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Abstract

In this paper, we generalize the well known cut-set bounchéopgroblem of lossy transmission of

functions of arbitrarily correlated sources over a disemeemoryless multiterminal network.

. INTRODUCTION

A general multiterminal network is a model for reliable commtation of sets of messages among
the nodes of a network, and has been extensively used in mgdefl wireless systems. It is known
that unlike the point-to-point scenario, in a network scegnéhe separation of the source and channel
codings is not necessarily optimal [4]. In this paper we gttltk limitations of joint source-channel
coding strategies for lossy transmission across multiteahmetworks.

A discrete memoryless general multiterminal network (GMil)characterized by the conditional
distribution
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whereX @ andY @ (1 < i < m) are respectively the input and the output of the channédleatt party.

In a general multiterminal channel with correlated sourtles m nodes are observing i.i.d. repetitions
of m, possibly correlated, random variabl85® for 1 < i < m. The " party (L < ¢ < m) has access
to the i.i.d. repetitions of¥ (), and wants to reconstruct, within a given distortion, thel.irepetitions
of a function of all the observations, i.¢® (W® W@ . W™ for some functionf®(.). If this is
asymptotically possible within a given distortion (seetietlllfor a formal definition), we call the source
WO, w@, . wm) admissible. In some applications, each party may be irteeis recovering
i.i.d. repetitions of functions of the observations maded#fierent nodes. In this case the function
FOWO W W) takes the special form of &1 (W), fE2 (W), . fEm) (W) for

some functionsf (»7)(.).
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Fig. 1. The statistical description of a network.

The admissible source region of a general multiterminalvogk is not known when the sources are
independent except in certain special cases; less is kndvem the sources are allowed to be arbitrarily
correlated. It is known that the soureehannel separation theorem in a network scenario breaks dow
[4]. In this paper, we prove a new outer bound on the admissblrce region of GMNs. Specializing
by requiring zero distortion at the receivers, assuming tha functions f® (WM W@ __ wm)

(1 < i < m) have the form of(f&-D(WM), fGAW ), . fGm) (W), and that the individual
messageg (/) (W) are mutually independent, our result reduces to the wellvknout-set bound.
The results can be carried over to the problem of “losslessstnission” for the following reason:
requiring thei*” party to reconstruct the i.i.d. repetitions ¢f) (W ® W@ W) with arbitrarily
small average probability of error is no stronger than rengithe i** party to reconstruct the i.i.d
repetitions of fO(WM W@ W) with a vanishing average distortion (for details see sectio
M. Other extensions of cut-set bound can be found in [2] §]d Furthermore some existing works
show the possibility and benefit of function computationinigirthe communication (see for instance
[3][61[7]1[8][9])-

A main contribution of this paper is its proof technique whis based on the “potential function
method” introduced in [10] and [11]. Instead of taking ani@dby network and proving the desired
outer bound while keeping the network fixed throughout, wasader a function from the set of all
m-input/m-output discrete memoryless networks to subset®pf whereR¢ is the set of alk-tuples of
non-negative reals. We then identify properties of suchrectian which would need to be satisfied in

one step of the communication for it to give rise to an outarrab The generalized cut-set bound is then
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proved by a verification argument. Properties that such atiimm would need to satisfy are identified,
intuitively speaking, as follows: take an arbitrary codelefgth sayn over a multiterminal network.
During the simulation of the code, the information of thetjesr begins from the!” party having the
i.i.d. repetitions of the random variabl& (); gradually evolves over time with the usage of the network;
and eventually aften stages of communication reaches its final state where thegadnow enough
to estimate their objectives within the desired averagéodien. The idea is to quantify this gradual
evolution of information;bound the derivative of the information growth at each stiigen above by
showing that one step of communication can buy us at mosttaigceamount; and conclude that at the
final stage, i.e. the!" stage, the system can not reach an information state betenttimes the outer
bound on the derivative of information growth. An implemegitn of this idea requires quantification of
the information of them parties at a given stage of the process. To that end, we eeatua function
we started with at @irtual channelwhose inputs and outputs represent, roughly speakingnttia iand
the gained knowledge of the parties at the given stage of éharwinication. See Lemnia 1 of section
[Mand the proof of Theorernl1 of sectign]lV for a formal forratibn.

The outline of this paper is as follows. In sectioh I, we @uuce the basic notations and definitions
used in this paper. Sectignllll contains the main resultdisf paper followed by sectidn 1V which gives
formal proofs for the results. Appendides | Il compléte proof of Theorerm]1 from sectignllll.

[I. DEFINITIONS AND NOTATION

Throughout this paper we assume that each random varidkds talues in a finite seR denotes
the set of real numbers arl@l, denotes the set of non-negative reals. For any natural nuiblet
[k] = {1,2,3,...,k}. For a setS C [k], let S¢ denote its compliment, that i&] — S. The context will
make the ambient space Sfclear.

We represent a GMN by the conditional distribution

@) im0 @)

gy, y?, .. (™)
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meaning that the input by th#&" party is X(¥ and the output at thé" party isY (). We assume that
theit" party (I < i < m) has access to i.i.d. repetitions Bf(). The message that needs to be delivered
(in a possibly lossy manner) to thé party is taken to bel/® = fO(W O W . W) for some
function £()(-). We assume that for anye [m], random variablet®, Y@, W@ and M take values
from discrete set&’®, Y, W and M) respectively. For any natural numberlet (x(®)?, (Y®)»,
(W) and (M@)" denote then-th product sets oft®, Y@, W and M©. We useY,'”) to denote
¥ v v ).
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TABLE |
NOTATIONS
Variable Description

R Real numbers.

R+ Non-negative real numbers.

(k] The set{1,2,3, ..., k}.

m Number of nodes of the network.

gy, ., y™)2z® L 2™ The statistical description of a
multi-terminal network.

w® Random variable representing the source observed at'theode.
M® Random variable to be reconstructed,

in a possibly lossy way, at th&" node.

EAQIRORRVVOR VIC) Alphabet sets ofX @, Y w® A6,
A () Distortion function used by thé" party.
10 The encoding function used by th& party at thek!" stage.
9D () The decoding function at th&" party.
n Length of the code used.
I1(-) Down-set (Definitior ¥);
<) Minkowski sum of two sets (Definitioh] 3).
> A vector or a set being greater than or equal the other (Digfir{#).
\ A permissible set of input distributions;

Given input sources and a multiterminal netwoik,is a set of
joint distributions onX¥™® x X2 x x®) x ... x xm),

Inputs to the network have a joint distribution belongingths set.

For anyi € [m], let the distortion functiom(® be a functionA® : M® x M® — [0, o) satisfying
A (Mm@ m®) = 0 for all m® e M@, For any natural numbes and vectors(m”, m{, ... m{")
and (m,? m .. m{") from (M@)", let

Roughly speaking, we require the i.i.d. repetitions of @mdvariable’/(?) to be reconstructed, by the

it party, within the average distortion @,
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Definition 1: Given natural numben, an (n)-codeis the following set of mappings:
Foranyi € m]: ¢V (Wi — x0.
For anyi € [m], k € [n] — {1}: ¢\7: WD) x (D)1 5 x),
Foranyi € [m]: 9@ : WO x (YO — (MO,

Intuitively speakingg,gi) is the encoding function of thé" party at thek” time instance, and® is the
decoding function of the'" party.

Given positive reals and D) (1 < i < m), and a source marginal distributigitw™ , w®?), ..., (™),
an (n)-code is said to satisfy the average distortion interid&f (for all i € [m]) over the channel
a(yW,

Assume that random variable” for i € [m] aren i.i.d. repetition of random variablg&/ ), W@ W (m))

y@ Lyt @) 2(m) if the following “average distortion” condition is satisfie

with joint distribution p(w®, w®, ..., w(™). Random variablest” and ;") (k € [n], i € [m]) are
defined according to the following constraints:

1 2 m 1 2 m 1 2 m
Py i, sl aih o 2l iy win)) =

& 1 2 m & 1 2 m 1 2 m e 7 7 7
]‘_Ip(w](g),U)](g),...,'w](€ )) X Hq(y,i),y;i),7y/g )‘x](g)7x](g)77xl({; )) x HHp(wl(f)‘wgzzwygzzﬁ—l);
k=1 k=1 k=11

and thatx(” = ¢! (w"), and for any2 < k < n, X = ¢ (W vV _ ). Random variablesc”

and Yk(i) are representing the input and outputs of tffeparty at thek!" time instance and satisfy the

following Markov chains:
1 m 1 m % % %
Wl(gwl(n)yl(k)—lyl(kzl - Wl(v)Lyl(:k)—l - Xlg )’

1 m 1 m 1 m 1 m
wi. wimy O ym . x D x oy Wy,

1:n
We then have the following constraint for anyg [m]:

a0 (00 v M) | < D9 4 e

where MV = fOD W@ wim),
Definition 2: Given positive realdD(®), a source marginal distribution(w™),w® ..., (™)) is called
an admissible sourcever the channej(y"),y®, ...,y |z 22 (™) if for every positivee and

sufficiently largen, an (n)-code satisfying the average distorti@?), exists.

The “independent messages zero distortion capacity régiothe GMN,
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is a subset ofn2-tuples of non-negative numbefs*/) for 4, j € [m] defined as follows: consider the set
of all setsWw® W W functions fO (WM W W) 1 <i < m) having the special

form of

(f(@l)(W(l))’f(i72)(W(2))’ ._.7f(i,m)(W(m)))7

the distortion functions\ () (m® m/'()) (for 1 < i < m) being equal to the indicator functidtjm ()
m' ], DU being set to be zero for all < i < m and admissible sourcggw™®, w® ... w™) for
which f@9)(WG)Yys are mutually independent of each other. The capacityores then taken to be
the set of all achievabl®") = H (£ (W®)) (for i, € [m]) given the above constraints. Intuitively
speaking,R(*/) is the communication rate froni" party to thej" party.

Definition 3: For any natural humbet and any two sets of point& and L in RS, let K & L
refer to their Minkowski sum:K @& L = {v; + v : v; € K,vy € L}. For any real number, let
rx K ={r-v;:v; € K}. We also define’ri as the set formed by shrinking through scaling each
point of it by a factorl. Note that in generat x K # (r1 x K) & (rp x K) whenr = r; +ry but this
is true whenk is a convex set.

Definition 4: For any two pointss; andv3 in RS, we sayu; > o3 if and only if each coordinate of
1 is greater than or equal to the corresponding coordinai€ ofor any two sets of pointd and B in
R¢, we sayA < B if and only if for any point@ € A, there exists a poinE) € B such thatd < ?

For a setd € RS, the down-sell(A) is defined asli(4) = {7 € RS : ¥ < W for somew € A}.
Definition 5: Given a specific network architectuggy™), ¢y ... 4™z @) 2(m)) and the
source marginal distributiop(w™, w® ..., (™)), it may be possible to find properties that the inputs
to the multiterminal network throughout the communicatisatisfy. For instance in an interference
channel or a multiple access channel with no output feedhatke transmitters observe independent
messages, the random variables representing their infrimstay independent of each other throughout
the communication. This is because the transmitters neiitheract nor receive any feedback from the
outputs. Other constraints on the inputs to the network trdgme from practical requirements such as a
maximum instantaneous power used up by one or a group of nodeExh stage of the communication.

Given a multiterminal network(y™, 4, ...y |zM 22 2(m) and assuming that® (i € [m])
is the setX () is taking value from, lefr be a set of joint distributions oA’} x X2 x XG) x . x x(m)
for which the following guarantee exists: for any commutima protocol, the inputs to the multiterminal
network at each time stage have a joint distribution belogdo the setv. Such a set will be called a

permissible sedf input distributions. Some of the results below will betsthin terms of this nebulously
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defined region¥. To get explicit results, simply replace by the set of all probability distributions on
XD x x@ 5 x6) x . x xm),

IIl. STATEMENT OF THE RESULTS
Theorem 1:Given any GMNg(y™M, 42, .. 4™z 22 2(m) a sequence of non-negative real
numbersD® (i € [m]), an arbitrary admissible sourd&®) (i € [m]), and a permissible set of input
distributions of the networkll, there exists

o joint distributiong(z(M, 2, ..., 2™ ») where size of the alphabet set&fis 2 —1 and furthermore
q(zM, 2@ 2(™)]|2) belongs to¥ for any valuez that the random variablg& might take;

« joint distribution p(m™ M, .. mm™ w® w3 . wl™) where the average distortion between
MO = fOWwO W, Wiy and M@ is less than or equal t®®, i.e. AD (M@ D) <
D,

such that for any arbitrar§” C [m] the following inequality holds:
IWDier ; MY jeriw . jer) <I1(XD:ieT ; YV :jeT|XV:jeT°2),
whereYM y®@ 'y x(1) x@ X andZ are jointly distributed according to

q(y(1)7 y(2)7 b y(m) |x(1)7 x(2)7 A l‘(m)) : q(:L'(l) ) $(2)7 A ':L'(m)7 z)'

Note that here the following Markov chain holds:

Z—-xW x@ xm _yO) y® oy
Discussion 1:The fact that the expressions on both sides of the above a@tiggare of the same
form is suggestive. To any given chanmgy(®), @ .. 4™ |0 22 2(7) and input distribution

q(z, 2@ .. 2(™), assign the down-set of a vectorR¥" whosek!" coordinate is defined as
I(XD:iem, ; YO jeTgxD . jeTy),

whereT}, is defined as follows: there aB¥* subsets ofm]; take an arbitrary ordering of these sets and
take 7}, to be thek' subset in that ordering (though not required but for the skeonsistency with
the notation used in the proof of the theorem assumefhat; and7;. are the empty set and the full
set respectively). Next, to any channgly, 4 ..y zM 22 2(m) and a set of permissible
input distributions, we assign a region by taking the cornlvelt of the union over all permissible input
distributions, of the region associated to the channel hadzarying input distribution. A channel is said
to be weaker than another channel if the region associatdtetéirst channel is contained in the region

associated to the second channel.
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Intuitively speaking, given a communication task one cans@ber a virtual channel whose inputs and
outputs represent, roughly speaking, the raw and accepitsfiormation objectives at the: parties. Fur-
thermore, let the only permissible input distribution fbistvirtual channel to be one given by the statisti-
cal description of the raw information of the parties. Mopesifically, given ang(m(D, ..., m(™  w® . w(™)
such thatn® (@) 17®) < D) holds, consider the virtual channgin®, m® | .. m ™ |w® w®  _ wm)
and the input distributiop(w®, w(?, ..., w(™). The inputs of this virtual channel, i. &8/ W@ wm),
and its outputs, i.eM ), M@ ... M) can be understood as the raw information and acceptalole inf
mation objectives at the: parties. The region associated to the virtual chap@l), ..., m(™ ™ | .. w(™)
and the input distributiop(w™®, w®), ..., w™)) would be the down-set of a vector R2" whosek"

coordinate is defined as
WD ieT ; MY :jeT W . jeTe).

Theoreni 1 is basically saying that this region associat¢higovirtual channel and the corresponding input
distribution should be included inside the region assedi& the channel(y", 42, ..., y(™ 2D ) z(m),
Here the complexity of transmission of functions of cortethmessages is effectively translated into the
performance region of a virtual channel at a given inputriigtion. This virtual channel at the given
input distribution must be, in the above mentioned sensakemethan any physical channel fit for the
communication problem.

Corollary 1: Given any GMNg(y™),y® | . 4™z 22 2z(m) the following region forms an

outer bound on the independent messages zero distortiacicapegion (see Definitionl 2) of the network:

U {non—negative’%(’?j) for i,j € [m)]: for any arbitraryT C [m)]
q(zM, 22 2(m) 2} such that for any
gz, 2@ 2(™)|z) e ¥ and

size of the alphabet set df is 2™ — 1

S R < (XD iieT ; YU jeT XD je T 2)
€T, jeTe

is satisfied},
whereYM y®@ 'y x(1) x@ X andZ are jointly distributed according to

Remark 1: This bound is sometimes tight; for instance it is tight for altiple access channel with

independent source messages wires taken to be the set of all mutually independent input ithistrons.
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Remark 2: This bound reduces to the traditional cut-set bound wireis taken to be the set of all

input distributions, and (X® :ie T ; Y® i€ TX® i e T¢ Z) is bounded from above

I(X9Dier ; YO jerx@:jeT).

A. The Main Lemma

During the simulation of the code, the information of thetigar begins from the** party having
Wl(i) and gradually evolves over time with the usage of the netwatkhe j** stage, the'” party has

why, () . We represent the information state of the whole systemeaj‘thstage by the virtual channel

ln

p(wgl,{y?j, .. wg”:}yu ]wl e ,wgm)) and the input d|str|but|orp(w§:,)l, . wg",?) In order to quantify

the information state, we map the information state to a eubsR¢ (c is a natural number) using a
function ¢(.). A formal definition of» and the properties we require it to satisfy are as follows:

Let ¢(p(y™, ...,y |zM ..., (™) ) be a function that takes as input an arbitraninputin-output
GMN and a subset of probability distributions on the inputshis network and returns a subset®f
wherec is a natural number(.) is thus a function from the set of all conditional probapilifistributions
defined on finite sets and a corresponding set of input digtoibs, to subsets dR< .

Assume that the function(.) satisfies the following three properties. The intuitive afggion of the
properties is provided after their formal statement. Riesee DefinitionE]3 arld 4 for the notations used.

1) Assume that the conditional distributiqy(Dy (1), 3(2)g/ ) 40m)/(m) 21 2(2) 2(m)) sat-

isfies the following
plyWy' W @/ @) gy (m)y (m)| (1) g(m)

— py®, @, _..7y<m>‘x<1>,x<2>7 ™y

p(y,(1)7yl(2)7'“ ’w,(l /(2)7"' xl(m))

) )

where X' is a deterministic function ot (i.e. H(X'®|Y®) = 0 (i € [m])). Random
variable X') (for i € [m]) is assumed to take value from s&t(). Take an arbitrary input
distribution ¢(z1, z9, ..., z,,). This input distribution, together with the conditionalsttibution

p(y®,y@ |y |z 2@ 20m) impose a joint distributiony(z' (M, 2'®) ... 2'(™) on

This is valid becausé(X " :i e T ; YU . j e T°|XD) 1 je T, 2) =H(YY :jeT|XY :jeT,2)-H(Y" :
jETIXW 1ie[m],Z2) =HYY :jeTXYV :jeT,2)-~HYY :jeT|XW :ie[m]) <HYY :je
TIXD 5 eT)—HYD :jeTXDiem]) =1(XW:ieT ; YU :jeT|XD:jeTe).
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(Xx'W, x'@ . x'0m) Then the following constraint needs to be satisfied for amyjtrary set
¥ of joint distributions onX’ ™ x X' x ... x x'(™) that containgy(z' (D, 2'®) ... 2'(™):

¢<p(y(”y/“), ey My gD (m))

alor o)} €

2) Assume that

=1

Then we require that for any input distributiafiz, z2, ..., z,,), the set

Sy, .y 2V, 2™ {g(@r, e wm) )

contains only the origin ifR¢.

3) Assume that
p(z(l), LY ON ...,y(m)]w(l), ...,w(m)) =
Py, sy |20, M) T p(zilys).
Then we require that for any input distributiafiz,, zo, ..., z,,),
gb(p(z(l), oy 2™ |;L'(1), ceey aj(m)), {q(z1, ..., xm)}) -
(b(p(y(l), ...,y(m)]w(l), ...,w(m)), {q(x1, ,wm)})
The first condition is intuitively saying that additionaleusf the channel

Py D,y @m0 @)

g eeey

z (™)

can expand(.) by at most
¢(p(yl(1)7 y,(2)7 ) y,(m) |$,(1)7 ml(2)7 b ml(m))7 \P) *

The second condition is intuitively saying that.) vanishes if the parties are unable to communicate,
that is each party receives exactly what it puts at the inpthechannel. The third condition is basically

saying that making a channel weaker at each party can noe ¢dusexpand.
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Lemma 1:For any functiong(.) satisfying the above three properties, and for any muftieal

network
q(y(l) 7 y(2)7 " y(m) ‘x(l) 7 w(2)7 - w(m)%

distortions D) and arbitrary admissible sourd®® (i € [m]), positive ¢ and (n)-code satisfying
the distortion constraints and a permissible $ebf input distributions, we have (for the definition

of multiplication of a set by a real number see Definitidn 3):

S(p(Ly, oo T i) o w0 {p(wll), o)) C

n x Convex Hull{qﬁ(q(y(l), ...,y(m)]w(l), ...,w(m)), \I/)},

where " (1 € [m]) are the messages observed at the noﬂl/l\éfé,), (¢ € [m]) are the reconstructions

1n

by the parties at the end of the communication satisfying
E [Ag) (@g';, m@ﬂ <D 1 ¢
for anyi € [m].

IV. PROOFS

Proof: [Proof of Lemmalll] Let random variablex,g) andY (k € [n], i € [m]) respectively

represent the inputs to the multiterminal network and thgpuis at the nodes of the network. We have:

O (P 1o ) ) w0 {p () w0 ()} € (1)
O Pyt iyt o wl u ) [l wi ) e el el € @)

O(P(wiinyin 1wyt 1wl D s ol il ) () ol wi))}) @

o(q(y),y$?, .y alD, 2@, 2(m), W) C
o) gD w2y (m), (m) @)

2
W Y1in—20 WinY1n—2> - Wiy Y1:n— 2’w1n7w1n7" wln) {p(wlmwggw"’wg?;?)})@

1 2 m 1 2 m
Slawi 1y ey 2P 2, vy

¢( (y/](’L)7y7(/L2)7' 7yn ’:L'(l "L.gl)7"'7wglm))7\ll) g
-C
¢(p( gr)z wﬁ)w'"vwg n) w§17)”w§7)”~ wln) {p( (2) . ’wgﬁ))})@

¢(q(y§1)7y§ )7 7y1 |$ xg2)77$§m))7\1j)@
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o(as”,us” s s o e v e
S U U 2L 22 s ), W)
Sa(u, u?) syl 2P ), w) C ©)
o(aw” v, e 2P i) v)e
o(aws”,us” s s o) e
¢(Q(y£1)1ayg2)1a'-'79(@1|$£Ll—)1>33§—)17'-'7335@1)7‘1’)@
Sla(i), y? syl a2 (M), W) C (4)
n x Convex Hull{¢(q(y(1),y(2), ...,y(m)|x(1),x(2), ...,x(m)), \IJ)},

where in equation]1 we have used property (3); in equafion have used property (1) because

Py i w0 o ) =

Pyt w1 w5 e )l ) )y D D))

and furthermoreH(X(l)\W(l) Yl(l) 1) =0 for all i € [m], and that

n—

The definition of permissible sets implies that the jointtritisition p(xg”,xﬁf),.. xﬁl’”)) is in ¥; in

equatior B we have used property (2). In equalion 4, we firs timt the conditional distributions

g y@ oy e 2@ )

fori = 1,2, ...,n are all the same. We then observe that wheneyer ¢(q(y, ..., y™ 2D . 2(M) )

for i € [n], their averagel >°7 | 7 falls in the convex hull ofp(q(y(V, ...,y™|zM), ..., z(™) ). =
Proof: [Proof of Theoreni 1] The inequalities always hold for therexte cases of the s&t being

either empty orfm/|. So, it is sufficient to consider only those subset$rof that are neither empty nor

equal to[m)]. Take an arbitrary > 0 and an(n)-code satisfying the average distortion conditibrf)

(for all i € [m]) over the channej(y™),y?, ...,y |zM @) . 2(™). Let random variableé(lii) and

Yk(") (k € [n], i € [m]) respectively represent the inputs to the multiterminaivoek and the outputs at

the nodes of the network. Also assume tﬁéﬂ (i € [m]) are the messages observed at the nodes. Let

]\//.71(’,)1 (1 € [m]) be the reconstructions by the parties at the end of the conaation satisfying

A (@, mih)| <00+
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for anyi € [m]. Lastly, let¥ be a permissible set of input distributions.
We define a functiom(.) as follows: for any conditional distribution(y™"), 3, ...,y 2D 22 2(m)

and an arbitrary se¥ of distributions on¥™) x X2 x ...x(m et
¢(p(y(1)7 y(2)7 b y(m) |x(1)7 x(2)7 b x(m))7 qI)) = (5)

U w(p(y(l) ) y(2)7 ) y(m) |':U(1) ) x(2)7 A ':U(m) )p(l‘(l) Y ':U(2)7 ) ':U(m)))7

p(x(l)vx@)v---vx(m))eqj

where o(p(y™M,y@ ..y 2 22 ) s defined as the down—thof a vector of sizec =
2™ — 2 whosek!™ coordinate equalg(X®) : i € Ty, ; Y :j e (T},)°|XV) : j € (Ty)¢) whereT,
is defined as follows: there a@¥" — 2 subsets ofm] that are neither empty nor equal fi@]. Take an

arbitrary ordering of these sets and taketo be thek!" subset in that ordering.

In appendiceS T-A T-B andT4C, we verify that(.) satisfies the three properties of Lemma 1 for the
choice ofc = 2™ — 2. Lemmall thus implies that (for the definition of multiplicat of a set by a real

number see Definition] 3):
qﬁ(p(ﬁ@%n,fﬁfn, ,ﬁl&"; \wl n,wﬁ)l, ...,wl i ) {p(w1 mwﬁ)l, ,wﬁ",?)}) =
b Wi oo W I (i) w0 o)) €
n x Convex Hull{¢(q(y(1),y(2), ...,y(m)|x(1),x(2), ...,x(m)), \IJ)}
According to the Carathéodory theorem, every point insigdeconvex hull of

¢(q(y(1) Y y(2)7 A y(m) |':U(1) Y '1:(2)7 A :L'(m))’ \P)

can be written as a convex combinationcof 1 = 2™ — 1 points in the set. Corresponding to té
point in the convex combination € [27 — 1]) is an input distributiong; (z™"), (), ..., (™)) such that

the point lies in

Let p(z(, 2?20 2) = p(2) - . (2,23, ..., 2(™)) where Z is a random variable defined on the
set{1,2,3,...,2™ — 1}, taking valuei with probability equal to the weight associated to e point

2For the definition of a down-set see Definitich 4
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in the above convex combination. The convex hullggf(y™D, y@, ...,y |zM 2@ 20m) @) is
therefore included in (see Definition 3 for the definition bé tsummation used here):

U Zp(z) X (’D(q(y(l)’ R y(m) |$(1)7 b x(m))q(;l;(l)? R ;L'(m) |Z)) °

q(z® 2@ . 2(m) 2) such that for any:  *
9@, 2@, ...,2(™)|2) € ¥ and

size of the alphabet set ¢f is 2™ — 1

Conversely, the above set only involves convex combinatfgoints ing(q(yY, ..., y™|zM | .., (™), )
and hence is always contained in the convex hubb@f(y", ..., y(™ |z, ... (™)), ¥). Therefore it must
be equal to the convex hull region.

Hence,

p(p(mi, me), .l

n X U Zp(z) X gp(q(y(l), ...,y(m)\x(l), ...,w(m))q(x(l), ...,x(m)\z)).

gz, 2@ (™) ) such that for any
gz 2@ 2(m)|z) € ¥ and
size of the alphabet set ¢f is 2™ — 1

D W@y @ myy

n Wiy -+ Wiy n Wiy o Wiy

The set
§2 ~ (m) 2) (m))p( 1), (2 (m)))

(1)
o e My ’w1:n7 Wiips - Wiep Wiips Wi -0y Wi

is by definition the down-set of a vector of lengtft — 2, denoted here by’, whosek! coordinate is
equal to

W ien, ; MY je (@) W) je (1))

: 1in n

: —
The vectorv is greater than or equal t& whosek! element equaE:

n-IW® e, ; MO :je ()WY :je (),

for someW® and M@ (i € [m]) such that the joint distribution o7 @ (i € [m]) is the same as that

of W@ (i € [m]), and that the average distortion betwedt) = O (WO W@ W) and M)

is less than or equal t®() + eH In Appendix[l, we perturb random variableg () (for i € [m]) and

3This is because for any arbitrary random variabk®, Y™, Z™ such that(X",Y™) is n i.i.d. repetition of (X,Y), we
have: I(X"; Z"Y™) = nH(X|Y) — H(X"|Z"Y") > Y0 H(X,|Yy) — H(Xg|YeZy) = Yo I(Xg; Zg|Yy) = n -
I1(Xa; Zc|GYq) > n- I[(Xa; Zg|Ye) where G is uniform over{1,2,...,n} and independent ofX™, Y™, Z"). Random
variables(X¢, Yg) have the same joint distribution &%, Y").

“This is because for any arbitrary pgir™, Z™), the average distortion betweé@: and Z¢ for G uniform over{1,2,...,n}
and independent ofY™, Z"), is equal toE[A(Ye, Z¢)] = E[E[A(Ya, Za)|G]] = Yo0_, LE[A(Y,, Z,)] = E[An (Y™, Z™)].

g=1ln

DRAFT September 22, 2018



15

—_—

define random variablea! () (for i [m]) such that for every € [m], the average distortion between

M'® and M@ is less than or equal tB@ (rather thanD(® + ¢ as in the case ak/(?)) and furthermore

for every k

—

I(WOieT, ; MO :je ()W :je (1)) - O(r(e) <

—_—~—

I(WW ieT, ; MO :je (T W9 je (T,

wherer(.) is a real-valued function that satisfies the property tt{aj — 0 ase — 0.

= . . . =
Hence the vectof is coordinate by coordinate greater than or equal to a vactarosek!” element

is defined as
max <n AW ieT, ; MO :je (M) WD je (T)) —n- 0(7(6)),()).

—
UI

The vectory” must lie in

2

~ (1 ~
p(p((mih), mi,.

n

(1) (2) (m))p( (1 (2) (M)))

~(m)
My ‘wlzrw Wiips o Wiy Wi Wiips -+ Wiy
since it is coordinate by coordinate less than or equa?tolt must therefore also lie in

n X U Zp(z) X (’D(q(y(l)’ R y(m) |':U(1)7 A ':L'(m))q(x(l)? b x(m) |z))'

gD, ..., 2™ 2) such that for any:  *

a@,...,2(™|2) € ¥ and

size of the alphabet set ¢ is 2™ — 1
Please note that singg(.) is the down-set of a non-negative vector, the above Minkowak inside
the union would itself be the down-set of a ve@drrhe left hand side can be therefore written as union
over all g(z™, 2, ... 2™ 2) such thatg(z™"), (), ..., (™) |2) € U for every z, of the down-set of a
vector whosek*" coordinate equalg(X®) : i € T, ; YW :j e (Tx)|XY : j € (Tx), Z). Since
the o/ falls inside this union, there must exist a particujar™), z(?), ... (™) z) whose corresponding
vector is coordinate by coordinate greater than or equaﬁ}td'he proof ends by recalling the definition

= .
of ¥ and lettinge converge zero. [ |

SThis is because for every two non-negative vecigrand 3, we haveX x I1(77) @ (1 — A) x I(03) = IL(AD] 4 (1 — A)03)

for any A € [0, 1].
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APPENDIX |

COMPLETING THE PROOF OFTHEOREMI]
A. Checking the first property of Lemmh 1

Given the definition ofp(.) in equatior b, one needs to verify that:
e(plyWy' @, ymy M z® 2@ pmpM) 2@ i) ¢
o(p@™,y@, .y 2@ M)pE® 2@ M)

U o(ply W,y @,y MO /@ )y M) g2 gy,
p(x' W '@ . 2" (m)el

Take an arbitrary point/ inside
sp(p(y(l)y’(l), ey My ) 2D @) (M) ) x(m)))‘
We would like to prove that there exists
v € (p(p(yu),y(z)’ oy ™ 2D 2@y (1) 5(2) ...,x(m))),

and

€ gp(p(y/(l), y'(2)7 s y'(m) ]w/(l),x/@), s x/(m))p(ac/(l),w/@), s w/(m))),

such thato] + v3 > /.

Since @ is inside

e(plyMy' D, ymy MW 2@ mp®) 23 i),

the k' coordinate oft’ is less than or equal th(X®) :i € T}, ; YWY'U) . j e (T3,)°| XY : j € (Ty))
whereT}, is defined as in the proof of Theordrh 1.
We have:
I(XDieT ; YOY'O . je ()XY je (Ty)) =

(X0 ieT, ; YO je (@)X :je (Th))+
(X ieT s YO je @)XV e (), YW j e (Th)).
The second term can be written as:
I(XW:ieT 3 YV je D)XV je ),y je(T)) < (6)
I(XOX' O ien ; YU je@)IxY :je @), YVX'V:je(T)) = (7)
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(X WrieT ; YU je@)xWXOyD.jeT))+0=
I(X'(z') e Ty, XY je(m)e ; YO je(T)X V. e (Tk)°) —
(XYW je (@) ; YO je @)XV je () = (8)
I(X'DieTy ; YO je@)x'D:je (1)) -
I(XWYU) :je@) ; YO je @)XV je(@)e) <
(XD ieT, ; YO je@m)ex'D:je ()

where in inequalityf 6 we have used the fact tatx )|y ())=0 to addX'0) : j € (T})¢ in the
conditioning part of the mutual information term. We haveoahddedX ' : i e T}, but this can not

cause the expression decrease. In the equdiions [7] and 8 weided the following Markov chain
YO iem]) —(XO:iem) - (YOXD:iem]).
The k" coordinate of ¢ is thus less than or equal to
I(X9D e, ; YU je ()XW e (Ty))+
I(XDien, ; YO je @)X D :je (T
Let k" coordinate ofv] be
I(XDien, ; YU je ()XY :j e (Ty)°),
and thek!” coordinate oft; be

IX'Dien, ; YO je ()X D je (Th)°).

B. Checking the second property of Lemma 1

Our choice ofg(.) implies
O, s y™ 2V, 2™ fg(@r, s wn)}) = @Dy, 2 )p(aD, ).

Take an arbitrary poinfv’ inside the above set. The’" coordinate of v’ is less than or equal to
I(XD:ieT, ; YO :je (T,)1XY 1 j € (Tx)°) whereT), is defined as in the proof of Theorem
[@. SinceY W) = X0) for j € [m], the k*" coordinate oft’ would be less than or equal to zero. Bt

also lies inR¢, hence it has to be equal to the all zero vector. [ |
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C. Checking the third property of Lemrh 1

Given the definition ofp(.) in equatior b, one needs to verify that:

gp(p(z(l),...,z(m)|$(1),aj(2),...,m(m))p(aj(l),m(z),...,:E(m))) -

cp(p(y(l), sy 2D @)D 22 ...,x(m))).
Take an arbitrary point/ inside
o(p(z 1, ..., 2 (2D, 2@ M p(D), ., 2™)).

The k*" coordinate of v/ is less than or equal (X :i € Ty, ; 20 :j € (T1)°|X ) 1 j € (Ty)°)
whereT}, is defined as in the proof of Theorérh 1. The latter vectorfiisdess than or equal to a vector,
— . . .

denoted here by’, whosek* coordinate is equal td(X®) : i € Tj, ; YU : j € (Tp)¢| XV : j € (Ty)°)

because

p(0 0 m) ) @) () p @) m)y

5 P —

m

Py, 5@, .y ™[z 2@ 2 T p(ily),
1=1

implying that for everyi € [m], I1(Z®;G®|Y®) is zero forG" defined as follows:
G = (zW, z@ z0=D zED  zm) yQ) y@) oy )y Dy ) x M x @) xm)),
Since the pointv_’) is inside
go(p(y(l), oy |3:(1), GG )p(:n(l), ceny aj(m))),
we conclude that

go(p(z(l),...,z(m)|x(1),aj(2),...,:E(m))p(aj(l),:n(2),...,:E(m))) C

cp(p(y(l), oy @MW) 2 ).
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APPENDIXII

We will define random variabled’( (for i € [m]) such that for any € [m]

—~—

E[A(M'®), 7[@)] < DO,

and furthermore

I(WOieT, ; MO :je ()W :je(Th)) - O(r(e) <

I(WW ieT, ; MO :je (T W9 je (T,

wherer(e) — 0 ase — 0.

Intuitively speaking, the algorithm for creatid/é?(/i) is to begin With]\jf\z) (¢ € [m]), and then perturbs
this set ofm random variables inn stages as follows: at the! stage, we perturb the*” random
variable so that the average distortion constraint is feadisvhile making sure that changes in the mutual
information terms are under control.

More precisely, Iel(Gél),G(z), ...,G(m)) be equal to(]\% % ..,]\///.TE;)). We define random vari-
ables(anl),G,(?), ...,Gﬁm)) for r € [m] usmg(Gf, )I,Gf, )1, . G(m)) in a sequential manner as follows:
let GS") = foll for all i € [m], i # r. Random varlabIeQS " is defined below by perturbin@ffll in a
way that the average distortion betwe@f’ and M () is less than or equal t®) while making sure

that for anyk € [2™ — 2],
IWDieTy,; GV :je (D) WD je (D)) —I(WDieT, ; GV je (M) Wy : j e (Th)°)

is of orderO(r,.(¢)) where,(.) is a real-valued function that satisfies the property thét) — 0 as
¢ — 0. Once this is done, we can tald’ () = G\ for all i € [m] and letr(e) = S Te(e).

For any arbitraryk € [2™ — 2|, as long ag- does not belong tg47})¢, the expression

(W9 ieTy ; 69 je (@)WY :j e (T)°) -

I(W(Z) = Tk ; ng_l j c (Tk)c|W(]) ] S (Tk)c)7

would be zero no matter hov@ff) is defined. We should therefore consider only the cases where

belongs to(7%)¢. In order to defineGﬁf"), we consider two cases:

1) CaseD(") = 0: Take a binary random variab@, independent of all other random variables defined

and P(Q, = 1) = /2. LetG\") be equal

in previous stages. Assume thafQ, = 0) = DoTTe
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to Gf,’jl if Q. =1, and be equal ta/(") if Q, = 0. It can be verified that the average distortion
betweenG"” and M) is less than or equal t&(")

Take an arbitraryt € [2™ — 2] such that- € T}.. Since for any five random variables B, B’, C, D
where D is independent of A, B, C') we havel(A4; B'|C) — I(A; B|C) < I(A; B'|BCD), 1 we
can write:

IW9ieT, ; GV :je (D)WY je (T))-

IWOieT, ; GY):je @) Wi :je(Th)) <

T

IWO ety o G je ()16, WY 2 e (T1)°,Qr).

We would like to prove that the last term is of ordeic) := O(5555)- Clearly thenr,(e) — 0

ase — 0 since D(") is assumed to be non-zero. The last term above is of Offier. because:

I(WO:ieTy ; GV :je (T)Ic0 W9 2 j e (1), Q,) =

IW9DieT, ; GY:je(T)IGY WY e (T,)°,Q, =0) - P(Q, =0) <

—. €

HWW :i€[m]) P(Qr=0)= O 5o e

2) CaseD(™ = 0: Let the binary random variabl@, be the indicator functioa[A, (G, , M) = 0.

r—1

).

Let fo) be equal ton,’j1 if Q- =1, and be equal V(") if @, = 0. The average distortion

betweenG'" and M) is clearly zero. Since the average distortion betwééﬁ1 and M) is

less than or equal te, we get thatP(Q, = 0) < —— whered,,;, is defined as follows:f(/lv(”

Omin

here refers to the set/(") is taking value from)

Omin = ~_min A (i, 7).
i,7 € M) such that
Ar(i,5) #0

Take an arbitrary: € [2™ — 2] such that- € Tj.

IWDieT, ; GY :je (D)WW je (T})) -

®This is becaus@[A,(GV), M")] = E[E[A(G, M©)|Q,]] = P(Q, = DE[AN (G, M™)] < 2

€) =D,
"This is becausé(A; B|C) > I(A; B'|C) —I(A; B'|BC) > I(A; B'|C) — I(A; B'D|BC) > I(A; B'|C) — I(A; D|BC) —
I(A; B'|BCD) = I(A; B'|C) — 0 — I(A; B'|BCD) = I(A; B'|C) — I(A; B'|BCD).

€
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IWD:ien, ; GV :je @)Wy :je(Ty)) =
HW i e T|GYWY : j e (T;)°) -
HWD :ie T |GV WO« j e (Ty)) <
H(Q,) +HWY i e TGYIWY) : j e (1,)°,Q,) -
HW® i e T,|dY WD« j e (Th)°,Q,) <
H(Q) + P(@Q,=0)- HWY i e TGIWY) : j € (T}),Qr = 0) <

H(Q)+ P(Qy =0)- HW®Y :i € [m)).

Let 7,.(¢) := H(Q,) + P(Q, = 0) - HW® : i € [m]). Since P(Q, = 0) is bounded from above

by —< that converges to zero as— 0, 7,(¢) too would converge to zero as— 0.

6771 in
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