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Abstract

In this paper, we generalize the well known cut-set bound to the problem of lossy transmission of

functions of arbitrarily correlated sources over a discrete memoryless multiterminal network.

I. INTRODUCTION

A general multiterminal network is a model for reliable communication of sets of messages among

the nodes of a network, and has been extensively used in modeling of wireless systems. It is known

that unlike the point-to-point scenario, in a network scenario the separation of the source and channel

codings is not necessarily optimal [4]. In this paper we study the limitations of joint source-channel

coding strategies for lossy transmission across multiterminal networks.

A discrete memoryless general multiterminal network (GMN)is characterized by the conditional

distribution

q(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)),

whereX(i) andY (i) (1 ≤ i ≤ m) are respectively the input and the output of the channel at the ith party.

In a general multiterminal channel with correlated sources, them nodes are observing i.i.d. repetitions

of m, possibly correlated, random variablesW (i) for 1 ≤ i ≤ m. The ith party (1 ≤ i ≤ m) has access

to the i.i.d. repetitions ofW (i), and wants to reconstruct, within a given distortion, the i.i.d. repetitions

of a function of all the observations, i.e.f (i)(W (1),W (2), ...,W (m)) for some functionf (i)(·). If this is

asymptotically possible within a given distortion (see section II for a formal definition), we call the source

(W (1),W (2), ...,W (m)) admissible. In some applications, each party may be interested in recovering

i.i.d. repetitions of functions of the observations made atdifferent nodes. In this case the function

f (i)(W (1),W (2), ...,W (m)) takes the special form of
(
f (i,1)(W (1)), f (i,2)(W (2)), ..., f (i,m)(W (m))

)
for

some functionsf (i,j)(·).
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Fig. 1. The statistical description of a network.

The admissible source region of a general multiterminal network is not known when the sources are

independent except in certain special cases; less is known when the sources are allowed to be arbitrarily

correlated. It is known that the source−channel separation theorem in a network scenario breaks down

[4]. In this paper, we prove a new outer bound on the admissible source region of GMNs. Specializing

by requiring zero distortion at the receivers, assuming that the functionsf (i)(W (1),W (2), ...,W (m))

(1 ≤ i ≤ m) have the form of(f (i,1)(W (1)), f (i,2)(W (2)), ..., f (i,m)(W (m))), and that the individual

messagesf (i,j)(W (j)) are mutually independent, our result reduces to the well known cut-set bound.

The results can be carried over to the problem of “lossless transmission” for the following reason:

requiring theith party to reconstruct the i.i.d. repetitions off (i)(W (1),W (2), ...,W (m)) with arbitrarily

small average probability of error is no stronger than requiring the ith party to reconstruct the i.i.d

repetitions off (i)(W (1),W (2), ...,W (m)) with a vanishing average distortion (for details see section

II). Other extensions of cut-set bound can be found in [2] and[5]. Furthermore some existing works

show the possibility and benefit of function computation during the communication (see for instance

[3][6][7][8][9]).

A main contribution of this paper is its proof technique which is based on the “potential function

method” introduced in [10] and [11]. Instead of taking an arbitrary network and proving the desired

outer bound while keeping the network fixed throughout, we consider a function from the set of all

m-input/m-output discrete memoryless networks to subsets ofRc
+, whereRc

+ is the set of allc-tuples of

non-negative reals. We then identify properties of such a function which would need to be satisfied in

one step of the communication for it to give rise to an outer bound. The generalized cut-set bound is then
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proved by a verification argument. Properties that such a function would need to satisfy are identified,

intuitively speaking, as follows: take an arbitrary code oflength sayn over a multiterminal network.

During the simulation of the code, the information of the parties begins from theith party having the

i.i.d. repetitions of the random variableW (i); gradually evolves over time with the usage of the network;

and eventually aftern stages of communication reaches its final state where the parties know enough

to estimate their objectives within the desired average distortion. The idea is to quantify this gradual

evolution of information;bound the derivative of the information growth at each stagefrom above by

showing that one step of communication can buy us at most a certain amount; and conclude that at the

final stage, i.e. thenth stage, the system can not reach an information state better thann times the outer

bound on the derivative of information growth. An implementation of this idea requires quantification of

the information of them parties at a given stage of the process. To that end, we evaluate the function

we started with at avirtual channelwhose inputs and outputs represent, roughly speaking, the initial and

the gained knowledge of the parties at the given stage of the communication. See Lemma 1 of section

III and the proof of Theorem 1 of section IV for a formal formulation.

The outline of this paper is as follows. In section II, we introduce the basic notations and definitions

used in this paper. Section III contains the main results of this paper followed by section IV which gives

formal proofs for the results. Appendices I and II complete the proof of Theorem 1 from section III.

II. D EFINITIONS AND NOTATION

Throughout this paper we assume that each random variable takes values in a finite set.R denotes

the set of real numbers andR+ denotes the set of non-negative reals. For any natural number k, let

[k] = {1, 2, 3, ..., k}. For a setS ⊂ [k], let Sc denote its compliment, that is[k] − S. The context will

make the ambient space ofS clear.

We represent a GMN by the conditional distribution

q(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m))

meaning that the input by theith party isX(i) and the output at theith party isY (i). We assume that

the ith party (1 ≤ i ≤ m) has access to i.i.d. repetitions ofW (i). The message that needs to be delivered

(in a possibly lossy manner) to theith party is taken to beM (i) = f (i)(W (1),W (2), ...,W (m)) for some

functionf (i)(·). We assume that for anyi ∈ [m], random variablesX(i), Y (i), W (i) andM (i) take values

from discrete setsX (i), Y(i), W(i) andM(i) respectively. For any natural numbern, let (X (i))n, (Y(i))n,

(W(i))n and(M(i))n denote then-th product sets ofX (i), Y(i), W(i) andM(i). We useY (i)
1:k to denote

(Y
(i)
1 , Y

(i)
2 , ..., Y

(i)
k ).
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TABLE I

NOTATIONS

Variable Description

R Real numbers.

R+ Non-negative real numbers.

[k] The set{1, 2, 3, ..., k}.

m Number of nodes of the network.

q(y(1), ..., y(m)|x(1), ..., x(m)) The statistical description of a

multi-terminal network.

W (i) Random variable representing the source observed at theith node.

M (i) Random variable to be reconstructed,

in a possibly lossy way, at theith node.

X (i),Y(i), W(i), M(i) Alphabet sets ofX(i), Y (i), W (i), M (i).

∆(i)(·, ·) Distortion function used by theith party.

ζ
(i)
k (·) The encoding function used by theith party at thekth stage.

ϑ(i)(·) The decoding function at theith party.

n Length of the code used.

Π(·) Down-set (Definition 4);

⊕ Minkowski sum of two sets (Definition 3).

≥ A vector or a set being greater than or equal the other (Definition 4).

Ψ A permissible set of input distributions;

Given input sources and a multiterminal network,Ψ is a set of

joint distributions onX (1) × X (2) × X (3) × · · · × X (m).

Inputs to the network have a joint distribution belonging tothis set.

For anyi ∈ [m], let the distortion function∆(i) be a function∆(i) : M(i) ×M(i) → [0,∞) satisfying

∆(i)(m(i),m(i)) = 0 for all m(i) ∈ M(i). For any natural numbern and vectors(m(i)
1 ,m

(i)
2 , ...,m

(i)
n )

and (m
′(i)
1 ,m

′(i)
2 , ...,m

′(i)
n ) from (M(i))n, let

∆(i)
n (m

(i)
1:n,m

′(i)
1:n) =

1

n

n∑

k=1

∆(i)(m
(i)
k ,m

′(i)
k ).

Roughly speaking, we require the i.i.d. repetitions of random variableM (i) to be reconstructed, by the

ith party, within the average distortion ofD(i).
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Definition 1: Given natural numbern, an (n)-codeis the following set of mappings:

For anyi ∈ [m] : ζ
(i)
1 : (W(i))n −→ X (i);

For anyi ∈ [m], k ∈ [n]− {1} : ζ
(i)
k : (W(i))n × (Y(i))k−1 −→ X (i);

For anyi ∈ [m] : ϑ(i) : (W(i))n × (Y(i))n −→ (M(i))n.

Intuitively speakingζ(i)k is the encoding function of theith party at thekth time instance, andϑ(i) is the

decoding function of theith party.

Given positive realsǫ andD(i) (1 ≤ i ≤ m), and a source marginal distributionp(w(1), w(2), ..., w(m)),

an (n)-code is said to satisfy the average distortion intervalD(i) (for all i ∈ [m]) over the channel

q(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)) if the following “average distortion” condition is satisfied:

Assume that random variablesW (i)
1:n for i ∈ [m] aren i.i.d. repetition of random variables(W (1),W (2), ...,W (m))

with joint distribution p(w(1), w(2), ..., w(m)). Random variablesX(i)
k and Y

(i)
k (k ∈ [n], i ∈ [m]) are

defined according to the following constraints:

p(w
(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n , x

(1)
1:n, x

(2)
1:n, ..., x

(m)
1:n , y

(1)
1:n, y

(2)
1:n, ..., y

(m)
1:n ) =

n∏

k=1

p(w
(1)
k , w

(2)
k , ..., w

(m)
k )×

n∏

k=1

q(y
(1)
k , y

(2)
k , ..., y

(m)
k |x

(1)
k , x

(2)
k , ..., x

(m)
k )×

n∏

k=1

m∏

i=1

p(x
(i)
k |w

(i)
1:n, y

(i)
1:k−1);

and thatX(i)
1 = ζ

(i)
1

(
W

(i)
1:n

)
, and for any2 ≤ k ≤ n, X(i)

k = ζ
(i)
k

(
W

(i)
1:n, Y

(i)
1:k−1

)
. Random variablesX(i)

k

andY (i)
k are representing the input and outputs of theith party at thekth time instance and satisfy the

following Markov chains:

W
(1)
1:n ...W

(m)
1:n Y

(1)
1:k−1...Y

(m)
1:k−1 −W

(i)
1:nY

(i)
1:k−1 −X

(i)
k ,

W
(1)
1:n ...W

(m)
1:n Y

(1)
1:k−1...Y

(m)
1:k−1 −X

(1)
k ...X

(m)
k − Y

(1)
k ...Y

(m)
k .

We then have the following constraint for anyi ∈ [m]:

E

[
∆(i)

n

(
ϑ(i)

(
W

(i)
1:n, Y

(i)
1:n

)
,M

(i)
1:n

)]
≤ D(i) + ǫ,

whereM (i)
k = f (i)(W

(1)
k ,W

(2)
k , ...,W

(m)
k ).

Definition 2: Given positive realsD(i), a source marginal distributionp(w(1), w(2), ..., w(m)) is called

an admissible sourceover the channelq(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)) if for every positiveǫ and

sufficiently largen, an (n)-code satisfying the average distortionD(i), exists.

The “independent messages zero distortion capacity region” of the GMN,

C(q(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m))),

September 22, 2018 DRAFT
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is a subset ofm2-tuples of non-negative numbersR(i,j) for i, j ∈ [m] defined as follows: consider the set

of all setsW(1),W(2), ...,W(m), functionsf (i)(W (1),W (2), ...,W (m)) (1 ≤ i ≤ m) having the special

form of

(f (i,1)(W (1)), f (i,2)(W (2)), ..., f (i,m)(W (m))),

the distortion functions∆(i)(m(i),m
′(i)) (for 1 ≤ i ≤ m) being equal to the indicator function1[m(i) 6=

m
′(i)], D(i) being set to be zero for all1 ≤ i ≤ m and admissible sourcesp(w(1), w(2), ..., w(m)) for

which f (i,j)(W (j))’s are mutually independent of each other. The capacity region is then taken to be

the set of all achievableR(i,j) = H(f (j,i)(W (i))) (for i, j ∈ [m]) given the above constraints. Intuitively

speaking,R(i,j) is the communication rate fromith party to thejth party.

Definition 3: For any natural numberc and any two sets of pointsK and L in Rc
+, let K ⊕ L

refer to their Minkowski sum:K ⊕ L = {v1 + v2 : v1 ∈ K, v2 ∈ L}. For any real numberr, let

r ×K = {r · v1 : v1 ∈ K}. We also defineK
r

as the set formed by shrinkingK through scaling each

point of it by a factor1
r
. Note that in generalr ×K 6= (r1 ×K)⊕ (r2 ×K) whenr = r1 + r2 but this

is true whenK is a convex set.

Definition 4: For any two points−→v1 and−→v2 in Rc
+, we say−→v1 ≥ −→v2 if and only if each coordinate of

−→v1 is greater than or equal to the corresponding coordinate of−→v2 . For any two sets of pointsA andB in

Rc
+, we sayA ≤ B if and only if for any point−→a ∈ A, there exists a point

−→
b ∈ B such that−→a ≤

−→
b .

For a setA ∈ Rc
+, the down-setΠ(A) is defined as:Π(A) = {−→v ∈ Rc

+ : −→v ≤ −→w for some−→w ∈ A}.

Definition 5: Given a specific network architectureq(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)), and the

source marginal distributionp(w(1), w(2), ..., w(m)), it may be possible to find properties that the inputs

to the multiterminal network throughout the communicationsatisfy. For instance in an interference

channel or a multiple access channel with no output feedback, if the transmitters observe independent

messages, the random variables representing their information stay independent of each other throughout

the communication. This is because the transmitters neither interact nor receive any feedback from the

outputs. Other constraints on the inputs to the network might come from practical requirements such as a

maximum instantaneous power used up by one or a group of nodesin each stage of the communication.

Given a multiterminal networkq(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)) and assuming thatX (i) (i ∈ [m])

is the setX(i) is taking value from, letΨ be a set of joint distributions onX (1)×X (2)×X (3)× ...×X (m)

for which the following guarantee exists: for any communication protocol, the inputs to the multiterminal

network at each time stage have a joint distribution belonging to the setΨ. Such a set will be called a

permissible setof input distributions. Some of the results below will be stated in terms of this nebulously

DRAFT September 22, 2018
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defined regionΨ. To get explicit results, simply replaceΨ by the set of all probability distributions on

X (1) × X (2) × X (3) × ...× X (m).

III. STATEMENT OF THE RESULTS

Theorem 1:Given any GMNq(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)), a sequence of non-negative real

numbersD(i) (i ∈ [m]), an arbitrary admissible sourceW (i) (i ∈ [m]), and a permissible set of input

distributions of the networkΨ, there exists

• joint distributionq(x(1), x(2), ..., x(m), z) where size of the alphabet set ofZ is 2m−1 and furthermore

q(x(1), x(2), ..., x(m)|z) belongs toΨ for any valuez that the random variableZ might take;

• joint distribution p(m̂(1), m̂(2), ..., m̂(m), w(1), w(2), ..., w(m)) where the average distortion between

M (i) = f (i)(W (1),W (2), ...,W (m)) andM̂ (i) is less than or equal toD(i), i.e. ∆(i)(M (i), M̂ (i)) ≤

D(i),

such that for any arbitraryT ⊂ [m] the following inequality holds:

I
(
W (i) : i ∈ T ; M̂ (j) : j ∈ T c|W (j) : j ∈ T c

)
≤ I

(
X(i) : i ∈ T ; Y (j) : j ∈ T c|X(j) : j ∈ T c, Z

)
,

whereY (1), Y (2), ..., Y (m),X(1),X(2), ...,X(m) andZ are jointly distributed according to

q(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)) · q(x(1), x(2), ..., x(m), z).

Note that here the following Markov chain holds:

Z −X(1),X(2), ...,X(m) − Y (1), Y (2), ..., Y (m).

Discussion 1:The fact that the expressions on both sides of the above inequality are of the same

form is suggestive. To any given channelq(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)) and input distribution

q(x(1), x(2), ..., x(m)), assign the down-set of a vector inR2m

+ whosekth coordinate is defined as

I
(
X(i) : i ∈ Tk ; Y (j) : j ∈ T c

k |X
(j) : j ∈ T c

k

)
,

whereTk is defined as follows: there are2m subsets of[m]; take an arbitrary ordering of these sets and

takeTk to be thekth subset in that ordering (though not required but for the sakeof consistency with

the notation used in the proof of the theorem assume thatT2k−1 andT2k are the empty set and the full

set respectively). Next, to any channelq(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)) and a set of permissible

input distributions, we assign a region by taking the convexhull of the union over all permissible input

distributions, of the region associated to the channel and the varying input distribution. A channel is said

to be weaker than another channel if the region associated tothe first channel is contained in the region

associated to the second channel.

September 22, 2018 DRAFT
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Intuitively speaking, given a communication task one can consider a virtual channel whose inputs and

outputs represent, roughly speaking, the raw and acceptable information objectives at them parties. Fur-

thermore, let the only permissible input distribution for this virtual channel to be one given by the statisti-

cal description of the raw information of the parties. More specifically, given anyp(m̂(1), ..., m̂(m), w(1), ..., w(m))

such that∆(i)(M (i), M̂ (i)) ≤ D(i) holds, consider the virtual channelp(m̂(1), m̂(2), ..., m̂(m)|w(1), w(2), ..., w(m))

and the input distributionp(w(1), w(2), ..., w(m)). The inputs of this virtual channel, i.e.W (1),W (2), ...,W (m),

and its outputs, i.e.̂M (1), M̂ (2), ..., M̂ (m), can be understood as the raw information and acceptable infor-

mation objectives at them parties. The region associated to the virtual channelp(m̂(1), ..., m̂(m)|w(1), ..., w(m))

and the input distributionp(w(1), w(2), ..., w(m)) would be the down-set of a vector inR2m

+ whosekth

coordinate is defined as

I
(
W (i) : i ∈ T ; M̂ (j) : j ∈ T c|W (j) : j ∈ T c

)
.

Theorem 1 is basically saying that this region associated tothis virtual channel and the corresponding input

distribution should be included inside the region associated to the channelq(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)).

Here the complexity of transmission of functions of correlated messages is effectively translated into the

performance region of a virtual channel at a given input distribution. This virtual channel at the given

input distribution must be, in the above mentioned sense, weaker than any physical channel fit for the

communication problem.

Corollary 1: Given any GMNq(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)), the following region forms an

outer bound on the independent messages zero distortion capacity region (see Definition 2) of the network:

⋃

q(x(1), x(2), ..., x(m), z) such that for anyz

q(x(1), x(2), ..., x(m)|z) ∈ Ψ and

size of the alphabet set ofZ is 2m − 1

{
non-negativeR(i,j) for i, j ∈ [m]: for any arbitraryT ⊂ [m]

∑

i∈T,j∈T c

R(i,j) ≤ I
(
X(i) : i ∈ T ; Y (j) : j ∈ T c|X(j) : j ∈ T c, Z

)

is satisfied.

}
,

whereY (1), Y (2), ..., Y (m),X(1),X(2), ...,X(m) andZ are jointly distributed according to

q(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)) · q(x(1), x(2), ..., x(m), z).

Remark 1:This bound is sometimes tight; for instance it is tight for a multiple access channel with

independent source messages whenΨ is taken to be the set of all mutually independent input distributions.
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Remark 2:This bound reduces to the traditional cut-set bound whenΨ is taken to be the set of all

input distributions, andI
(
X(i) : i ∈ T ; Y (i) : i ∈ T c|X(i) : i ∈ T c, Z

)
is bounded from above by1

I
(
X(i) : i ∈ T ; Y (j) : j ∈ T c|X(j) : j ∈ T c

)
.

A. The Main Lemma

During the simulation of the code, the information of the parties begins from theith party having

W
(i)
1:n and gradually evolves over time with the usage of the network. At the jth stage, theith party has

W
(i)
1:nY

(i)
1:j . We represent the information state of the whole system at the jth stage by the virtual channel

p(w
(1)
1:ny

(1)
1:j , ..., w

(m)
1:n y

(m)
1:j |w

(1)
1:n, ..., w

(m)
1:n ) and the input distributionp(w(1)

1:n, ..., w
(m)
1:n ). In order to quantify

the information state, we map the information state to a subset of Rc
+ (c is a natural number) using a

functionφ(.). A formal definition ofφ and the properties we require it to satisfy are as follows:

Let φ(p(y(1), ..., y(m)|x(1), ..., x(m)),Ψ) be a function that takes as input an arbitrarym-input/m-output

GMN and a subset of probability distributions on the inputs of this network and returns a subset ofRc
+

wherec is a natural number.φ(.) is thus a function from the set of all conditional probability distributions

defined on finite sets and a corresponding set of input distributions, to subsets ofRc
+.

Assume that the functionφ(.) satisfies the following three properties. The intuitive description of the

properties is provided after their formal statement. Please see Definitions 3 and 4 for the notations used.

1) Assume that the conditional distributionp(y(1)y
′(1), y(2)y

′(2), ..., y(m)y
′(m)|x(1), x(2), ..., x(m)) sat-

isfies the following

p(y(1)y
′(1), y(2)y

′(2), ..., y(m)y
′(m)|x(1), ..., x(m))

= p(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)) ·

p(y
′(1), y

′(2), ..., y
′(m)|x

′(1), x
′(2), ..., x

′(m)),

where X
′(i) is a deterministic function ofY (i) (i.e. H(X

′(i)|Y (i)) = 0 (i ∈ [m])). Random

variable X
′(i) (for i ∈ [m]) is assumed to take value from setX

′(i). Take an arbitrary input

distribution q(x1, x2, ..., xm). This input distribution, together with the conditional distribution

p(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)), impose a joint distributionq(x
′(1), x

′(2), ..., x
′(m)) on

1This is valid becauseI
`

X(i) : i ∈ T ; Y (j) : j ∈ T c|X(j) : j ∈ T c, Z
´

= H
`

Y (j) : j ∈ T c|X(j) : j ∈ T c, Z
´

−H
`

Y (j) :

j ∈ T c|X(i) : i ∈ [m], Z
´

= H
`

Y (j) : j ∈ T c|X(j) : j ∈ T c, Z
´

− H
`

Y (j) : j ∈ T c|X(i) : i ∈ [m]
´

≤ H
`

Y (j) : j ∈

T c|X(j) : j ∈ T c
´

−H
`

Y (j) : j ∈ T c|X(i) : i ∈ [m]
´

= I
`

X(i) : i ∈ T ; Y (j) : j ∈ T c|X(j) : j ∈ T c
´

.
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(X
′(1),X

′(2), ...,X
′(m)). Then the following constraint needs to be satisfied for any arbitrary set

Ψ of joint distributions onX
′(1) × X

′(2) × · · · × X
′(m) that containsq(x

′(1), x
′(2), ..., x

′(m)):

φ

(
p(y(1)y

′(1), ..., y(m)y
′(m)|x(1), ..., x(m))

, {q(x1, ..., xm)}

)
⊆

φ
(
p(y(1), ..., y(m)|x(1), ..., x(m)), {q(x1, ..., xm)}

)

⊕ φ
(
p(y

′(1), y
′(2), ..., y

′(m)|x
′(1), ..., x

′(m)),Ψ
)
.

2) Assume that

p(y(1), ..., y(m)|x(1), ..., x(m)) =
m∏

i=1

1[y(i) = x(i)].

Then we require that for any input distributionq(x1, x2, ..., xm), the set

φ
(
p(y(1), ..., y(m)|x(1), ..., x(m)), {q(x1, ..., xm)}

)

contains only the origin inRc.

3) Assume that

p(z(1), ..., z(m), y(1), ..., y(m)|x(1), ..., x(m)) =

p(y(1), ..., y(m)|x(1), ..., x(m))
∏m

i=1 p(zi|yi).

Then we require that for any input distributionq(x1, x2, ..., xm),

φ
(
p(z(1), ..., z(m) |x(1), ..., x(m)), {q(x1, ..., xm)}

)
⊆

φ
(
p(y(1), ..., y(m)|x(1), ..., x(m)), {q(x1, ..., xm)}

)
.

The first condition is intuitively saying that additional use of the channel

p(y
′(1), y

′(2), ..., y
′(m)|x

′(1), x
′(2), ..., x

′(m))

can expandφ(.) by at most

φ
(
p(y

′(1), y
′(2), ..., y

′(m)|x
′(1), x

′(2), ..., x
′(m)),Ψ

)
.

The second condition is intuitively saying thatφ(.) vanishes if the parties are unable to communicate,

that is each party receives exactly what it puts at the input of the channel. The third condition is basically

saying that making a channel weaker at each party can not cause φ(.) expand.
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Lemma 1:For any functionφ(.) satisfying the above three properties, and for any multiterminal

network

q(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)),

distortionsD(i) and arbitrary admissible sourceW (i) (i ∈ [m]), positive ǫ and (n)-code satisfying

the distortion constraints and a permissible setΨ of input distributions, we have (for the definition

of multiplication of a set by a real number see Definition 3):

φ
(
p(m̂

(1)
1:n, ..., m̂

(m)
1:n |w

(1)
1:n, ..., w

(m)
1:n ), {p(w

(1)
1:n, ..., w

(m)
1:n )}

)
⊆

n× Convex Hull
{
φ
(
q(y(1), ..., y(m)|x(1), ..., x(m)),Ψ

)}
,

whereW (i)
1:n (i ∈ [m]) are the messages observed at the nodes;M̂

(i)
1:n (i ∈ [m]) are the reconstructions

by the parties at the end of the communication satisfying

E

[
∆(i)

n

(
(m̂

(i)
1:n,m

(i)
1:n

)]
≤ D(i) + ǫ,

for any i ∈ [m].

IV. PROOFS

Proof: [Proof of Lemma 1] Let random variablesX(i)
k and Y

(i)
k (k ∈ [n], i ∈ [m]) respectively

represent the inputs to the multiterminal network and the outputs at the nodes of the network. We have:

φ
(
p(m̂

(1)
1:n, m̂

(2)
1:n, ..., m̂

(m)
1:n |w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n ), {p(w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n )}

)
⊆ (1)

φ
(
p(w

(1)
1:ny

(1)
1:n, w

(2)
1:ny

(2)
1:n, ..., w

(m)
1:n y

(m)
1:n |w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n ), {p(w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n )}

)
⊆ (2)

φ
(
p(w

(1)
1:ny

(1)
1:n−1, w

(2)
1:ny

(2)
1:n−1, ..., w

(m)
1:n y

(m)
1:n−1|w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n ), {p(w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n )}

)
⊕

φ(q(y(1)n , y(2)n , ..., y(m)
n |x(1)n , x(2)n , ..., x(m)

n ),Ψ) ⊆

φ
(
p(w

(1)
1:ny

(1)
1:n−2, w

(2)
1:ny

(2)
1:n−2, ..., w

(m)
1:n y

(m)
1:n−2|w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n ), {p(w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n )}

)
⊕

φ(q(y
(1)
n−1, y

(2)
n−1, ..., y

(m)
n−1|x

(1)
n−1, x

(2)
n−1, ..., x

(m)
n−1),Ψ)⊕

φ(q(y(1)n , y(2)n , ..., y(m)
n |x(1)n , x(2)n , ..., x(m)

n ),Ψ) ⊆

· · · ⊆

φ
(
p(w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n |w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n ), {p(w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n )}

)
⊕

φ(q(y
(1)
1 , y

(2)
1 , ..., y

(m)
1 |x

(1)
1 , x

(2)
1 , ..., x

(m)
1 ),Ψ)⊕
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φ(q(y
(1)
2 , y

(2)
2 , ..., y

(m)
2 |x

(1)
2 , x

(2)
2 , ..., x

(m)
2 ),Ψ)⊕ · · ·

φ(q(y
(1)
n−1, y

(2)
n−1, ..., y

(m)
n−1|x

(1)
n−1, x

(2)
n−1, ..., x

(m)
n−1),Ψ)⊕

φ(q(y(1)n , y(2)n , ..., y(m)
n |x(1)n , x(2)n , ..., x(m)

n ),Ψ) ⊆ (3)

φ(q(y
(1)
1 , y

(2)
1 , ..., y

(m)
1 |x

(1)
1 , x

(2)
1 , ..., x

(m)
1 ),Ψ)⊕

φ(q(y
(1)
2 , y

(2)
2 , ..., y

(m)
2 |x

(1)
2 , x

(2)
2 , ..., x

(m)
2 ),Ψ)⊕ · · ·

φ(q(y
(1)
n−1, y

(2)
n−1, ..., y

(m)
n−1|x

(1)
n−1, x

(2)
n−1, ..., x

(m)
n−1),Ψ)⊕

φ(q(y(1)n , y(2)n , ..., y(m)
n |x(1)n , x(2)n , ..., x(m)

n ),Ψ) ⊆ (4)

n× Convex Hull
{
φ(q(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)),Ψ)

}
,

where in equation 1 we have used property (3); in equation 2 wehave used property (1) because

p(w
(1)
1:ny

(1)
1:n, w

(2)
1:ny

(2)
1:n, ..., w

(m)
1:n y

(m)
1:n |w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n ) =

p(w
(1)
1:ny

(1)
1:n−1, w

(2)
1:ny

(2)
1:n−1, ..., w

(m)
1:n y

(m)
1:n−1|w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n ) · p(y(1)n , ..., y(m)

n |x(1)n , x(2)n , ..., x(m)
n )

and furthermoreH(X
(i)
n |W

(i)
1:nY

(i)
1:n−1) = 0 for all i ∈ [m], and that

p(y(1)n , y(2)n , ..., y(m)
n |x(1)n , x(2)n , ..., x(m)

n ) = q(y(1)n , y(2)n , ..., y(m)
n |x(1)n , x(2)n , ..., x(m)

n ).

The definition of permissible sets implies that the joint distribution p(x
(1)
n , x

(2)
n , ..., x

(m)
n ) is in Ψ; in

equation 3 we have used property (2). In equation 4, we first note that the conditional distributions

q(y
(1)
i , y

(2)
i , ..., y

(m)
i |x

(1)
i , x

(2)
i , ..., x

(m)
i )

for i = 1, 2, ..., n are all the same. We then observe that whenever−→vi ∈ φ(q(y(1), ..., y(m)|x(1), ..., x(m)),Ψ)

for i ∈ [n], their average,1
n

∑n
i=1

−→vi falls in the convex hull ofφ(q(y(1), ..., y(m)|x(1), ..., x(m)),Ψ).

Proof: [Proof of Theorem 1] The inequalities always hold for the extreme cases of the setT being

either empty or[m]. So, it is sufficient to consider only those subsets of[m] that are neither empty nor

equal to[m]. Take an arbitraryǫ > 0 and an(n)-code satisfying the average distortion conditionD(i)

(for all i ∈ [m]) over the channelq(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)). Let random variablesX(i)
k and

Y
(i)
k (k ∈ [n], i ∈ [m]) respectively represent the inputs to the multiterminal network and the outputs at

the nodes of the network. Also assume thatW
(i)
1:n (i ∈ [m]) are the messages observed at the nodes. Let

M̂
(i)
1:n (i ∈ [m]) be the reconstructions by the parties at the end of the communication satisfying

E

[
∆(i)

n

(
(m̂

(i)
1:n,m

(i)
1:n

)]
≤ D(i) + ǫ,
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for any i ∈ [m]. Lastly, letΨ be a permissible set of input distributions.

We define a functionφ(.) as follows: for any conditional distributionp(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m))

and an arbitrary setΨ of distributions onX (1) × X (2) × · · ·X (m), let

φ(p(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)),Ψ)) = (5)

⋃

p(x(1),x(2),...,x(m))∈Ψ

ϕ
(
p(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m))p(x(1), x(2), ..., x(m))

)
,

whereϕ(p(y(1), y(2), ..., y(m), x(1), x(2), ..., x(m))) is defined as the down-set2 of a vector of sizec =

2m − 2 whosekth coordinate equalsI
(
X(i) : i ∈ Tk ; Y (j) : j ∈ (Tk)

c|X(j) : j ∈ (Tk)
c
)

whereTk

is defined as follows: there are2m − 2 subsets of[m] that are neither empty nor equal to[m]. Take an

arbitrary ordering of these sets and takeTk to be thekth subset in that ordering.

In appendices I-A, I-B and I-C, we verify thatφ(.) satisfies the three properties of Lemma 1 for the

choice ofc = 2m − 2. Lemma 1 thus implies that (for the definition of multiplication of a set by a real

number see Definition 3):

φ
(
p(m̂

(1)
1:n, m̂

(2)
1:n, ..., m̂

(m)
1:n |w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n ), {p(w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n )}

)
=

ϕ
(
p(m̂

(1)
1:n, m̂

(2)
1:n, ..., m̂

(m)
1:n |w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n )p(w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n )

)
⊆

n× Convex Hull
{
φ(q(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)),Ψ)

}
.

According to the Carathéodory theorem, every point insidethe convex hull of

φ(q(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)),Ψ)

can be written as a convex combination ofc + 1 = 2m − 1 points in the set. Corresponding to theith

point in the convex combination (i ∈ [2m − 1]) is an input distributionqi(x(1), x(2), ..., x(m)) such that

the point lies in

ϕ
(
q(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m))qi(x

(1), x(2), ..., x(m))
)
.

Let p(x(1), x(2), ..., x(m), z) = p(z) · qz(x
(1), x(2), ..., x(m)) whereZ is a random variable defined on the

set {1, 2, 3, ..., 2m − 1}, taking valuei with probability equal to the weight associated to theith point

2For the definition of a down-set see Definition 4

September 22, 2018 DRAFT



14

in the above convex combination. The convex hull ofφ(q(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)),Ψ) is

therefore included in (see Definition 3 for the definition of the summation used here):

⋃

q(x(1), x(2), ..., x(m), z) such that for anyz

q(x(1), x(2), ..., x(m)|z) ∈ Ψ and

size of the alphabet set ofZ is 2m − 1

∑

z

p(z)× ϕ
(
q(y(1), ..., y(m)|x(1), ..., x(m))q(x(1), ..., x(m)|z)

)
.

Conversely, the above set only involves convex combinationof points inφ(q(y(1), ..., y(m)|x(1), ..., x(m)),Ψ)

and hence is always contained in the convex hull ofφ(q(y(1), ..., y(m)|x(1), ..., x(m)),Ψ). Therefore it must

be equal to the convex hull region.

Hence,

ϕ
(
p(m̂

(1)
1:n, m̂

(2)
1:n, ..., m̂

(m)
1:n |w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n )p(w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n )

)
⊆

n×
⋃

q(x(1), x(2), ..., x(m), z) such that for anyz

q(x(1), x(2), ..., x(m)|z) ∈ Ψ and

size of the alphabet set ofZ is 2m − 1

∑

z

p(z)× ϕ
(
q(y(1), ..., y(m)|x(1), ..., x(m))q(x(1), ..., x(m)|z)

)
.

The set

ϕ
(
p(m̂

(1)
1:n, m̂

(2)
1:n, ..., m̂

(m)
1:n |w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n )p(w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n )

)

is by definition the down-set of a vector of length2m − 2, denoted here by−→v , whosekth coordinate is

equal to

I
(
W

(i)
1:n : i ∈ Tk ; M̂

(j)
1:n : j ∈ (Tk)

c|W
(j)
1:n : j ∈ (Tk)

c
)
.

The vector−→v is greater than or equal to
−→
ṽ whosekth element equals:3

n · I
(
W̃ (i) : i ∈ Tk ; ˜̂

M (j) : j ∈ (Tk)
c|W̃ (j) : j ∈ (Tk)

c
)
,

for someW̃ (i) and
˜̂
M (i) (i ∈ [m]) such that the joint distribution of̃W (i) (i ∈ [m]) is the same as that

of W (i) (i ∈ [m]), and that the average distortion betweeñM (i) = f (i)(W̃ (1), W̃ (2), ..., W̃ (m)) and
˜̂
M (i)

is less than or equal toD(i) + ǫ.4 In Appendix II, we perturb random variableŝ̃M (i) (for i ∈ [m]) and

3This is because for any arbitrary random variablesXn, Y n, Zn such that(Xn, Y n) is n i.i.d. repetition of (X,Y ), we

have: I(Xn;Zn|Y n) = nH(X|Y ) − H(Xn|ZnY n) ≥
Pn

g=1 H(Xg|Yg) − H(Xg|YgZg) =
Pn

g=1 I(Xg;Zg |Yg) = n ·

I(XG;ZG|GYG) ≥ n · I(XG;ZG|YG) whereG is uniform over{1, 2, ..., n} and independent of(Xn, Y n, Zn). Random

variables(XG, YG) have the same joint distribution as(X,Y ).

4This is because for any arbitrary pair(Y n, Zn), the average distortion betweenYG andZG for G uniform over{1, 2, ..., n}

and independent of(Y n, Zn), is equal toE[∆(YG, ZG)] = E[E[∆(YG, ZG)|G]] =
Pn

g=1
1
n
E[∆(Yg, Zg)] = E[∆n(Y

n, Zn)].

DRAFT September 22, 2018



15

define random variables˜̂M ′(i) (for i ∈ [m]) such that for everyi ∈ [m], the average distortion between
˜̂
M

′(i) andM̃ (i) is less than or equal toD(i) (rather thanD(i)+ ǫ as in the case of̂̃M (i)) and furthermore

for everyk

I
(
W̃ (i) : i ∈ Tk ; ˜̂

M
′(j) : j ∈ (Tk)

c|W̃ (j) : j ∈ (Tk)
c
)
−O(τ(ǫ)) ≤

I
(
W̃ (i) : i ∈ Tk ; ˜̂

M (j) : j ∈ (Tk)
c|W̃ (j) : j ∈ (Tk)

c
)
,

whereτ(.) is a real-valued function that satisfies the property thatτ(ǫ) → 0 as ǫ → 0.

Hence the vector
−→
ṽ is coordinate by coordinate greater than or equal to a vector

−→
ṽ′ whosekth element

is defined as

max

(
n · I

(
W̃ (i) : i ∈ Tk ; ˜̂

M
′(j) : j ∈ (Tk)

c|W̃ (j) : j ∈ (Tk)
c
)
− n · O(τ(ǫ)), 0

)
.

The vector
−→
ṽ′ must lie in

ϕ
(
p((m̂

(1)
1:n, m̂

(2)
1:n, ..., m̂

(m)
1:n |w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n )p(w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n )

)
,

since it is coordinate by coordinate less than or equal to
−→
ṽ . It must therefore also lie in

n×
⋃

q(x(1), ..., x(m), z) such that for anyz

q(x(1), ..., x(m)|z) ∈ Ψ and

size of the alphabet set ofZ is 2m − 1

∑

z

p(z)× ϕ
(
q(y(1), ..., y(m)|x(1), ..., x(m))q(x(1), ..., x(m)|z)

)
.

Please note that sinceϕ(.) is the down-set of a non-negative vector, the above Minkowski sum inside

the union would itself be the down-set of a vector.5 The left hand side can be therefore written as union

over all q(x(1), x(2), ..., x(m), z) such thatq(x(1), x(2), ..., x(m)|z) ∈ Ψ for everyz, of the down-set of a

vector whosekth coordinate equalsI
(
X(i) : i ∈ Tk ; Y (j) : j ∈ (Tk)

c|X(j) : j ∈ (Tk)
c, Z

)
. Since

the
−→
ṽ′ falls inside this union, there must exist a particularq(x(1), x(2), ..., x(m), z) whose corresponding

vector is coordinate by coordinate greater than or equal to
−→
ṽ′ . The proof ends by recalling the definition

of
−→
ṽ′ and lettingǫ converge zero.

5This is because for every two non-negative vectors−→v1 and−→v2 , we haveλ×Π(−→v1)⊕ (1−λ)×Π(−→v2) = Π(λ−→v1 +(1−λ)−→v2)

for any λ ∈ [0, 1].
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APPENDIX I

COMPLETING THE PROOF OFTHEOREM 1

A. Checking the first property of Lemma 1

Given the definition ofφ(.) in equation 5, one needs to verify that:

ϕ
(
p(y(1)y

′(1), ..., y(m)y
′(m)|x(1), x(2), ..., x(m))p(x(1), x(2), ..., x(m))

)
⊆

ϕ
(
p(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m))p(x(1), x(2), ..., x(m))

)
⊕

⋃

p(x′(1),x
′(2),...,x

′(m))∈Ψ

ϕ
(
p(y

′(1), y
′(2), ..., y

′(m)|x
′(1), x

′(2), ..., x
′(m))p(x

′(1), x
′(2), ..., x

′(m))
)
.

Take an arbitrary point−→v inside

ϕ
(
p(y(1)y

′(1), ..., y(m)y
′(m)|x(1), x(2), ..., x(m))p(x(1), x(2), ..., x(m))

)
.

We would like to prove that there exists

−→v1 ∈ ϕ
(
p(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m))p(x(1), x(2), ..., x(m))

)
,

and

−→v2 ∈ ϕ
(
p(y

′(1), y
′(2), ..., y

′(m)|x
′(1), x

′(2), ..., x
′(m))p(x

′(1), x
′(2), ..., x

′(m))
)
,

such that−→v1 +
−→v2 ≥ −→v .

Since−→v is inside

ϕ
(
p(y(1)y

′(1), ..., y(m)y
′(m)|x(1), x(2), ..., x(m))p(x(1), x(2), ..., x(m))

)
,

thekth coordinate of−→v is less than or equal toI
(
X(i) : i ∈ Tk ; Y (j)Y

′(j) : j ∈ (Tk)
c|X(j) : j ∈ (Tk)

c
)

whereTk is defined as in the proof of Theorem 1.

We have:

I
(
X(i) : i ∈ Tk ; Y (j)Y

′(j) : j ∈ (Tk)
c|X(j) : j ∈ (Tk)

c
)
=

I
(
X(i) : i ∈ Tk ; Y (j) : j ∈ (Tk)

c|X(j) : j ∈ (Tk)
c
)
+

I
(
X(i) : i ∈ Tk ; Y

′(j) : j ∈ (Tk)
c|X(j) : j ∈ (Tk)

c, Y (j) : j ∈ (Tk)
c
)
.

The second term can be written as:

I
(
X(i) : i ∈ Tk ; Y

′(j) : j ∈ (Tk)
c|X(j) : j ∈ (Tk)

c, Y (j) : j ∈ (Tk)
c
)
≤ (6)

I
(
X(i)X

′(i) : i ∈ Tk ; Y
′(j) : j ∈ (Tk)

c|X(j) : j ∈ (Tk)
c, Y (j)X

′(j) : j ∈ (Tk)
c
)
= (7)
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I
(
X

′(i) : i ∈ Tk ; Y
′(j) : j ∈ (Tk)

c|X(j)X
′(j)Y (j) : j ∈ (Tk)

c
)
+ 0 =

I
(
X

′(i) : i ∈ Tk,X
(j)Y (j) : j ∈ (Tk)

c ; Y
′(j) : j ∈ (Tk)

c|X
′(j) : j ∈ (Tk)

c
)
−

I
(
X(j)Y (j) : j ∈ (Tk)

c ; Y
′(j) : j ∈ (Tk)

c|X
′(j) : j ∈ (Tk)

c
)
= (8)

I
(
X

′(i) : i ∈ Tk ; Y
′(j) : j ∈ (Tk)

c|X
′(j) : j ∈ (Tk)

c
)
−

I
(
X(j)Y (j) : j ∈ (Tk)

c ; Y
′(j) : j ∈ (Tk)

c|X
′(j) : j ∈ (Tk)

c
)
≤

I
(
X

′(i) : i ∈ Tk ; Y
′(j) : j ∈ (Tk)

c|X
′(j) : j ∈ (Tk)

c
)

where in inequality 6 we have used the fact thatH(X
′(i)|Y (i))=0 to addX

′(j) : j ∈ (Tk)
c in the

conditioning part of the mutual information term. We have also addedX
′(i) : i ∈ Tk, but this can not

cause the expression decrease. In the equations 7 and 8 we have used the following Markov chain

(
Y

′(i) : i ∈ [m]
)
− (X

′(i) : i ∈ [m])− (Y (i)X(i) : i ∈ [m]).

The kth coordinate of−→v is thus less than or equal to

I
(
X(i) : i ∈ Tk ; Y (j) : j ∈ (Tk)

c|X(j) : j ∈ (Tk)
c
)
+

I
(
X

′(i) : i ∈ Tk ; Y
′(j) : j ∈ (Tk)

c|X
′(j) : j ∈ (Tk)

c
)
.

Let kth coordinate of−→v1 be

I
(
X(i) : i ∈ Tk ; Y (j) : j ∈ (Tk)

c|X(j) : j ∈ (Tk)
c
)
,

and thekth coordinate of−→v2 be

I
(
X

′(i) : i ∈ Tk ; Y
′(j) : j ∈ (Tk)

c|X
′(j) : j ∈ (Tk)

c
)
.

�

B. Checking the second property of Lemma 1

Our choice ofφ(.) implies

φ
(
p(y(1), ..., y(m)|x(1), ..., x(m)), {q(x1, ..., xm)}

)
= ϕ(p(y(1), ..., y(m)|x(1), ..., x(m))p(x(1), ..., x(m))).

Take an arbitrary point−→v inside the above set. Thekth coordinate of−→v is less than or equal to

I
(
X(i) : i ∈ Tk ; Y (j) : j ∈ (Tk)

c|X(j) : j ∈ (Tk)
c
)

whereTk is defined as in the proof of Theorem

1. SinceY (j) = X(j) for j ∈ [m], the kth coordinate of−→v would be less than or equal to zero. But−→v

also lies inRc
+, hence it has to be equal to the all zero vector. �
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C. Checking the third property of Lemma 1

Given the definition ofφ(.) in equation 5, one needs to verify that:

ϕ
(
p(z(1), ..., z(m)|x(1), x(2), ..., x(m))p(x(1), x(2), ..., x(m))

)
⊆

ϕ
(
p(y(1), ..., y(m)|x(1), x(2), ..., x(m))p(x(1), x(2), ..., x(m))

)
.

Take an arbitrary point−→v inside

ϕ(p(z(1), ..., z(m)|x(1), x(2), ..., x(m))p(x(1), ..., x(m))).

The kth coordinate of−→v is less than or equal toI
(
X(i) : i ∈ Tk ; Z(j) : j ∈ (Tk)

c|X(j) : j ∈ (Tk)
c
)

whereTk is defined as in the proof of Theorem 1. The latter vector itself is less than or equal to a vector,

denoted here by
−→
v′ , whosekth coordinate is equal toI

(
X(i) : i ∈ Tk ; Y (j) : j ∈ (Tk)

c|X(j) : j ∈ (Tk)
c
)

because

p(z(1), z(2), ..., z(m), y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)) =

p(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m))

m∏

i=1

p(zi|yi),

implying that for everyi ∈ [m], I(Z(i);G(i)|Y (i)) is zero forG(i) defined as follows:

G(i) = (Z(1), Z(2), ..., Z(i−1), Z(i+1), ..., Z(m), Y (1), Y (2), ..., Y (i−1), Y (i+1), ..., Y (m),X(1),X(2), ...,X(m)).

Since the point
−→
v′ is inside

ϕ(p(y(1), ..., y(m)|x(1), x(2), ..., x(m))p(x(1), ..., x(m))),

we conclude that

ϕ
(
p(z(1), ..., z(m)|x(1), x(2), ..., x(m))p(x(1), x(2), ..., x(m))

)
⊆

ϕ
(
p(y(1), ..., y(m)|x(1), x(2), ..., x(m))p(x(1), x(2), ..., x(m))

)
.

�
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APPENDIX II

We will define random variables˜̂M ′(i) (for i ∈ [m]) such that for anyi ∈ [m]

E
[
∆i(

˜̂
M

′(i),
˜̂
M (i))

]
≤ D(i),

and furthermore

I
(
W̃ (i) : i ∈ Tk ; ˜̂

M
′(j) : j ∈ (Tk)

c|W̃ (j) : j ∈ (Tk)
c
)
−O(τ(ǫ)) ≤

I
(
W̃ (i) : i ∈ Tk ; ˜̂

M (j) : j ∈ (Tk)
c|W̃ (j) : j ∈ (Tk)

c
)
,

whereτ(ǫ) → 0 as ǫ → 0.

Intuitively speaking, the algorithm for creating˜̂M ′(i) is to begin with
˜̂
M (i) (i ∈ [m]), and then perturbs

this set ofm random variables inm stages as follows: at therth stage, we perturb therth random

variable so that the average distortion constraint is satisfied while making sure that changes in the mutual

information terms are under control.

More precisely, let(G(1)
0 , G

(2)
0 , ..., G

(m)
0 ) be equal to(˜̂M (1),

˜̂
M (2), ...,

˜̂
M (m)). We define random vari-

ables(G(1)
r , G

(2)
r , ..., G

(m)
r ) for r ∈ [m] using(G(1)

r−1, G
(2)
r−1, ..., G

(m)
r−1) in a sequential manner as follows:

let G(i)
r := G

(i)
r−1 for all i ∈ [m], i 6= r. Random variableG(r)

r is defined below by perturbingG(i)
r−1 in a

way that the average distortion betweenG
(r)
r andM̃ (r) is less than or equal toD(r) while making sure

that for anyk ∈ [2m − 2],

I
(
W̃ (i) : i ∈ Tk ; G(j)

r : j ∈ (Tk)
c|W̃ (j) : j ∈ (Tk)

c
)
−I

(
W̃ (i) : i ∈ Tk ; G

(j)
r−1 : j ∈ (Tk)

c|W̃ (j) : j ∈ (Tk)
c
)

is of orderO(τr(ǫ)) whereτr(.) is a real-valued function that satisfies the property thatτr(ǫ) → 0 as

ǫ → 0. Once this is done, we can take˜̂M ′(i) = G
(i)
m for all i ∈ [m] and letτ(ǫ) =

∑m
r=1 τr(ǫ).

For any arbitraryk ∈ [2m − 2], as long asr does not belong to(Tk)
c, the expression

I
(
W̃ (i) : i ∈ Tk ; G(j)

r : j ∈ (Tk)
c|W̃ (j) : j ∈ (Tk)

c
)
−

I
(
W̃ (i) : i ∈ Tk ; G

(j)
r−1 : j ∈ (Tk)

c|W̃ (j) : j ∈ (Tk)
c
)
,

would be zero no matter howG(r)
r is defined. We should therefore consider only the cases wherer

belongs to(Tk)
c. In order to defineG(r)

r , we consider two cases:

1) CaseD(r) 6= 0: Take a binary random variableQr independent of all other random variables defined

in previous stages. Assume thatP (Qr = 0) = ǫ
D(r)+ǫ

andP (Qr = 1) = D(r)

D(r)+ǫ
. Let G(r)

r be equal
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to G
(r)
r−1 if Qr = 1, and be equal tõM (r) if Qr = 0. It can be verified that the average distortion

betweenG(r)
r andM̃ (r) is less than or equal toD(r).6

Take an arbitraryk ∈ [2m−2] such thatr ∈ Tk. Since for any five random variablesA,B,B′, C,D

whereD is independent of(A,B,C) we haveI(A;B′|C) − I(A;B|C) ≤ I(A;B′|BCD), 7 we

can write:

I
(
W̃ (i) : i ∈ Tk ; G(j)

r : j ∈ (Tk)
c|W̃ (j) : j ∈ (Tk)

c
)
−

I
(
W̃ (i) : i ∈ Tk ; G

(j)
r−1 : j ∈ (Tk)

c|W̃ (j) : j ∈ (Tk)
c
)
≤

I
(
W̃ (i) : i ∈ Tk ; G(j)

r : j ∈ (Tk)
c|G

(j)
r−1W̃

(j) : j ∈ (Tk)
c, Qr

)
.

We would like to prove that the last term is of orderτr(ǫ) := O( ǫ
D(r)+ǫ

). Clearly thenτr(ǫ) → 0

as ǫ → 0 sinceD(r) is assumed to be non-zero. The last term above is of orderǫ
D(r)+ǫ

because:

I
(
W̃ (i) : i ∈ Tk ; G(j)

r : j ∈ (Tk)
c|G

(j)
r−1W̃

(j) : j ∈ (Tk)
c, Qr

)
=

0 · P (Qr = 1)+

I
(
W̃ (i) : i ∈ Tk ; G(j)

r : j ∈ (Tk)
c|G

(j)
r−1W̃

(j) : j ∈ (Tk)
c, Qr = 0

)
· P (Qr = 0) ≤

H(W̃ (i) : i ∈ [m]) · P (Qr = 0) = O(
ǫ

D(i) + ǫ
).

2) CaseD(r) = 0: Let the binary random variableQr be the indicator function1[∆r(G
(r)
r−1, M̃

(r)) = 0].

Let G(r)
r be equal toG(r)

r−1 if Qr = 1, and be equal tõM (r) if Qr = 0. The average distortion

betweenG(r)
r and M̃ (r) is clearly zero. Since the average distortion betweenG

(r)
r−1 and M̃ (r) is

less than or equal toǫ, we get thatP (Qr = 0) ≤ ǫ
δmin

whereδmin is defined as follows: (̃M(r)

here refers to the set̃M (r) is taking value from)

δmin = min
i, j ∈ fM(r) such that

∆r(i, j) 6= 0

∆r(i, j).

Take an arbitraryk ∈ [2m − 2] such thatr ∈ Tk.

I
(
W̃ (i) : i ∈ Tk ; G(j)

r : j ∈ (Tk)
c|W̃ (j) : j ∈ (Tk)

c
)
−

6This is becauseE
ˆ

∆r(G
(r)
r , fM (r))

˜

= E
ˆ

E
ˆ

∆r(G
(r)
r , fM (r))|Qr

˜˜

= P (Qr = 1)E
ˆ

∆r(G
(r)
r−1,

fM (r))
˜

≤ D(r)

D(r)+ǫ
· (D(r) +

ǫ) = D(r).

7This is becauseI(A;B|C) ≥ I(A;B′|C)−I(A;B′|BC) ≥ I(A;B′|C)−I(A;B′D|BC) ≥ I(A;B′|C)−I(A;D|BC)−

I(A;B′|BCD) = I(A;B′|C) − 0− I(A;B′|BCD) = I(A;B′|C) − I(A;B′|BCD).
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I
(
W̃ (i) : i ∈ Tk ; G

(j)
r−1 : j ∈ (Tk)

c|W̃ (j) : j ∈ (Tk)
c
)
=

H
(
W̃ (i) : i ∈ Tk|G

(j)
r W̃ (j) : j ∈ (Tk)

c
)
−

H
(
W̃ (i) : i ∈ Tk|G

(j)
r−1W̃

(j) : j ∈ (Tk)
c
)
≤

H(Qr) +H
(
W̃ (i) : i ∈ Tk|G

(j)
r W̃ (j) : j ∈ (Tk)

c, Qr

)
−

H
(
W̃ (i) : i ∈ Tk|G

(j)
r−1W̃

(j) : j ∈ (Tk)
c, Qr

)
≤

H(Qr) + P (Qr = 0) ·H
(
W̃ (i) : i ∈ Tk|G

(j)
r W̃ (j) : j ∈ (Tk)

c, Qr = 0
)
≤

H(Qr) + P (Qr = 0) ·H(W̃ (i) : i ∈ [m]).

Let τr(ǫ) := H(Qr) + P (Qr = 0) ·H(W̃ (i) : i ∈ [m]). SinceP (Qr = 0) is bounded from above

by ǫ
δmin

that converges to zero asǫ → 0, τr(ǫ) too would converge to zero asǫ → 0.

�
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