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Let r denote the code rate of C. Theorem 2 gives a converse
to this result for r > (R - ~/2)/R and any Hk. Concurrent
independent work [8]1 gives a converse pertaining to the

d(U1 , U2 ) ~ dim(Ul + U2 ) - dim(Ul n U2 ) . (1)

It is shown in [6] that d is a metric for P(V). Subspace
minimum distance decoding is successful if and only if there
is no codeword [; i- U in C for which d(U, U') :S d(U, U').

Let ~ ~ min d(U1 , U2 ) be the minimum distance
U1,U2EC:Ul#U2

of C. In [6] the following result is shown:

Theorem 1. The transmitted subspace U E C can be success­
fully recovered from the received subspace U' if

We consider single-source multicast over an acyclic network
g == (N,I:) with source S and a set of sink nodes T. A link
lEI: may be subject to an erasure, in which case no packet is
received on l, or an error, in which case a packet of arbitrary
value is received on l.

Following [6], we consider constant-dimension non­
coherent network coding, defined as follows. Let V be the
vector space of length-K vectors over the finite field JFq,

representing the set of all possible values of packets trans­
mitted and received in the network. Let P(V) denote the
set of all subspaces of V. A code C consists of a nonempty
subset of P(V), where each codeword U E C is a subspace
of constant dimension R. To transmit codeword U E C, the
source transmits a set of packets whose corresponding vectors
span U. The sink receives the subspace U' == Hk(U) E9 E,
where Hk projects U onto a k-dimensional subspace of U,
and E is the subspace spanned by the error packets. Let
t == dim(E), and let p == (R - k)+. In [6], t and pare
referred to as the number of errors and erasures respectively.
The concept of subspace errors and erasures is distinct from
that of network errors and erasures. As will be seen later,
the network topology and coding strategy determine what
subspace errors and erasures result from given network errors
and erasures. Thus, to avoid confusion, we refer to t as the
number of additions, and p as the number of deletions. The
distance between two spaces U1 , U2 is defined as

(2)2(t+p)<~.

Abstract-We consider the problem of correcting errors and
erasures with network coding. Unlike existing works which
consider performance limits for worst-case locations of given
numbers of errors and erasures, we consider the performance of
given (not necessarily optimal) coding and forwarding strategies
for given (not necessarily worst-case) models of error and erasure
locations. Our approach characterizes decoding success in terms
of the rank of certain matrices corresponding to useful and
erroneous information received at the sink nodes. We use this
approach to analyze random coding and forwarding strategies
on a family of simple networks with random error and erasure
locations, and show that the relative performance of the strategies
depends on the erasure and error probabilities.

II. NONCOHERENT CODING FOR ERRORS AND ERASURES

We first develop the analytical framework we need by
extending the noncoherent network coding framework in [6].

I. INTRODUCTION

Most existing results on multicast network error correction
apply to worst-case error and erasure locations, e.g. [2], [9],
for which random linear network coding achieves capacity.
On the other hand we may consider non-worst-case scenarios
where links may fail randomly, or an adversary may only
succeed probabilistically in attempts to compromise network
nodes. In this paper we investigate the performance of linear
coding and routing strategies in networks with non-worst-case
error/erasure locations. In this case random linear coding at
every node is not always optimal, since it improves erasure
resilience at the expense of error propagation.

We consider decentralized strategies, which we analyze
by bringing topology considerations into the non-coherent
subspace coding framework of [6]. For a given realization
of error and erasure locations, successful decoding can be
characterized in terms of the rank of certain matrices that
correspond to useful and erroneous information received at the
sink node. We analytically derive the probability of successful
decoding for random coding and routing strategies on a family
of simple network subgraphs consisting of multiple multihop
paths with random error and erasure locations, and show
how the relative performance of these strategies depends on
the information rate, minimum cut capacity, and the error
and erasure probabilities. Simulation experiments on randomly
generated hypergraphs representing wireless networks show
similar trends.
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Lemma 2. For any given set of adversarial links and any
given network code, putting a linearly independent adversarial
error on each adversarial link results in the lowest probability
of successful decoding.

Lemma 2 implies that we can henceforth consider the
case where each adversarial link is associated with a linearly
independent error.

Let IF~ x n denote the set of all m x n matrices over
finite field IFq. Let Cbe a subspace code with codeword
dimension R, minimum distance ~ and code rate greater
than (R - ~/2)/R. Let matrix W E IF:XK represent the
transmitted codeword. Let v be the number of incoming links
of a sink t E T. Let Q E IF~ x R be the network transfer matrix
from the source packets to the packets received at t [5].

Let L denote the number of links in Q. An error on a link is
modeled as addition of an arbitrary error packet to the packet

case where Hk is adversarially chosen subject to a minimum
rank constraint. However, in our problem Hk depends on the
coding/routing strategy employed.

Lemma 1. Let C have minimum distance ~. If2t 2:: ~, then
decoding is unsuccessful for some value of the transmitted
subspace and the error packets.

Proof' Consider U,U E C such that d(U,U) == ~. If
U is sent and E is chosen as a subspace of U n UC, then
d(U, U') ::; d(U,U') for received subspace U' == U EB E. •

Note that for constant dimension codes, ~ is even and that
for given R and A, we have r::; (R - ~/2 + l)/R.

Theorem 2. Let C have dimension R, minimum distance ~
and code rate r > (R - ~/2)/R. If 2(t + p) 2:: ~, then
decoding is unsuccessful for some value of the transmitted
subspace and the error packets.

Proof' We only need to consider the case of 2(t+p) == ~
by the information processing inequality. The sink receives the
subspace Hk(U) EB E with t == dim(E) and p == (R - k)+
such that 2(t + p) == ~. Suppose that instead of adding E, we
subject Hk (U) to a further t deletions resulting in the subspace
Hk' (Hk (U)), where k' == k - t. Since there are altogether
~/2 deletions and r > (R - ~/2)/R, the mincut bound is
violated [3], so for some U E C there exists some U i- U in
C such that d(U, Hk/(Hk(U))) < d(U,Hk/(Hk(U))), which
implies Hk' (Hk(U)) is also a subspace of U. Then U+Hk(U)
has dimension at most R + t. If E is chosen as a subspace of
Un UC, then

d(U, Hk(U) EB E)

dim(U + (Hk (U) EB E)) - dim(U n (Hk (U) EB E))

::; dim(U + Hk(U)) - dim(Hk/(Hk(U)) EB E)

::; R + t - (k' + t) == R - k';

d(U,Hk(U) EB E)

== dim(U + (Hk(U) EB E)) - dim(U n (Hk(U) EB E))

== dim(U EB E) - dim(Hk(U)) == R + t - k == R - k'.

and the decodability condition given in Theorems and 2
can be translated to our setting as follows:

Theorem 3. For a given C, let y == %. Let the transmitted
matrix Wand the error matrix Z have linearly independent
rows. Then decoding at t E T is guaranteed to succeed iff

being transmitted at that link. Let Z E IF~ x K denote the error
matrix whose ith row corresponds to the error packet that is
injected on the ith link of Q. Let B E IF~ x L be the transfer
matrix from the error packets to the packets received at t.

Let Y E IF~ x K be the matrix whose rows correspond to the
packets received at t. Then

(3)

(4)

(5)

Y == QW +BZ

Y == ASW +BZ.

R - rank(QW + BZ) + 2rank(BZ) < y.

Enumerate all nodes of QM with node 0 corresponding to
S and node M corresponding to T. Assume that the jth hop
refers to the transmission from the (j - 1)th to the jth node.

Consider the jth hop of the single path multihop network.
In our model three mutually exclusive events can occur at the
jth hop for any j: an erasure can occur on exactly one of the
C links with probability p; an error can occur on exactly one
of the C links with probability s; no errors and erasures occur
at the jth hop with probability (1 - p - s). When an error or
erasure occurs, anyone of the C links has probability -b of
being the affected link.

To solve the problem we are going to adopt the algebraic
coding model given in (3). Choosing different network coding
strategies at the non-source nodes corresponds to modifying
A (and, consequently, B) in (3). In this paper we compare
performance of random linear coding at the source paired with
two different strategies at non-source nodes:

1) Forwarding with random replication (FRR)
• Each node forwards all received packets to the outgoing

links.
• In case of a link erasure, the node replaces the erased

packet with a copy of anyone of the successfully received
packets.

2) Random linear coding (RLC)

III. SINGLE PATH SUBGRAPH

We apply results in Sec. II to study error and erasure
performance of coding and routing strategies on networks
with randomly located errors and erasures. We analyze the
probability that the error and erasure locations are such that
not all error values can be corrected.

We first consider a simple building block network consisting
of a simple multihop path with source S and sink T(see
Fig. l(a)). Let the network consist of M hops. Let R, C, ~, y,
W, Land Z be defined as in the previous section. Let C be the
number of parallel links on each hop of QM. Let S E IFf x R

be the source coding matrix and let A E IFf x C be the transfer
matrix from all links in the network to the packets received at
T. Let B E IFf xL be the transfer matrix from error packets
to the packets received at T. According to (3), we can write

•Thus, decoding is unsuccessful.
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Fig. 1. Schematic depiction of: (a) single path subgraph; (b) multiple path
subgraph

• Each node creates random linear combinations of all
received packets and sends them to the outgoing links.

• In case of a link erasure, the node replaces the erased
packet by creating a random linear combination of the
successfully received packets.

state i if, after random linear coding is performed at the jth
node, we have aj + dj == i. Let p!k denote the probability
that given that the (j - 1)th node of YM is in state i, the jth
node of YM will be in state k after the data transmission from
the (j - 1)th to the jth hop.

Lemma 3. When RLC is performed at every node ofYM, for
every node j == 1, ... , M we have:

ifO:Si<C-R

P!,i == 1- S,P!,i+l == S,P!,k == ofor k -I i,i + 1
if i == C - R + 2m, m == 0, ... , R - 1

P!,i == 1 - p - S, P!i+l == p, P!,i+2 == S,r: == 0 for k -I i, i + 1, i + 2

if i == C - R + 2m + 1, m == 0, ... , R - 1

pl. == 1 - s pl.+ 1 == s pI k == 0 fior k -I- i i + 1
'l,'l ''l,'l '1" r ,

ifi==C+R

pl. 1 == p pl. == 1 - p pI k == 0 fior k -I- i - 1 i
1,,1,- '1,,1, , 1" r,

Lemma 3 implies that when RLC is performed, the system
can be modeled as a Markov chain, that has a probability
transition matrix with entries P!k for i, k == 0 ... C + R.
Moreover, P can be computed using the distribution of this
Markov chain after M transitions.

s

V
(b) T

hop 2

hop 1

node 1

s

node 2

node Mf7T\'\ hop M

nOde~
(a) T

Let I be the C x C identity matrix. Define A j E IFfxC as a
random matrix with entries from IFq for RLC, and as A j ~ I
for FRR. If no erasure occurs, define E j E IFf X C as E j ~ I.
If an erasure occurs on link i, define E j E IFfx C as I with
the ith row equal to the unit vector with 1 in the kth position
if link k was replicated for FRR, and I with the ith row equal
to the zero vector for RLC. If no error occurs, define D j E

IFfxC as D j ~ I. If an error occurs on the ith link, define
D j E IFfxC as I with the ith row equal to the zero vector.
Define D*: E IFc xc as D*: ~ I - D·J q J J'

Define

if an error occurs at the jth hop,
if an erasure occurs at the jth hop,
if neither error, nor erasure occur at the jth hop.

B. Forwarding with random replication
Lemma 4. In case ofFRR with RLC performed at S we have

rank(ASW + BZ) == rank(ASW) + rank(BZ)

rank(ASW) == min(R, rank(A) )

rank(BZ) == rank(FM ... F2D~Zl)+ ... + rank(DMZM).

Using Theorem 3 and Lemma 4, P can be computed as:

P Prob (R - rank(ASW + BZ) + 2rank(BZ) :S y - 1) (7)

L Prob (rank(ASW) == l - z, rank(BZ) == z, rank(A) == f)
!,l,zE'I

L Prob (rank(BZ) == zlrank(A) == f) Prob (rank(A) == f) ,
!,l,zE'I

T== {f,z,l: O:S f:S C,O:S z:S y-1,R+2z-(y-1):S i-; C}.

Therefore, for both coding strategies we rewrite A and B in
(5) as

A == FMAMFM-IAM-l ... F2A2F1A1

B == (FMAM ..F2A2Dr FMAM..F3A3D2 DM )

A. Random linear coding

Let P denote the probability of successful decoding. Let
A and D be the random variables representing the number of
dimension additions/deletions to/from rowspace(W) in YM
respectively. Then according to Theorems 1 and 2, P can be
computed as

Now we can compute (7) by deriving ex-
plicit expressions for probability distributions
Prob (rank(BZ) == zlrank(A) == f) and Prob (rank(A) == f).
Lemmas 5,6 and 7 provide auxiliary results that our further
derivation relies on.

Lemma 5. IfD 1 is the identity matrix with a randomly chosen
row substituted by a zero row, then

f+1
Prob iranki F, ... F2D1 ) == flrank(Fj ... F2) == f + 1) == -C'

Lemma 6. IfD 1 is the identity matrix with a randomly chosen
row substituted by a zero row, then

P == Prob (A + 0 :S y - 1) . (6)
rank(Fj F2)
ranklF, F2 )

f, ranklF, ... F2D1 ) == f =:} rank(Fj ... F2D~) == 0

== f + 1, rank(Fj ..• F2D1 ) == f =:} rank(Fj ... F2D~) == 1

Let yj denote the subspace spanned by received packets
at the jth node of YM. Let aj and dj be the number of
dimension additions/deletions to/from rowspace(W) present
in yj respectively. Let us say that the jth node of YM is in

Lemma 7. IfE 1 is the identity matrix with a randomly chosen
row substituted by a zero row, then
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with 1/;1 tI, z) == 0 for any f ::; C - 2,1) Derivation of Prob (rank(A) == f): Denote
Prob(rank(FjFj-1 ... F 2F1 ) == f) by cPj(f). Let N j be
the number of error/erasure occurrences out of j hops. If
N j == l, suppose that all errors and/or erasures occurred on
iI, i 2 · · · izth hops. Compute cPj(f) by conditioning on N j :

j .,

¢j(J) = L Prob (rank(Ei l ... E i 1 ) = f) l!("J~ l)!pl(l ~ p ~ s)j-l
Z=C-f J

j Z

+ L L Prob(rank(Fi l · · .Fi 1 ) == I, errors on m hops)
Z=C-f m=l.,

J. Z-m m(l v:
x (l-m)!m!(j-l)!P s -p-s ,

where the first term corresponds to the case when only erasures
occurred on all hops ig, 9 == 1 ... l and the second term
corresponds to the case when both errors and erasures occurred
on all hops i g , 9 == 1 .. . l.

Denote Prob(rank(Eil .. . Ei2Ei1) == f) by hz(f). We can
compute li, (f) by conditioning on rank(Eil··· Ei2) and
Lemma 7. For l 2:: 2

(
f(f - 1) ) f(f + 1)

hz(f) == 1- C(C-1) hz- 1(f) + C(C_1)hz- 1(f+ 1)

with the base case

{
I , f == C - 1;

h., (f) == 0, otherwise.

9z(f, m)

{
I , z == 0;
0, otherwise;

{

.x: z == O·p+s' ,

p~s' Z == 1;
0, otherwise.

2) Derivation of Prob (rank(BZ) == zl rank(A) == f):
Denote FM··· FM-j+2DM_j+l ZM-j+l + +
FMDM_1ZM-l + DMZM by BjZj and
FM ... FM-j+2FM-j+l by Aj. Let 1/;j(f,z)
Prob (rank(Bj Zj) == zlrank(Aj) == f). We can compute
1/;j(f, z) by conditioning on F M - j+1, rank(Aj+l) and using
Lemmas 5,6 and 7.

and for m == 1 b; (f(f- 1) ) A.. (f) f(f+l) A.. (f ).
C ~ f f + 1 1 1 - C(C-l) 'l'j-l + C(C-l) 'l'j-l + 1

91(J,1) ( -ch1-1(J) + ---crh1-1(J + 1)) Y IV. MULTIPLE PATH SUBGRAPH

(
f(f - 1) f(f + 1) ) l - 1 Consider a multiple path subgraph Yn (see Fig. l(b)) with

+ (1 - C( C _ 1) )9Z-1 (f, 1) + C( C _ 1) 9Z-1 (f + 1,1) --ysource S and sink T. Let P == {PI, P2 ... Pn } be the set of

ith th b edge-disjoint paths from S to T. Let M, be the number of
WI ease case .

hops on each path Pi. Let Ci be the number of parallel hnks

{
I f-C-1·

91 (f, 1) == 0: ot~rwise.' on each hop of Pi. Let C == L~=l Ci . For the case of multiple
path subgraph, assume that R 2: maXl~i~n c.. Let R i < Ci be
the rank of information packets that are transmitted on each
Pi. We assume that L~=l n; 2: R.

Let Ai E IFCiXCi and Bi E IFCiXCiMi be the linear trans-q q

formations applied by the network on each Pi to information
and error packets respectively. For the multiple path network
model that we defined, matrices A and B have the block­
diagonal structure with Ai and B i on the main diagonal.

'ljJj(f,z)

Prob(rank(Bj zj) == zIFM- j+ 1 == DM-j+l, rank(Aj) == f)

x Prob(FM-j+l == D M-j+l/ rank(Aj) == f)

+ Prob(rank(Bj zj) == zIFM- j+ 1 == EM-j+l, rankt A") == f)

x Prob(FM-j+l == EM -j+ll rank(Aj) == f)

+ Prob(rank(Bj zj) == zIFM-j+l == I, ranktA") == f)

x Prob(FM-j+l == Ilrank(Aj) == f) (8)

Lemma 8. For any given set of error and erasure locations
and any given network code, the probability of successful
decoding for Yn is maximized when R; is chosen to be equal
to C, on each Pi.

By Lemma 8 it is sufficient to consider R; == C, for each
Pi since it results in the highest probability of successful
decoding.
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A. Random linear coding

Let A and D be random variables representing the num­
ber of dimension additions/deletions to/from rowspace (W)
in On respectively. Let Ai and D, be random variables, that
stand for the number of dimension additions/deletions to/from
rowspace(W ) on each Pi respectively. Let a, d, o.; and di be
the values that A, D, Ai and Di can take.

Lemma 9. If RLC is perfo rmed on all paths of On and R ; =
n n

C, 'Vi , we have a = L a; and d = max(L d; - (C - R) ,0).
i= 1 i= 1

Now we can rewrite (6) as:

P Prob (A + D ::; y - 1)

Fig. 2. n = 4, M = 3, R ; = C, = 5, i = 1 . . . 4, s = 0.05.

Fig. 3, Average over randomly generated hypergraphs with mincut capacity
equal to 100.
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where the last equality follows from Lemmas 3,9 and the
independence between Ai, Di and Aj , Dj for i #- j. We can
then use the derivation for a single path subgraph to evaluate
Prob (Pi in state ai + d; after M, hops) for each Pi.

B. Forwarding with random replication
Using the fact that the quantities rank(Ai ) and rank(BiZ i )

associated with each Pi are independent of the corresponding
quantities for Pj for i #- j , we can write Pas:

P = L TI Prob (rank(B j z j ) = zj ,ran k(Aj) = Ii ),
f i ,Zi ETj = l

n

L II Prob (Pj in state a j + dj after M j hops) ,

ai , di : j = l

I: ai + max(L: di - (0 - R), 0) ::; y - 1,
di = ai or di = ai + 1

where I = {ti , Zi : 0 ::; I i ::; c; L. I i = I ;0 ::; Zi ::; Y - 1,
L. Zi = z; R + 2z - (y - 1) ::; min(J, R) + Z ::; G }. We then
apply the derivation for a single path case by setting A = Ai,
B = »: Z = Z i, i = 1 .. . n .

V. COMPARI SO N

Fig. 2 shows the probabiliti es of successful decoding com­
puted analytically for both strategies. Fig. 3 depicts average
probability of successful decoding curves obtained by run­
ning 500 experiments over 20 randomly generated one-source
one-sink hypergraphs with 20 nodes. In our experiment, we
assumed that each non-source node could become adversarial
with probability s and each hyperarc could fail with probability
p. In both Fig. 2 and Fig. 3, all curves are sketched against
p for a fixed s when RLC is done at the source. Note that
both analytical and experimental results suggest that RLC is
more beneficial than FRR when information is transmitted at
a higher rate.
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