd), 0, 0; 0, 1/a, 0; 0, 0, 1/(abf)].
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Figure 3: Three-user GIFC of the example in Section 5.

(b)
= lim sup

P→∞

∑

{i,j,k}⊆{1,...,K}max(Ri,Rj ,Rk)∈C(H̄i,j,k ,1,P1) (Ri +Rj +Rk)

1
2 log2 P

≤
∑

{i,j,k}⊆{1,...,K}

DoF (H̄i,j,k)

(c)

≤
(

K

3

)(

3

2
− δ

)

, (58)

where (a) is due to (54), (b) follows from (55), (c) is obtained from (57), and where we defined

δ,min{i,j,k}⊆{1,...,K} ǫ(pi,j,k, qi,j,k) > 0. We finally obtain

DoF (H) ≤ K

2
− K

3
δ <

K

2
, (59)

establishing the theorem.

5 A 3-user rational GIFC example

In this section, we will derive lower and upper bounds on the degrees-of-freedom of the 3-user GIFC

with channel matrix

H =







1 0 0

1 2 0

1 1 1







represented in Figure 3. This channel is a special case of the one considered in Lemma 11, with

p = 2 and q = 1. From this lemma, we obtain:

DoF (H) ≤ 3

2
− 1

12d(2, 1) + 2
(60)

where d(p, q) = 2max{|p|, |q|}+5 was obtained in Lemma 7. For the special case of q = 1 the result

of Lemma 7 can be easily strengthened to get d(p, 1) = 2|p|+3. Evaluating (60) with d(2, 1) = 7 we

obtain DoF (H) ≤ 1.4884. It should be possible to improve this bound in a number of ways, such as

by improving on d(2, 1) = 7, and possibly by improving on the power 3 in the term (K ′)3 appearing

in Theorem 3. Another possibility might be to forgo this theorem for a different approach, such as

one based on Exercise 2.5.4 of [20].
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To get a lower bound on DoF (H), we will describe a communication scheme that aims to achieve

good interference alignment at receiver 1 by aligning the interfering signals of transmitters 2 and 3,

while achieving good separation at receiver 2 between the signal of transmitter 2 and the interference

of transmitter 3.

As was done in [10], we design the communication scheme for a deterministic interference channel

and later show how to extend the scheme to the Gaussian channel. We derive the deterministic

channel from the Gaussian IFC by removing the Gaussian noise and constraining the inputs to be

integers. Let A1 = {0, 1}, A2 = {0, 2, 4}, A3 = {0, 2}, and Q = 8. We communicate information

independently over L levels, without coding over time. The signal of user i at time t is given by:

xi(t) =

L
∑

ℓ=1

mi,ℓ(t)Q
ℓ−1, (61)

where mi,ℓ(t) ∈ Ai is the message of user i in level ℓ at time t.

Since A1 +A2 +A3 = {0, 1, 2, 3, 4, 5, 6, 7}, the signal at receiver 1 can be written as

y1(t) =

3
∑

i=1

xi(t) =

L
∑

ℓ=1

w1,ℓ(t)Q
ℓ−1

with w1,ℓ(t) = m1,ℓ(t) + m2,ℓ(t) + m3,ℓ(t). Therefore, by computing the Q-ary decomposition of

y1(t) we can recover the sums m1,ℓ(t) +m2,ℓ(t) +m3,ℓ(t) at each of the L levels. In addition, since

A2+A3 = {0, 2, 4, 6} we have m1,ℓ(t) = 1(w1,ℓ(t) ∈ {1, 3, 5, 7}), so we can directly determine m1,ℓ(t)

from w1,ℓ(t).

Similarly, at receiver 2 we compute

y2(t)

2
= x2(t) +

1

2
x3(t) =

L
∑

ℓ=1

w2,ℓ(t)Q
ℓ−1

with w2,ℓ(t) = m2,ℓ(t) + (1/2)m3,ℓ(t) ∈ {0, 1, 2, 3, 4, 5}, from which we can compute m2,ℓ(t) =

w2,ℓ(t)− [w2,ℓ(t) mod 2].

Finally, receiver 3 can directly recover m3,ℓ(t) at all levels from the received signal y3(t) = x3(t).

To compute the achievable degrees-of-freedom of this scheme we note that since |xi(t)| < QL the

transmission power at each transmitter is smaller than Q2L. On the other hand the rate of users

1 and 3 is L log2 2 while the rate of user 2 is L log2 3. Therefore, we obtain for the deterministic

channel

DoF ≥ 2L log2 2 + L log2 3
2L
2 log2 8

=
2 + log2 3

3
≈ 1.19499.

We now informally argue that the same degrees-of-freedom can be achieved in the Gaussian channel.

We essentially use the same multi-level coding scheme, but we now encode the signals of each level

over long blocks of time. The lower levels may be severely affected by noise, but as the level ℓ
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increases, the influence of the noise becomes smaller, ultimately being insignificant. As a result,

the amount of redundancy that needs to be added to the signal of level ℓ to ensure low probability

of decoding error goes to 0 as ℓ grows to infinity. It follows that for ℓ large enough, the achievable

rates in the Gaussian channel at level ℓ approach the achievable rates in the deterministic channel,

and since the rates of the lower levels do not affect the degrees-of-freedom, we conclude that

DoF (H) ≥ 2+log2 3
3 (see [10] for a similar argument).

In summary, using the lower and upper bounds that we derived we have,

1.19499 ≤ DoF (H) ≤ 1.4884.

Remark 2 The achievable scheme that we described is simple to analyze because there are no

“carry overs” across the different levels, and the signals and interference are “orthogonal” in the

sense that there is no need to code over time to ensure reliable decoding in the deterministic channel.

In choosing the sets A1, A2 and A3 we tried to obtain small |A2 + A3| to align the interference at

receiver 1 and simultaneously obtain large |2A2 +A3| to achieve good signal-interference separation

at receiver 2. With these design guidelines, one could optimize the sets A1, A2 and A3 (with possibly

larger Q) in order to improve the achievable degrees-of-freedom. In addition, Han-Kobayashi-type

schemes [2] at each level where part of the interference is decoded and subtracted may result in

better performance than purely orthogonal schemes.

6 Conclusion

We have shown that the degrees-of-freedom of K > 2 user, real, scalar GIFCs is sensitive to whether

the channel gains have rational or irrational values, and it is, in fact, discontinuous at all fully con-

nected, rational gain matrices (up to the invariance property of Lemma 1). Specifically, Theorem 1

shows that certain fully connected real, scalar GIFCs with irrational, algebraic coefficients have

degrees-of-freedom exactly equal to the known upper bound of K/2, the first such examples for

real, scalar GIFCs. Theorem 2, on the other hand, shows that if all coefficients are non-zero ratio-

nals, the degrees-of-freedom is strictly bounded away from K/2, for K > 2. These theorems are

established by appealing to major results in mathematics on the inapproximability of irrational,

algebraic numbers by rational numbers, in the case of Theorem 1, and on the combinatorics of

additive sets, in the case of Theorem 2. In the latter case, previously used information theoretic

converse techniques, which are not sensitive to the rationality of channel coefficients, do not suffice.

We believe these results may have some implications for real GIFCs under channel parameter un-

certainty, since in this case, channel coefficients with irrational and rational coefficients would have

to be dealt with simultaneously. Additionally, in practical systems, computations for encoding and

decoding are ultimately restricted to finite precision, and hence rational numbers, suggesting that

additive combinatorics based bounds on achievable rates may have practical relevance.

Throughout this paper, we have been concerned with real, scalar GIFCs. Theorem 1 can be
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readily extended to the complex and vector cases, revealing an additional class of K/2 degrees-of-

freedom vector GIFCs, complementing those already known [9]. The extension of Theorem 2 to

complex and vector GIFCs seems less trivial. For instance, the example of aK/2 degrees-of-freedom

achieving K-user two-dimensional vector GIFC in [9] actually has integer coefficients, though they

are a very special choice. Any extension of Theorem 2 would have to avoid such special cases.

More significantly, our crucial Lemma 11 can be shown, using the interference alignment technique

of [9], to not hold in the complex or vector cases. Nevertheless, we conjecture that for any fixed

(complex) vector dimension, limitations on the degrees-of-freedom similar to Theorem 2 do exist

for a sufficiently large number of users K. As noted, establishing such a result would require

analyzing few-user GIFCs that are more complicated than the 3-user channel of Lemma 11. It is

likely that tools from additive combinatorics will still prove useful, though they would need to be

applied differently from the proof of Lemma 11. The topic of characterizing the degrees-of-freedom

of rational vector GIFCs and scalar, complex GIFCs having channel gains with rational real and

imaginary parts is left for future work.
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