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Abstract— This paper studies the question of how well a signal on asymptotic relationship between the collection sizethe

can be reprsented by a sparse linear combination of referec dimensiom of the signal, the sparsity of the representation,
signals from an overcomplete dictionary. When the dictionay and the distortionD of the representation.

size is exponential in the dimension of signal, then the exac .
characterization of the optimal distortion is given as a furction of More formally, letC = {(1),#(2),...,¢(M)} be a

the dictionary size exponent and the number of reference sigals ~ collection (dictionary) ofM vectors inR". For each vector
for the linear representation. Roughly speaking, every sigal is y € R", we define its best-linear representatiofy;, from the
sparse if the dictionary size is exponentially large, no maer how  dictionaryC as

small the exponent is. Furthermore, an iterative method sirar

to matching pursuit that successively finds the best referese Vi = x1¢p(m1) + zap(ma) + - - - + xpd(my),
signal at each stage gives asymptotically optimal represtations.
This method is essentially equivalent to successive refinemt for where z1,...,2x € R and mq,...,my € [1 : M| =
multiple descriptions and provides a simple alternative poof of {12 ... M} are chosen to minimize the squared error
the successive refinability of white Gaussian sources. )
di(y,C) = lly — (x19(m1) + z2p(mz) + - - + zrp(m))[|”.
I. INTRODUCTION AND MAIN RESULTS
J— n g 1
Suppose one wishes to represent a signal as a linear C(')'llﬁ-re the norm of a vectaz = (z1,...,2:) € R™ is defined

L . . = (S 22)1/2
bination of reference signals. If the collectiénof reference as|lal] = (35— 2)"/".

signals (calleddictionary) is rich (i.e., the sizeM — |C| of _V\_/e further define the worst-case distortidf)(C) of the
dictionary is much larger than the dimensiorof the signal) dictionaryC as

or if one is allowed to take an arbitrarily complex linear di(C):= sup di(y,C),

combination (i.e., the numbér of reference signals forming yilyll2<1

the linear combination is very large), then one can expet thyhere the supremum is taken over alivectorsy in the
the linear representation approximates the original $igita  (cjosed) unit sphere.

very little distortion. As a trivial example, i€ containsn Note thatd;(C) < 1 for all C and alln, with d;(C) = 1
linearly independent reference signals of dimentignthen attained by a singleton dictionay = {0}. Conversely, if
every signal can be represented faithfully as a linear coebi y ~ 4, then d:(C) = 1 for any dictionaryC of size M.
tion of thosen reference signals. On the other extreme pointjence, we consider the cadé > n only, that is, the case in
if C includes all possible signals, then the original signal cagnich the dictionary isovercomplete

be represented as (a linear combination of) itself withayt a  simjlarly, we define the average-case distord@fC) of the
distortion. More generally, Shannon’s rate distortioroityg1] gictionaryC as

suggests that if the dictionary siZe = 2" is exponential _

in n with exponentR > 0, then the best reference signal (as dr(C) = E(di(Y,C)),

a singleton) achives the distortiall(R) given as a function

of R. ) ) , ) Y uniformly drawn from the unit sphergy € R™ : ||y|| < 1}.
Several interesting questions arise: Now we are ready to state our main results. The first result
1) What will happen if the linear combination is sparsgoncerns the existence of an asymptotically good dictipnar

(k < n)? How well can one represent a signal as a Theorem 1:Supposel = M,, satisfies

(sparse) linear combination of reference signals? low M
2) How should one choose the dictionary of reference lim inf —2

signals under the size limitation? Is there a dictionary nTee o n

that provides a good representation for all or modthen there exists a sequence of dictionadigsof respective

where the expectation is taken with respect to a random lsigna

> 0.

signals? sizesM,, such that
3) How can one find the best linear representation given ) , 2klog M
the dictionary? Is there a low-complexity algorithm with hfgsogp log di(Cp) + —>—| = 0. 1)

optimal or near-optimal performance? |
These questions arise in many applications and naturalrl]y
have been studied in several different contexts [2]. Theexuir ~ An interesting implication of Theorem 1 is that if we
paper provides partial answers to these questions by fogusthoose a good dictionary of exponentially large size, ndenat

particular, ifk — co asn — oo, thend;(C,,) — 0.
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how small the exponent is, every signal is essentially gpatbere are two caveats. First, the dictionary size here i®-exp
(say, k = loglogn) with respect to that dictionary in thenential in the signal dimension. Second, the dictionaryuho
asymptotics. represent all signals with singletons uniformly well.

The proof of Theorem 1 will be given in Section Il. In a broad context, these results are intimately related to
The major ingredients of the proof include Wyner's uniforntecovery of sparse signals via linear measurements. Indeed,
sphere covering lemma [3] and its application in successitlee sparse linear representation can be expressed as
linear representation. Simply put, given a good dictiorfary
singleton representationg & 1), we iteratively represent the y=®x+z, @
signal, the error, the error of the error, etc. by scalingsti®e where ® is ann x M matrix with columns inC, x € RM
dictionary. is a sparse vector wittk nonzero elements;, ..., zx, and

This representation method is intimately related to succes is the representation error. The award-winning papers by
sive refinement coding [4]. Indeed, Theorem 1, specialived Candes and Tao [8] and Donoho [9] showed that a sparse
k =1, is essentially equivalent to Shannon’s rate distortiofignalx can be reconstructesikactlyand efficientlyfrom the
theorem for white Gaussian sources [1]. At the same time, thﬁgasuremeny given by the underdetermined system (2) of
representation method gives a very simple proof of suceessjinear equations (when the measurement ngise0), opening
refinability [4] and additive successive refinability [S]white  up the exciting field of compressed sensing. There have been
Gaussian sources under the mean squared error distortionseveral follow-up discussions that connect compressesirgen

It turns out that the asymptotic distortion in Theorem Jland information theory; we refer the reader to [10], [11R]j1
which is achieved by the simple successive representatiad], [14], [15], [16] for various aspects of the connection
method, is in fact optimal. The following result, essetyial between two fields.
due to Fletcheet al. [6], provides the performance bound for While it is quite unfair to summarize in a single sentence a
the optimal dictionary. variety of problems studied by compressed sensing and more

Theorem 2 ([6, Theorem 2])For any sequence of dictio- generally sparse signal recovery, the central focus thesei
nariesC,, of size M = M,, and any nondecreasing sequenc® recover thetrue sparse signak from the measurement

k= kny, y. In particular, when the measurement process is corrupted
5 log (M by noise, the main goal becomes mapping a noise-corrupted
lim inf | log dj,(Cp) + Og(k) +e,| >0 measurement outpuy to its corresponding cause in an
n—00 n—k efficient manner.

The sparse signal representation problem is in a sense
dual to the sparse signal recovery problem (just like source
coding is dual to channel coding). Here the focus is on
y and its representation (approximation). There is tne
representation, and a good dictionary should have several
In particular, if & is bounded, then for any sequence oflternative representations of similar distortions. As\tiened

where

L
n—k n-—=k

¢ = log log %

dictionariesC,, of size M = M,,, above, the problem of general—not necessarily linear—sspar
representation (also called the sparse approximationgmjb
lim inf [1Og di(Cn) + M} > 0. has a history of longer than a century [17], [18] and has been
oo n—k studied in several different contexts. Along with the piatal

development in compressed sensing, the recent focus has bee

Note that if M = 2" for someR > 0 andk is a constant, =" lorith 4 their th ical o5 doe
then Theorem 2 implies that the average distortion is |0W8Ff|0|ent algorithms and their theoretical properties;,

bounded by example, [19_], [20], [21_]. . .

In comparison, studies in [6], [22], and this paper focus
on finding asymptotically optimal dictionaries, regardlesf
computational complexié,and study the tradeoff among the

. ) ) . sparsity of the representation, the size of the dictionang
(Therefore so is the worst-case distortion.) Thus the disto o fidelity of the approximation. For example, Fletcrer

bound in ICL) T_heoremlis tight when the dictionary size growsj [6] found a lower bound on the approximation error
exponentially inn. using rate distortion theory for Gaussian sources with mean
The asymptotic optimality of successive representatiq@uared distortion. A similar lower bound is obtained by
method provides a theoretical justification for matching-puAkcakaya and Tarokh [22] based on careful calculation of
suit [7] or similar greedy algorithms in signal processing,ojymes of spherical caps. Thus, the main contribution of
This conclusion is especially appealing since these iteratthis paper is twofold. First, our Theorem 1 shows that these
methods have linear complexity in dictionary si2é (or |ower bounds (in particular the one in [6, Theorem 2]) are

even lower complexity if the dictionary has further strues), tight in asymptotic when the dictionary size is exponential
while finding the optimal representation in a single shogrev

when tractable, can have much higher complexity. However!Fortuitously, the associated representation method ishyhigfficient.

2klog M
n

lim inf [log di(Cn) +

n—00

oo



in signal length. Second, we show that a simple successiepresented by, = zxy(myg), resulting in the erroy,.
representation method achieves the lower bound, reveatingThus this process gives/alinear representation of as
intimate connection between sparse signal representatidn R
multiple description coding. y =y(m) + 2z

The rest of the paper is organized as follows. We give the =y(m1) + 22y (m2) + 22
proof of Theorem 1 in Section II. In Section Ill, we digress .
a little to discuss the implication of Theorem 1 on succes-
sive refinement for multiple descriptions of white Gaussian
sources and its dual—successive cancelation for additiveew But by simple induction and the uniform covering lemma, we
Gaussian noise multiple access channels. Finally, thef pfoo have

Theorem 2 is presented in Section IV. _
P |z&]|* < Dllzr—1]* < D?||zx—2|> < D* |z ||* < DF,

=y(m1) +x2y(m2) + - + 2y (M) + 2.

Il. SUCCESSIVELINEAR REPRESENTATION which completes the proof of the claim. Note that each of
_ ) ) reprsentations attains mean square e2rof o for its sparsity
In this section, we prove that there exists a codebook Féfvelj -1k

exponential size that is asymptotically good for all signal
and all sparsity level. More constructively, we demonstrat!ll. SUCCESSIVEREFINEMENT FORGAUSSIAN SOURCES

that a simple iterative representation method finds a goodrpe proof in the previous section leads to a deceptively
representation. simple proof of successive refinability of white Gaussian

More precisely, we show that ik > Ro > 0, there exists sources [23]. First note that in the successive linear repre
a sequence of dictionarigs, with sizesM = 2"%o such that gentation method we can take. = D*~1/2 for eachk.

for n = n(Ryg, Ro) sufficiently large, Moreover, if U = (Uy,...,U,) is drawn independently and
identically according to the standard normal distributithren
it can be shown that

1 1
—||U 1 ‘Pl —=||U 1 0
101> 1e) P[0 > 1) -

asn — oo for any e > 0. Hence, a good representation of

di(Ca) < 2720

for every k (independent of n). Since the above inequalitE(L|U”
holds for all Ry € (0, R}), we have Vn

2klog M A
limsup | log d;,(Cr) + o <0. a random vectolU when the vector is inside the sphere of
oo " radius (1 + €)/n is sufficient to a good description @f in
The following result by Wyner [3] (rephrased for our appticadeneral. _ . _
tion) is crucial in proving the above claim: Now our successive representation method achieves the

Lemma 1 (Uniform covering lemmajsiven D € (0, 1), (e_xpected_) mean square distor/ti@]m— €)DF afterk iterations
let R > R(D) = (1/2)log(1/D). Then, forn = n(R', D) with a dictionary _of _S|292"_R, where R’ > R(D) =
sufficiently large, there exists a dictionafy = {§(m) : m € (1/2)log(1/D), which is nothing but the Gaussian rate distor-

1 2nR']} such that for ally in the sphere of radius, tion functiqn. Hence, py de_scribing the_index of the sigheto
reprsentation at each iteration using’ bits, we can achieve

min ||y — y(m)||> < r?D. distortion levelsD, D?,..., D* and trace the Gaussian rate
me|[l:2n 8] distortion function forR’,2R’, ..., kR’'. (Recall that we don’t

need to describe the scaling factars = D(*~1/2 since
these are constants independent.gf
More generally, the same argument easily extends to the

In particular, for ally € R",

min - min ]||y —zy(m)||* < [ly|[*D-

TER me[1:2n R case in which incremental ratd®,, R, ..., Ry are not nec-
Note that Wyner's uniform covering lemma shows thessarily identical; one can even prove the existenceested
existence of a dictionary sequencg satisfying codebooks (up to scaling) that uniformly cover the unit sphe
. . on Operationally, the recursive coding scheme for successive
117151_501(1}) di(Cp) <D =2777, refinement (i.e., describing the error, the error of the rerro
and so on) can be viewed as a dual proceduresuoce-
which is simply a restatment of the claim for= 1. sive cancelatior[24], [25] for the Gaussian multiple access

Equipped with the lemma, it is straightforward to prove thehannels, in which the messages for each user is peeled
desired claim fork > 1. Given an arbitraryy in the unit off iteratively. In both cases, one strives to best solve the
sphere, leg(m) be the best singleton representatiorycdind  single-user source [channel] coding problem at each stage
z1 = y — y(m1) be the resulting error. Then we find theand progresses recursively by subtracting off the encoded
best singleton representatign = x2y(m2) of z; from the [decoded] part of the source [channel output]This duality
dictionary, resulting in the errat; = z; — z;. In general, at can be complemented by an interesting connection between th
the k-th iteration, the error;_; from the previous stage is orthogonal matching pursuit and the sucessive cancelggjn



and the duality between signal recovery and signal reptasen
tion. Note, however, that the duality here is mostly congapt
and cannot be made more precise. For example, while we can
use a single codebook (dictionary) for eachkosuccessive
descriptions (again up to scaling) as shown above, one tanno
use the same codebook for alusers in the Gaussian multiple
access channel. If the channel gains are identical amomg,use
it is impossible to distinguish who sent which message (from
the same codebook), even without any additive noise! Tleere i
no uniform packing lemma that matches the Gaussian capacity
function, to begin with.

IV. LOWERBOUND ON THE DISTORTION

We show that for any sequence of dictionarigs of size
M = M,, and any nondecreasing sequelce k,,,

- 210g(M)
log dj,(Cy,) + ———12
0gdi(Cn) + ——
n k
>
+1ogn_k+ klng o(1).

While a similar proof is given in [6, Theorem 2], we present
our version for completeness, which slightly generalizes t
proof in [6].
The basic idea of the proof between is to bound the mean
square error between the random vec¥oand its representa-
tion vectorY by computing the mean square error betwden
and Y’ (a quantized version 017) and the quantization error
(the mean square error betwe¥nandY’). Then, the tradeoff
between the error and the complexity of the representasion i
analyzed via rate distortion theory.Details are as follows
Without loss of generality, assume that

lim inf dy (C,) < D < 1.

n—oo
Lety = y(y) = Zle x;¢(m;) be the best-sparse linear
representation of a given vectgrin the unit sphere. Theg
can be rewritten as

k
y=>_ A(y)¥i(y)
=1

where), ... 1, form an orthonormal basis of the subspace
spanned byp(m;),...,¢(my), uniquely obtained from the
Gram-Schmidt orthogonalization. Singg||2 = > | A2 <1
from the orthogonality of the vectows,, ..., ¥, \; € [—1,1]
for all 4.

We consider two cases:

®)

(a) Bounded k Suppose the sequenée= k,, is bounded.
Sincec,, — 0 asn — oo in Theorem 2 for any bounded
sequencek, it is suffices to show that the following
inequality holds for any sequen€g of dictionaries for
a bounded sequende

Next, we approximatgr by quantizing/\l, ..., Ag Into
bV )\I In —1 l 0 2
1y~ L) ] ] l ]
. l"‘l 1} W|th quantlzauon step S|ze/l Let
4

= Z N(¥)i(y)

Then,||y —3'||? < k(1/1,)? = k/I2 Sincey is obtained
by orthogonal projection of to the subspace spanned

by v, ...,1, andy’ is a vector in the subspace-y
andy — y’ are orthogonal. Thus, we have
ly =3'1I” =y - yII2 +ly-v ||2

Now consider a random signal drawn uniformly from
the unit sphere and its quantized representation

Y’ = 2/\2 (Y)$;(Y)

Then, we have]Y — Y'||2 < di(Cp) + €n.
We have the following chain of inequalities:

log <J\]€4> + klog(2l, + 1)
> H(ml(Y),...,m
> 107)
(d (Cn) + 6n)7

(5)

k(Y)7 )‘Il (Y)7 SR )‘;c(Y))

(6)
where

R(D) =

min I(Y;Y')
p(F'|y):EIIY =Y'[|?]<dk(Cn)+en

is the rate distortion function folyY under the mean

square distortionly (C,,) + €.

Here are justification for above steps. The first in-

equality follows from the ranges of the number /of

dimensional subspaces and. The second inequal-

ity follows from the fact thatY’ is a function of

(m1(Y),...,mp(Y), N (Y),...,X.(Y)). The last in-

equality follows from the rate distortion theorem.

By the Shannon lower bound on rate distortion function

and the (Euclidean) volume of the unit sphere,

- 5 log(2me(di(Ca) + €2))

1 1
Zlog (= ) =1 - .
= gle (dk Co) + en> og(mn) - &
Combined together witH [6), this yields

R(D) > h(Y

% (log (]\: ) + klog(2l, + 1)) (7)
> %log (Jk(Cnl) " en) - 1og:m) - 6—; (8)
= %log ( —k(lcn)) + %log (W) —o(1).

9)



Now, let f,, be an increasing sequence satisfying
log fn

n—oo n

and takel,, = f,,(dk(C,))"2. By pluggingl,, to (8), we
have

%<log (f) + klog (2fn/\/m+ 1))
1

> %mg (ﬁ) + %log (m) —o(1).

Arranging the terms in the above inequality yields

%<1og (1‘;) +klog (2fn+ \/M)) +o(1)

> n_klog (Jk(lcn)> +%1Og <m)

lim f, =oo and

n—oo

-0, (10)

- 2n

Then, we can note that, /dy.(C) = (k/12)di(Cp) =
k/f? ande,/dp(C,) — 0 asn — oo. Also, from (9)

(k log(2f, + dk(Cn)Z/n < (klog(2fn +1))/n = 0
asn — oo. Hence, taking the limit. — oo to the last

inequality, we get
. 2k log M
lim inf _—
n—00 n—=k

{1ogdk(Cn) + ] > 0.

(1]

(2]
(3]

(7]

(8]

El
[20]

[11]

Finally, it is easy to show that the inequality in Theorerfit?

2 reduces to the above inequality for the case when

is bounded.

(b)

[13]

Unounded Kk In this case, the scalar quantization in

part (a) gives a loose bound. Wyner’s uniform covering 4
lemma, however, can be applied to provide a sharper
tradeoff between the description complexity and thﬁs]

guantization error.

We continue the proof from the orthogonal representéif]

tion of y in (3). Sincey is a vector with length< 1 in
the k-dimensional subspace spannedyy, . . ., v, and

[17]

k, is an increasing sequence, we can invoke the unform
covering lemma. Therefore, there must exist a dictionaﬁf‘]

C;, of size2b andy’ € C;, satisfying

||$’ _ y/HQ < 272b/k'

[19]

[20]

Following the same arguments as in (5)—(9), we have

(e (1) +) 2 3w () o

Finally, optimizing over b yields

7 —2log (3)/(n—k) (N — k . ﬁ k/(n—k)
Taking the logarithm and letting — oo on both sides,

we have the desired inequality.
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