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Abstract— This paper studies the question of how well a signal
can be reprsented by a sparse linear combination of reference
signals from an overcomplete dictionary. When the dictionary
size is exponential in the dimension of signal, then the exact
characterization of the optimal distortion is given as a function of
the dictionary size exponent and the number of reference signals
for the linear representation. Roughly speaking, every signal is
sparse if the dictionary size is exponentially large, no matter how
small the exponent is. Furthermore, an iterative method similar
to matching pursuit that successively finds the best reference
signal at each stage gives asymptotically optimal representations.
This method is essentially equivalent to successive refinement for
multiple descriptions and provides a simple alternative proof of
the successive refinability of white Gaussian sources.

I. I NTRODUCTION AND MAIN RESULTS

Suppose one wishes to represent a signal as a linear com-
bination of reference signals. If the collectionC of reference
signals (calleddictionary) is rich (i.e., the sizeM = |C| of
dictionary is much larger than the dimensionn of the signal)
or if one is allowed to take an arbitrarily complex linear
combination (i.e., the numberk of reference signals forming
the linear combination is very large), then one can expect that
the linear representation approximates the original signal with
very little distortion. As a trivial example, ifC containsn
linearly independent reference signals of dimentionn, then
every signal can be represented faithfully as a linear combina-
tion of thosen reference signals. On the other extreme point,
if C includes all possible signals, then the original signal can
be represented as (a linear combination of) itself without any
distortion. More generally, Shannon’s rate distortion theory [1]
suggests that if the dictionary sizeM = 2nR is exponential
in n with exponentR > 0, then the best reference signal (as
a singleton) achives the distortionD(R) given as a function
of R.

Several interesting questions arise:

1) What will happen if the linear combination is sparse
(k ≪ n)? How well can one represent a signal as a
(sparse) linear combination of reference signals?

2) How should one choose the dictionary of reference
signals under the size limitation? Is there a dictionary
that provides a good representation for all or most
signals?

3) How can one find the best linear representation given
the dictionary? Is there a low-complexity algorithm with
optimal or near-optimal performance?

These questions arise in many applications and naturally
have been studied in several different contexts [2]. The current
paper provides partial answers to these questions by focusing

on asymptotic relationship between the collection sizeM , the
dimensionn of the signal, the sparsityk of the representation,
and the distortionD of the representation.

More formally, let C = {φ(1),φ(2), . . . ,φ(M)} be a
collection (dictionary) ofM vectors inRn. For each vector
y ∈ R

n, we define its bestk-linear representation̂yk from the
dictionaryC as

ŷk = x1φ(m1) + x2φ(m2) + · · ·+ xkφ(mk),

where x1, . . . , xk ∈ R and m1, . . . ,mk ∈ [1 : M ] :=
{1, 2, . . . ,M} are chosen to minimize the squared error

dk(y, C) = ‖y − (x1φ(m1) + x2φ(m2) + · · ·+ xkφ(mk))‖2.

Here the norm of a vectorz = (z1, . . . , zn) ∈ R
n is defined

as ||z|| = (
∑n

i=1 z
2
i )

1/2.
We further define the worst-case distortiond∗k(C) of the

dictionaryC as

d∗k(C) := sup
y:‖y‖2≤1

dk(y, C),

where the supremum is taken over alln-vectorsy in the
(closed) unit sphere.

Note thatd∗k(C) ≤ 1 for all C and all n, with d∗k(C) = 1
attained by a singleton dictionaryC = {0}. Conversely, if
M < n, then d∗k(C) = 1 for any dictionaryC of size M .
Hence, we consider the caseM ≥ n only, that is, the case in
which the dictionary isovercomplete.

Similarly, we define the average-case distortiond̄k(C) of the
dictionaryC as

d̄k(C) = E (dk(Y, C)) ,
where the expectation is taken with respect to a random signal
Y uniformly drawn from the unit sphere{y ∈ R

n : ‖y‖ ≤ 1}.
Now we are ready to state our main results. The first result

concerns the existence of an asymptotically good dictionary.
Theorem 1:SupposeM = Mn satisfies

lim inf
n→∞

logM

n
> 0.

Then there exists a sequence of dictionariesCn of respective
sizesMn such that

lim sup
n→∞

[

log d∗k(Cn) +
2k logM

n

]

≤ 0. (1)

In particular, ifk → ∞ asn → ∞, thend∗k(Cn) → 0.

An interesting implication of Theorem 1 is that if we
choose a good dictionary of exponentially large size, no matter
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how small the exponent is, every signal is essentially sparse
(say, k = log logn) with respect to that dictionary in the
asymptotics.

The proof of Theorem 1 will be given in Section II.
The major ingredients of the proof include Wyner’s uniform
sphere covering lemma [3] and its application in successive
linear representation. Simply put, given a good dictionaryfor
singleton representations (k = 1), we iteratively represent the
signal, the error, the error of the error, etc. by scaling thesame
dictionary.

This representation method is intimately related to succes-
sive refinement coding [4]. Indeed, Theorem 1, specialized to
k = 1, is essentially equivalent to Shannon’s rate distortion
theorem for white Gaussian sources [1]. At the same time, the
representation method gives a very simple proof of successive
refinability [4] and additive successive refinability [5] ofwhite
Gaussian sources under the mean squared error distortion.

It turns out that the asymptotic distortion in Theorem 1,
which is achieved by the simple successive representation
method, is in fact optimal. The following result, essentially
due to Fletcheret al. [6], provides the performance bound for
the optimal dictionary.

Theorem 2 ([6, Theorem 2]):For any sequence of dictio-
nariesCn of sizeM = Mn and any nondecreasing sequence
k = kn,

lim inf
n→∞

[

log d̄k(Cn) +
2 log

(

M
k

)

n− k
+ cn

]

≥ 0.

where

cn = log
n

n− k
+

k

n− k
log

n

k
.

In particular, if k is bounded, then for any sequence of
dictionariesCn of sizeM = Mn,

lim inf
n→∞

[

log d̄k(Cn) +
2k logM

n− k

]

≥ 0.

Note that ifM = 2nR for someR > 0 andk is a constant,
then Theorem 2 implies that the average distortion is lower
bounded by

lim inf
n→∞

[

log d̄k(Cn) +
2k logM

n

]

≥ 0.

(Therefore so is the worst-case distortion.) Thus the distortion
bound in (1) Theorem 1 is tight when the dictionary size grows
exponentially inn.

The asymptotic optimality of successive representation
method provides a theoretical justification for matching pur-
suit [7] or similar greedy algorithms in signal processing.
This conclusion is especially appealing since these iterative
methods have linear complexity in dictionary sizeM (or
even lower complexity if the dictionary has further structures),
while finding the optimal representation in a single shot, even
when tractable, can have much higher complexity. However,

there are two caveats. First, the dictionary size here is expo-
nential in the signal dimension. Second, the dictionary should
represent all signals with singletons uniformly well.

In a broad context, these results are intimately related to
recoveryof sparse signals via linear measurements. Indeed,
the sparse linear representation can be expressed as

y = Φx+ z, (2)

whereΦ is an n × M matrix with columns inC, x ∈ R
M

is a sparse vector withk nonzero elementsx1, . . . , xk, and
z is the representation error. The award-winning papers by
Candes and Tao [8] and Donoho [9] showed that a sparse
signalx can be reconstructedexactlyandefficientlyfrom the
measurementy given by the underdetermined system (2) of
linear equations (when the measurement noisez = 0), opening
up the exciting field of compressed sensing. There have been
several follow-up discussions that connect compressed sensing
and information theory; we refer the reader to [10], [11], [12],
[13], [14], [15], [16] for various aspects of the connection
between two fields.

While it is quite unfair to summarize in a single sentence a
variety of problems studied by compressed sensing and more
generally sparse signal recovery, the central focus therein is
to recover thetrue sparse signalx from the measurement
y. In particular, when the measurement process is corrupted
by noise, the main goal becomes mapping a noise-corrupted
measurement outputy to its corresponding causex in an
efficient manner.

The sparse signal representation problem is in a sense
dual to the sparse signal recovery problem (just like source
coding is dual to channel coding). Here the focus is on
y and its representation (approximation). There is notrue
representation, and a good dictionary should have several
alternative representations of similar distortions. As mentioned
above, the problem of general—not necessarily linear—sparse
representation (also called the sparse approximation problem)
has a history of longer than a century [17], [18] and has been
studied in several different contexts. Along with the parallel
development in compressed sensing, the recent focus has been
efficient algorithms and their theoretical properties; see, for
example, [19], [20], [21].

In comparison, studies in [6], [22], and this paper focus
on finding asymptotically optimal dictionaries, regardless of
computational complexity,1 and study the tradeoff among the
sparsity of the representation, the size of the dictionary,and
the fidelity of the approximation. For example, Fletcheret
al. [6] found a lower bound on the approximation error
using rate distortion theory for Gaussian sources with mean
squared distortion. A similar lower bound is obtained by
Akcakaya and Tarokh [22] based on careful calculation of
volumes of spherical caps. Thus, the main contribution of
this paper is twofold. First, our Theorem 1 shows that these
lower bounds (in particular the one in [6, Theorem 2]) are
tight in asymptotic when the dictionary size is exponential

1Fortuitously, the associated representation method is highly efficient.



in signal length. Second, we show that a simple successive
representation method achieves the lower bound, revealingan
intimate connection between sparse signal representationand
multiple description coding.

The rest of the paper is organized as follows. We give the
proof of Theorem 1 in Section II. In Section III, we digress
a little to discuss the implication of Theorem 1 on succes-
sive refinement for multiple descriptions of white Gaussian
sources and its dual—successive cancelation for additive white
Gaussian noise multiple access channels. Finally, the proof of
Theorem 2 is presented in Section IV.

II. SUCCESSIVEL INEAR REPRESENTATION

In this section, we prove that there exists a codebook of
exponential size that is asymptotically good for all signals
and all sparsity level. More constructively, we demonstrate
that a simple iterative representation method finds a good
representation.

More precisely, we show that ifR′
0 > R0 > 0, there exists

a sequence of dictionariesCn with sizesM = 2nR
′

0 such that
for n = n(R′

0, R0) sufficiently large,

d∗k(Cn) ≤ 2−2kR0

for every k (independent of n). Since the above inequality
holds for allR0 ∈ (0, R′

0), we have

lim sup
n→∞

[

log d∗k(Cn) +
2k logM

n

]

≤ 0.

The following result by Wyner [3] (rephrased for our applica-
tion) is crucial in proving the above claim:

Lemma 1 (Uniform covering lemma):Given D ∈ (0, 1),
let R′ > R(D) = (1/2) log(1/D). Then, forn = n(R′, D)
sufficiently large, there exists a dictionaryCn = {ŷ(m) : m ∈
[1 : 2nR

′

]} such that for ally in the sphere of radiusr,

min
m∈[1:2nR′ ]

||y − ŷ(m)||2 ≤ r2D.

In particular, for ally ∈ R
n,

min
x∈R

min
m∈[1:2nR′ ]

||y − xŷ(m)||2 ≤ ‖y‖2D.

Note that Wyner’s uniform covering lemma shows the
existence of a dictionary sequenceCn satisfying

lim sup
n→∞

d∗1(Cn) ≤ D = 2−2R,

which is simply a restatment of the claim fork = 1.
Equipped with the lemma, it is straightforward to prove the

desired claim fork > 1. Given an arbitraryy in the unit
sphere, let̂y(m) be the best singleton representation ofy and
z1 = y − ŷ(m1) be the resulting error. Then we find the
best singleton representation̂z1 = x2ŷ(m2) of z1 from the
dictionary, resulting in the errorz2 = z1 − ẑ1. In general, at
the k-th iteration, the errorzk−1 from the previous stage is

represented bŷzk−1 = xkŷ(mk), resulting in the errorzk.
Thus this process gives ak-linear representation ofy as

y = ŷ(m1) + z1

= ŷ(m1) + x2ŷ(m2) + z2

= · · ·
= ŷ(m1) + x2ŷ(m2) + · · ·+ xkŷ(mk) + zk.

But by simple induction and the uniform covering lemma, we
have

‖zk‖2 ≤ D‖zk−1‖2 ≤ D2‖zk−2‖2 ≤ Dk−1‖z1‖2 ≤ Dk,

which completes the proof of the claim. Note that each ofk
reprsentations attains mean square error2−2jR0 for its sparsity
level j = 1, . . . , k.

III. SUCCESSIVEREFINEMENT FORGAUSSIAN SOURCES

The proof in the previous section leads to a deceptively
simple proof of successive refinability of white Gaussian
sources [23]. First note that in the successive linear repre-
sentation method we can takexk = D(k−1)/2 for eachk.
Moreover, if U = (U1, . . . , Un) is drawn independently and
identically according to the standard normal distribution, then
it can be shown that

E

(

1√
n
‖U‖

∣

∣

∣

∣

1√
n
‖U‖ > 1+ ǫ

)

·P
(

1√
n
‖U‖ > 1+ ǫ

)

→ 0

as n → ∞ for any ǫ > 0. Hence, a good representation of
a random vectorU when the vector is inside the sphere of
radius(1 + ǫ)

√
n is sufficient to a good description ofU in

general.
Now our successive representation method achieves the

(expected) mean square distortion(1+ ǫ)Dk afterk iterations
with a dictionary of size2nR

′

, where R′ > R(D) =
(1/2) log(1/D), which is nothing but the Gaussian rate distor-
tion function. Hence, by describing the index of the sigleton
reprsentation at each iteration usingnR′ bits, we can achieve
distortion levelsD,D2, . . . , Dk and trace the Gaussian rate
distortion function forR′, 2R′, . . . , kR′. (Recall that we don’t
need to describe the scaling factorsxk = D(k−1)/2, since
these are constants independent ofn.)

More generally, the same argument easily extends to the
case in which incremental ratesR1, R2, . . . , Rk are not nec-
essarily identical; one can even prove the existence ofnested
codebooks (up to scaling) that uniformly cover the unit sphere.

Operationally, the recursive coding scheme for successive
refinement (i.e., describing the error, the error of the error,
and so on) can be viewed as a dual procedure tosucce-
sive cancelation[24], [25] for the Gaussian multiple access
channels, in which the messages for each user is peeled
off iteratively. In both cases, one strives to best solve the
single-user source [channel] coding problem at each stage
and progresses recursively by subtracting off the encoded
[decoded] part of the source [channel output]y. This duality
can be complemented by an interesting connection between the
orthogonal matching pursuit and the sucessive cancelation[26]



and the duality between signal recovery and signal representa-
tion. Note, however, that the duality here is mostly conceptual
and cannot be made more precise. For example, while we can
use a single codebook (dictionary) for each ofk successive
descriptions (again up to scaling) as shown above, one cannot
use the same codebook for allk users in the Gaussian multiple
access channel. If the channel gains are identical among users,
it is impossible to distinguish who sent which message (from
the same codebook), even without any additive noise! There is
no uniform packing lemma that matches the Gaussian capacity
function, to begin with.

IV. L OWER BOUND ON THE DISTORTION

We show that for any sequence of dictionariesCn of size
M = Mn and any nondecreasing sequencek = kn,

log d̄k(Cn) +
2 log

(

M
k

)

n− k

+ log
n

n− k
+

k

n− k
log

n

k
≥ o(1).

While a similar proof is given in [6, Theorem 2], we present
our version for completeness, which slightly generalizes the
proof in [6].
The basic idea of the proof between is to bound the mean
square error between the random vectorY and its representa-
tion vectorŶ by computing the mean square error betweenY

andŶ′ (a quantized version of̂Y) and the quantization error
(the mean square error betweenŶ andŶ′). Then, the tradeoff
between the error and the complexity of the representation is
analyzed via rate distortion theory.Details are as follows.

Without loss of generality, assume that

lim inf
n→∞

d̄k(Cn) ≤ D < 1.

Let ŷ = ŷ(y) =
∑k

i=1 xiφ(mi) be the bestk-sparse linear
representation of a given vectory in the unit sphere. Then̂y
can be rewritten as

ŷ =

k
∑

i=1

λi(y)ψi(y), (3)

whereψ1, . . . ,ψk form an orthonormal basis of the subspace
spanned byφ(m1), . . . ,φ(mk), uniquely obtained from the
Gram–Schmidt orthogonalization. Since‖ŷ‖2 =

∑k
i=1 λ

2
i ≤ 1

from the orthogonality of the vectorsψ1, . . . ,ψk, λi ∈ [−1, 1]
for all i.

We consider two cases:

(a) Bounded k: Suppose the sequencek = kn is bounded.
Sincecn → 0 asn → ∞ in Theorem 2 for any bounded
sequencek, it is suffices to show that the following
inequality holds for any sequenceCn of dictionaries for
a bounded sequencek.

2 log
(

M
k

)

n− k
+ log d̄k(Cn) ≥ o(1).

Next, we approximatêy by quantizingλ1, . . . , λk into
λ′
1, . . . , λ

′
k ∈

{

−1,− ln−1
ln

, . . . ,− 1
ln
, 0, 1

ln
, 2
ln
,

. . . , ln−1
ln

, 1
}

with quantization step size1/ln. Let

ŷ′(y) =

k
∑

i=1

λ′
i(y)ψi(y). (4)

Then,‖ŷ−ŷ′‖2 ≤ k(1/ln)
2 = k/l2n Sinceŷ is obtained

by orthogonal projection ofy to the subspace spanned
byψ1, . . . ,ψk andŷ′ is a vector in the subspace,y− ŷ

and ŷ − ŷ′ are orthogonal. Thus, we have

‖y− ŷ′‖2 = ‖y− ŷ‖2 + ‖ŷ − ŷ′‖2

≤ ‖y− ŷ‖2 + k/l2n =: dk(y, Cn) + ǫn.

Now consider a random signalY drawn uniformly from
the unit sphere and its quantized representation

Ŷ′ =

n
∑

i=1

λ′
i(Y)ψi(Y). (5)

Then, we have‖Y − Ŷ′‖2 ≤ d̄k(Cn) + ǫn.
We have the following chain of inequalities:

log

(

M

k

)

+ k log(2ln + 1)

≥ H(m1(Y), . . . ,mk(Y), λ′
1(Y), . . . , λ′

k(Y))

≥ H(Ŷ′)

≥ R(d̄k(Cn) + ǫn), (6)

where

R(D) = min
p(ŷ′|y):E[‖Y−Ŷ′‖2]≤d̄k(Cn)+ǫn

I(Y; Ŷ′)

is the rate distortion function forY under the mean
square distortion̄dk(Cn) + ǫn.
Here are justification for above steps. The first in-
equality follows from the ranges of the number ofk-
dimensional subspaces andλ′

j . The second inequal-
ity follows from the fact thatŶ′ is a function of
(m1(Y), . . . ,mk(Y), λ′

1(Y), . . . , λ′
k(Y)). The last in-

equality follows from the rate distortion theorem.
By the Shannon lower bound on rate distortion function
and the (Euclidean) volume of the unit sphere,

R(D) ≥ h(Y)− n

2
log(2πe(d̄k(Cn) + ǫn))

≥ n

2
log

(

1

d̄k(Cn) + ǫn

)

− log(πn)− 1

6n
.

Combined together with (6), this yields

1

n

(

log

(

M

k

)

+ k log(2ln + 1)

)

(7)

≥ 1

2
log

(

1

d̄k(Cn) + ǫn

)

− log(πn)

n
− 1

6n2
(8)

=
1

2
log

(

1

d̄k(Cn)

)

+
1

2
log

(

1

1 + ǫn/d̄k(Cn)

)

− o(1).

(9)



Now, let fn be an increasing sequence satisfying

lim
n→∞

fn = ∞ and lim
n→∞

log fn
n

= 0, (10)

and takeln = fn(d̄k(Cn))−
1

2 . By pluggingln to (8), we
have

1

n

(

log

(

M

k

)

+ k log
(

2fn

/

√

d̄k(Cn) + 1
)

)

≥ 1

2
log

(

1

d̄k(Cn)

)

+
1

2
log

(

1

1 + ǫn/d̄k(Cn)

)

− o(1).

Arranging the terms in the above inequality yields

1

n

(

log

(

M

k

)

+ k log
(

2fn +
√

d̄k(Cn)
)

)

+ o(1)

≥ n− k

2n
log

(

1

d̄k(Cn)

)

+
1

2
log

(

1

1 + ǫn/d̄k(Cn)

)

.

Then, we can note thatǫn/d̄k(Cn) = (k/l2n)d̄k(Cn) =
k/f2

n and en/d̄k(Cn) → 0 as n → ∞. Also, from (9)
(

k log(2fn +
√

d̄k(Cn)
)/

n ≤ (k log(2fn +1))/n → 0

asn → ∞. Hence, taking the limitn → ∞ to the last
inequality, we get

lim inf
n→∞

[

log d̄k(Cn) +
2k logM

n− k

]

≥ 0.

Finally, it is easy to show that the inequality in Theorem
2 reduces to the above inequality for the case whenk
is bounded.

(b) Unounded k: In this case, the scalar quantization in
part (a) gives a loose bound. Wyner’s uniform covering
lemma, however, can be applied to provide a sharper
tradeoff between the description complexity and the
quantization error.
We continue the proof from the orthogonal representa-
tion of ŷ in (3). Sinceŷ is a vector with length≤ 1 in
thek-dimensional subspace spanned byψ1, . . . ,ψk and
kn is an increasing sequence, we can invoke the unform
covering lemma. Therefore, there must exist a dictionary
C′
k of size2b and ŷ′ ∈ C′

k satisfying

‖ŷ− ŷ′‖2 ≤ 2−2b/k.

Following the same arguments as in (5)–(9), we have

1

n

(

log

(

M

k

)

+ b

)

≥ 1

2
log

(

1

d̄k(Cn) + 2−2b/k

)

− o(1).

Finally, optimizing over b yields

d̄k(Cn) ≥ 2−2 log (Mk )/(n−k) ·
(n− k

n

)

·
(k

n

)k/(n−k)

.

Taking the logarithm and lettingn → ∞ on both sides,
we have the desired inequality.
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