
The Delay Region for P2P File Transfer
Yunnan Wu∗, Y. Charlie Hu†, Jin Li∗, and Philip A. Chou∗

∗Microsoft Research, One Microsoft Way, Redmond, WA 98052.{yunnanwu, jinl, pachou}@microsoft.edu,
†Dept. of ECE, Purdue University, West Lafayette, Indiana 47907. ychu@purdue.edu

Abstract—Motivated by P2P file transfer applications (e.g.,
BitTorrent) on the Internet, this paper considers the problem
of delivering a file from a server to multiple receivers in a P2P
network. Each receiver has an associated delay in receivingthe
file. We aim at understanding the optimal delay region, i.e.,the
set of all possible delay vectors that can be achieved. Previous
work has addressed the problem of delivering the file to all
receivers in minimum amount of time (equivalently, minimizing
the maximum delay to the receivers), assuming peer uplinks are
the only bottleneck in the network. This paper shows that it is in
fact possible to significantly reduce the average delay at a slight
increase in the maximum delay. Moreover, given an order at
which the receivers finish downloading, the optimal delay region
is characterized by a system of linear inequalities. Any point
in the optimal delay region can be achieved by linear network
coding. We also propose a simple routing scheme that has near-
optimal empirical performance.

I. I NTRODUCTION

Peer-to-peer file transfer is a very popular class of applica-
tions in today’s Internet. In a P2P file download application,
the key performance metric from an end-user’s point of view
is the delay, or the time it takes to download the file. Practical
P2P file transfer solutions (e.g., BitTorrent) try to speed up the
downloading process by efficiently leveraging the peer uplink
bandwidths. These solutions generally improve the delays
perceived by the users. However, the fundamental performance
limit (in terms of achievable delays) remains unclear. In this
paper, we are interested in characterizing the optimal delay
region, i.e., the set of all achievable delay vectors.1

Consider a source nodes that wants to broadcast a file of
sizeB to a set ofN receivers,{1, . . . , N}, in a peer-to-peer
network. We start with a popular though simplified model for
the peer-to-peer network. It is assumed that peer uplinks are
the only bottlenecks in the whole network2, and every peer
can connect to every other peer through routing in the overlay.
Let cv denote the uplink capacity constraint for nodev. Let
Ti denote the time for thei-th receiver to receive the file;
collectively, letT denote an achievable delay vector.

1To focus on the fundamental limit from a network informationtheory
point of view, we assume that all nodes are cooperative, unlike the BitTorrent
protocol, which uses a Tit-For-Tat mechanism to ensure nodes have incentive
to contribute their upload resources. The cooperative assumption also holds
naturally in many practical scenarios, e.g., in “closed” content distribution
systems where the programs are managed by a single authority.

2This assumption can be partly justified by the empirical observation that in
the overwhelming majority of residential broadband connections, bottlenecks
typically are at the edge of the access networks rather than in the middle of
the Internet. Furthermore, for typical residential connections (e.g., DSL and
Cable), the uplink capacity is often several times smaller than the downlink
capacity.

Previous studies [3]–[5] have determined that assuming a
full-mesh topology and assuming peer uplinks are the only
bottleneck, the minimum amount of time to finish all nodes
is:

min

{

B

cs
,

BN

cs +
∑N

i=1 ci

}

. (1)

The fact that the time to finish all nodes cannot be lower
than (1) follows from simple resource counting arguments.
The first term in (1) is the time it takes for the source to send
one copy of the file out; the second term is the total amount
of work (BN bits) divided by the aggregate upload resource.
Conversely, it was shown in [3] that (1) can indeed be achieved
by communicating using a number of spanning trees, using a
construction known in [3] as MutualCast.

The MutualCast construction in fact lets all the receivers fin-
ish at the same time, equal to (1). Clearly, (1) is the minimum
possible value ofmaxN

i=1 Ti. Is it possible for some receivers
to finish earlier such that1/N

∑N
i=1 Ti < maxN

i=1 Ti?
For any receiveri, Ti ≥ B/cs because the source has to

be able to send one copy of the file out. If the bound (1) is
dominated by the first term, i.e., if the source’s uplink is the
bottleneck, then the best we can hope for is to finish every
node by timeB/cs, which can be achieved, for example, by
the MutualCast scheme. Hence ifB/cs ≤ BN/(cs+

∑N
i=1 ci),

the optimal delay region is given by{T |Ti ≥ B/cs, ∀i}. In
the rest of this paper, we focus on the remaining case, where

cs ≤

∑N
i=1 ci

N − 1
. (2)

Consider an example where a sources is distributing a file
of size B = 1 to three receivers1, 2, 3. Supposecs = 2.5
and c1 = c2 = c3 = 1.0. With the MutualCast scheme, all
receivers will finish at time6/11 = 0.55. Now consider an
alternative scheme, given by Figure 1. First, in time interval
[0, 0.4], we use three multicast trees to transfer the file to nodes
1 and 2. The three MutualCast trees are shown in solid lines,
dotted lines, and dashed lines, respectively; the amount ofdata
flowing in each edge is labelled on the edge. At the end of this
time interval, nodes 1 and 2 have finished; node 3 has received
0.2 unit of information. Next, in time interval[0.4, 26/45],
nodess, 1, 2 collaboratively upload to node3. Thus T1 =
T2 = 0.4 andT3 = 26/45 = 0.58 and

∑

i Ti = 1.38.
In comparison, the average delay of the solution in Figure 1

is 16% shorter than the MutualCast solution and the maximum
delay of this solution is only5% longer. Thus this example
shows that it is possible to reduce the average delay by letting

s 10.4
0.4

2

0.2 0.4

3

0.4
0.2

0.2
[0, 0.4]

s 1

2

4/9

3

8/45

8/45
[0.4, 26/45]

Fig. 1. A constructive scheme for a 4-node example whereB = 1, cs = 2.5,
andc1 = c2 = c3 = 1.

s

r …

r

…

s

R R – {r}

h

…

s

R
Type (1) trees Type (2) trees Type (3) trees

Fig. 2. The different types of MutualCast trees.

some nodes finish early. More generally, the objective of this
paper is to characterize the entire set of achievable delay
vectors and design low-complexity constructive schemes.

II. A S IMPLE BOUND

To establish the simple bound presented in this section, we
make use of a version of the MutualCast capacity theorem
[3] that allows helper nodes, which are nodes other than the
source and the receivers that can help.

Lemma 1 (MutualCast with helpers [3]):
Consider a full-mesh P2P topology in which peer uplinks are
the only bottleneck. Letcv be the uplink capacity constraint
for nodev. Consider a single multicast session given by source
nodes, a set of receiversR, and a set of helper nodesH . Then
the maximum achievable broadcast rate is:

min







cs,
cs +

∑

v∈R cv + |R|−1
|R|

∑

h∈H ch

|R|







. (3)

This maximum achievable broadcast rate can be achieved by
packing at most1 + |R| + |H | trees as follows:

• One depth-1 tree rooted at s and reaching all receivers in
R, i.e. the type (1) tree in Figure 2.

• |R| depth-2 tress, each rooted ats and reaching all other
receivers inR via differentr ∈ R, i.e. the type (2) tree
in Figure 2.

• |H | depth-2 trees, each rooted ats and reaching all
receivers inR via different h ∈ H , i.e., the type (3)
tree in Figure 2.

Lemma 2: Consider a P2P topology in which peer uplinks
are the only bottleneck. Assume that the nodes are labeled in
decreasing order of their uplink capacities, i.e.,c1 ≥ c2 ≥
. . . ≥ cN . For any scheme, letT[1] ≤ T[2], . . . ,≤ T[N] denote
the sorted sequence of the download times of theN receivers.
Then the following must hold:

T[i] ≥
B

min {cs, Di}
(4)

where

Di
∆
=

cs +
∑i

j=1 cj + i−1
i

∑N
j=i+1 cj

i
. (5)

This implies a lower bound on the sum delay,

N
∑

i=1

Ti =
N

∑

i=1

T[i] ≥
N

∑

i=1

B

min {cs, Di}
(6)

Proof: Note that by timeT[i], i nodes have finished. LetR
denote thesei nodes and letH denote the otherN − i nodes,
who can act as helpers. Then applying Lemma 1, we see that

T[i] ≥
B

min

{

cs,
cs+

∑

v∈R
cv+ |R|−1

|R|

∑

h∈H
ch

|R|

} .

Note that the right hand side of the above inequality is
minimized whenR is the set of nodes with thei largest
uplinks. HenceT[i] ≥ B/ min {cs, Di}.

One natural question to ask is whether theN inequalities
in (4) can all be achieved with equality simultaneously. This,
in general, is not the case. To see this, consider the earlier
example where a sources is distributing a file of sizeB = 1
to three receivers1, 2, 3, andcs = 2.5, c1 = c2 = c3 = 1.0.
From Lemma 2, we obtain the following bound on the sum
delay:

∑

i Ti =
∑

i T[i] ≥ 1
2.5 + 1

2.5 + 6
11 = 1.35. Suppose

there is a scheme that achieves this bound with equality. Then
the scheme must finish node 1 at time1/2.5 = 0.4, node
2 at time 1/2.5 = 0.4, and node 3 at time6/11. Since
B/D2 = 2

cs+c1+c2+1/2c3
= 0.4, all upload resource must be

fully utilized. In particular, node 3, as a helper, must receive
0.4/2 = 0.2 and send0.4 in time [0, 0.4]. Now by time 0.4,
nodes 1 and 2 have finished and node 3 must have received 0.2
unit of information. The earliest time we can finish node 3 is
thus0.4+0.8/(2.5+1+1) = 0.58 > 6/11 = 0.55. In general,
the bound is not achievable because although MutualCast can
provide a scheme to achieve the minimum possibleT[i] for
eachi, there is no single scheme that can achieve the minimum
possibleT[i] for all i.

III. T HE OPTIMAL DELAY REGION

The bound in Lemma 2 is constructed by askingN separate
questions without forcing the solutions to be consistent with
each other over time. As a result, in general theN bounds in
(4) cannot be simultaneously achieved. To obtain a complete
characterization of the achievable delay region, we need to
somehow force consistency among the solutions over time. In
this section we show how to achieve this by introducing states
along the time axis and considering a time-expanded graph.
The general idea of using time-expansion to handle causality
is known; for example, it was used in [1] to prove a capacity
result for network coding in cyclic graphs. For our context,the
time-expanded graph has a different structure and it is used
for a different purpose – investigating the achievable delay
vectors.

First, we introduce some notions. We divide the time into
N epochsaccordingly to the finishing times of the nodes.
Thus one node finishes at the end of the first epoch; a second
node finishes at the end of the second epoch; and so on. Let

s(1) 1(1)

2(1)3(1)

s(2) 1(2)

2(2)3(2)

s(3) 1(3)

2(3)3(3)

(a)

s(1) 1(1)

2(1)3(1)

s(2) 1(2)

2(2)3(2)

s(3) 1(3)

2(3)3(3)

0.4
0.40.2

0.2
0.2

0.4
0.4

0.44
0.18
0.18

(b)

Fig. 3. (a) The expanded graph for the 4-node example. (b) Theexpanded
graph with a traffic assignment, for the constructive solution in Figure 1.

∆ti denote the length of thei-th epoch. This provides an
alternative parameterization becausei receivers finish by time
T[i] =

∑i
j=1 ∆ti.

Given a P2P graphG with node setV = {s, 1, . . . , N}
and allowed link setE, we introduce a time-expanded graph
G(N) as follows. For eachv ∈ V andn ∈ {1, . . . , N}, G(N)

includes a vertexv(n); this vertex corresponds to the associated
physical node in then-th epoch. The graphG(N) has two types
of edges.

1. For eache ∈ E going from u to v and eachn ∈
{1, . . . , N}, the graphG(N) also includes an edgee(n)

going fromu(n) to v(n); such an edge corresponds to the
transmission fromu to v during then-th epoch.

2. For eachv ∈ V and eachn ∈ {1, . . . , N − 1}, the graph
G(N) also includes an edge with infinite capacity from
v(n) to v(n+1). These edges represent the accumulation
of received information by nodev over time. They are
calledmemory edges.

For the 4-node example we have been using, the correspond-
ing time-expanded graphG(N) is illustrated by Figure 3(a).
This graph consists of 3 layers, corresponding to the 3 epochs,
with forward memory connections along the time line. Thus
the i-th layer characterizes the information flows in thei-th
epoch; when we move from one epoch to the next, the infor-
mation a node learned in the past is available to it in the next
epoch. The beauty of this graph is that it explicitly models the
operations in different epochs, in a single graph. For example,
the constructive scheme in Figure 1 can be represented by
Figure 3(b). More generally, any feasible scheme corresponds
to a traffic assignment inG(N), where each edge inG(N) is
labelled with the number of bits the edge carries.

We next show how to search for good solutions via linear
programming. Before doing that, we shall review the notion
of flow. Consider a graphG = (V, E) where the edges have
capacity constraints. The capacity of edgee ∈ E is c(e); for
our purpose, think of the capacity of an edge as the maximum
number of bits that can be sent over the edge. InG, given
a source nodes ∈ V and a destination nodet ∈ V , an s–t
flow is a nonnegative vectorf of length|E| satisfying theflow
conservation constraint: excessv(f) = 0, ∀v ∈ V − {s, t},

where

excessv(f) ≡
∑

e∈In(v)

fe −
∑

e∈Out(v)

fe. (7)

Let Fs,t(B) denote the set ofs–t flows, each with its flow
value equal toB. Thenf ∈ Fs,t(B) if and only if

f ≥ 0,

excesss(f) = −B,

excessv(f) = 0, ∀v ∈ V − {s, t}.

From the Max-Flow-Min-Cut Theorem, in a traffic assign-
ment from a feasible scheme (e.g., Figure 3(b) from the
scheme in Section IV), if nodei recovers the file at the end of
epochκi, then there must exist ans(1)–i(κi) flow with value
B. The converse direction in fact also holds. This follows from
network coding theory.

Lemma 3 (Network Coding for Multicasting [1], [2]):
Consider a directed graphG = (V, E) with edge capacities
specified as a length-|E| vectorc. Consider a multicast session
where a sources wants to multicast information to a set of
receiversT at rater. The traffic demand can be fulfilled in
(V, E, c) if and only if there exists a set of flows{f t} such
that:

c ≥ max
t∈T

f t, (8)

wheref t ∈ Fs,t(r) is ans–t flow with rater in (V, E, c), for
all t ∈ T . Furthermore, if (8) holds, then there exists a linear
network coding solution.

Due to the structure of the time-expanded graphG(N), our
original problem boils down to one of finding a multicast
solution in the time-expanded graphG(N), for any given
order of the nodes to be finished. Given an order at which
the nodes will be finished, say nodei finishes at epochκi,
the corresponding multicast session has source nodes(1) and
receiver set{i(κi)}. Then applying network coding theory, we
obtain a characterization of the feasible set of download times,
or equivalently the feasible set of epoch durations{∆ti}. This
is stated in the following theorem.

Theorem 1 (All Feasible Download Times):
Consider a P2P network in which peer uplinks are the only
bottleneck. Consider multicasting information from a source
nodes to a set of receiver nodes{1, . . . , N}. Given an order at
which the nodes will be finished, say nodei finishes at epoch
κi, a set of epoch durations{∆ti} are feasible if and only
if the following system of linear inequalities has a feasible
solution:

g ≥ f i, i = 1, . . . , N, (9)

f i ∈ Fs(1),i(κi)(B), i = 1, . . . , N, (10)
∑

w: v(i)w(i)

gv(i)w(i) ≤ cv∆ti, ∀v ∈ V, ∀i, (11)

∆ti ≥ 0, ∀i. (12)

Here the variables areg, f i, ∆ti.

Theorem 1 can be extended in a number of ways. For
instance, it can be extended to optimize any linear objective
of the variables (e.g., the average delay) and cover other types
of network constraints (e.g., downlink constraints). Notethat
the above linear system of inequalities has a description that
is linear in the problem size. Hence for a fixed ordering of
the receivers, the optimal solution can be found in polynomial
time. The involvement of the download ordering, however,
appears to be combinatorial. For the P2P network model
that we have been considering, where there are only uplink
constraints, we conjecture that the optimal ordering is to finish
the nodes from the largest to the smallest uplink capacity
(because the bound in Section II is tightest with such ordering).
Note that in the special case where all receiver nodes have
the same uplink capacity, the ordering does not matter due
to symmetry. Hence in such symmetric setup, the optimal
solution (for any linear objective) can be found in polynomial
time.

Corollary 1 (Polynomial Time):
Consider a P2P network in which peer uplinks are the only
bottleneck and all peers have the same uplink capacity. The
minimum average delay (in fact, any linear objective in∆ti)
can be found in polynomial time.

IV. A ROUTING-BASED SCHEME

Theorem 1 provides a theoretical characterization of the
delay region. However, to use it in practice, we need to solvea
linear program (to search for a good operating point and decide
the flow assignment) and the solution may require network
coding. The resulting complexity may still be considered
too high for a large network. In this section, we propose a
simple routing scheme that can achieve good performance.
Algorithm 1 gives one constructive scheme, which is a gener-
alization of the solution given in Figure 1.

Algorithm 1 A Constructive Scheme
1: Let k be the smallest index such thatcs ≥ Dk.
2: In the first epoch, use MutualCast trees to deliver the file

to nodes1, . . . , k in minimum possible time,B/Dk.
3: for i = k + 1, . . . , N do
4: In the i-th epoch (i.e.,[Ti−1, Ti]), all nodes except node

i upload to nodei, and nodei uploads to nodei + 1.
If i = N , then nodeN does not upload.

5: end for

We assumec1 ≥ c2 ≥ . . . ≥ cN . In line 1 of Algorithm 1,
we let k be the smallest index such thatcs ≥ Dk. Note
that k > 1 becauseD1 = cs + c1 > cs. Furthermore,
it can be verified thatDj ≥ Dj+1 for j > 1. Thus
cs ≥ Dk > Dk+1 . . . > DN . For the example given in
Figure 1,cs = 2.5, D1 = 3.5, D2 = 2.5, and D3 = 11/6;
hencek = 2.

The algorithm uses MutualCast trees to deliver the file tok
nodes in minimum possible time,B/ min{cs, Dk} = B/Dk.
In this case, since the second term in the MutualCast capacity
expression is smaller, all resources are fully utilized andthe

solution is unique. More specifically, fori = 1, . . . , k, each
receiver nodei uses a type (2) tree (Figure 2) to send outci∆1

bits, exhausting all its upload resource. Forj = k +1, . . . , N ,
each helper nodej uses a type (3) tree (Figure 2) to send
out a total ofcj∆1 bits, exhausting all its upload resource.
Then the source uses its remaining bandwidth to distribute
additional content using a type (1) tree. As a result, at the
end of the first epoch, nodes1, . . . , k have received the entire
file, and each nodej for j ∈ {k + 1, . . . , N} has received
cj∆t1/k bits. Furthermore, the bits that nodesk + 1, . . . , N
have received are distinct. For the example in Figure 1, the
three MutualCast trees are shown in solid lines, dotted lines,
and dashed lines, respectively; the amount of data flowing in
each edge is labelled on the edge. At the end of the first epoch,
nodes 1 and 2 have finished; node 3 have received 0.2 unit of
information.

Next, in the(k + 1)-th epoch, all nodes except nodek + 1
upload to nodek+1, and nodek+1 uploads to nodek+2. Thus
nodek +1 downloads in parallel at ratecs +

∑N
i=1 ci − ck+1.

Since nodek + 1 receivesck+1∆t1/k bits in the first epoch,
it only needsB − ck+1∆t1/k. Thus if these uploaders have
enough bits to serve nodek + 1, then it can finish after time

∆tk+1 =
B − ∆t1ck+1

k

cs +
∑N

i=1 ci − ck+1

. (13)

For the example in Figure 1, in the third epoch, node3
downloads in parallel from nodess, 1, 2. Since node 3 needs
to obtain 0.8 unit of information, the third epoch last for
∆t3 = 1−0.2

2.5+1+1 = 0.18.
However, for (13) to hold, we have to check to ensure that

indeed all nodesk + 1, . . . , N have enough bits to upload to
nodek+1. To establish that we need to show that∆tk+1cj ≤
cj∆t1/k, where the right hand side is the number of bits that
node j for j ∈ {k + 1, . . . , N} received in the first epoch.
This is established next.

Claim 1: ∆tk+1 ≤ ∆t1/k.
Proof:

∆tk+1 ≤ ∆t1/k (14)

⇐⇒
B −

∆t1ck+1

k

cs +
∑N

i=1 ci − ck+1

≤ ∆t1/k (15)

⇐⇒ B ≤ (cs +
N

∑

i=1

ci)∆t1/k (16)

⇐⇒
Bk

cs +
∑N

i=1 ci

≤ ∆t1 (17)

On the other hand, we know that

∆t1 =
B

Dk
=

Bk

cs +
∑k

i=1 ci + k−1
k

∑N
i=k+1 ci

.

Hence the claim.

During the (k + 1)-th epoch, nodek + 1 uses its upload
bandwidth to upload to nodek + 2. It can be verified that
∆tk+1ck+1 ≤ ∆t1ck+1/k ≤ B−∆t1ck+2/k. Thus nodek+2

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

Server Capacity c
s

S
um

D
el

ay

Lemma 1
Optimal
Algorithm 1
MutualCast

(a)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Server Capacity c
s

S
um

D
el

ay

Lemma 1
Algorithm 1
MutualCast

(b)

Fig. 4. (a) Evaluation of the results forN = 6, B = 1, c1 = . . . = cN = 1.
(b) Evaluation of the results forN = 100, B = 1, c1 = . . . = cN = 1.

is not finished at the end of the(k + 1)-th epoch and it has
∆t1ck+2

k − ∆tk+1ck+1 bits in stock.
Proceeding similarly (by showing∆tj ≤ ∆t1/k, for j > k,

etc), it can be shown that the scheme is indeed feasible and
its download times satisfy:

∆t1 =
B

Dk
, (18)

∆t2 = . . . = ∆tk = 0, (19)

∆tk+1 =
B − ∆t1ck+1

k

cs +
∑N

i=1 ci − ck+1

, (20)

∆tj =
B −

∆t1cj

k − ∆tj−1cj−1

cs +
∑N

i=1 ci − cj

,

for j = k + 2, . . . , N. (21)

V. EVALUATION

In this section, we evaluate the bounds and the schemes
in the paper. Figure 4(a) presents the results forN = 6 and
c1 = . . . = c6 = 1. We vary the server capacitycs from
∑

i ci/(N −1) to 10 and collect the sum delay. There are four
curves, corresponding to: the bound given by Lemma 2, the
optimal result given by Theorem 1, the simple routing-based
scheme given by Algorithm 1, and the MutualCast scheme. It
is seen that the bound given by Lemma 2, the optimal, and
Algorithm 1 are all very close. For the setup in Figure 1,
wherecs = 2.5, the solution given in Section IV seems to be

optimal (the sum delay of Algorithm 1 is 62/45=1.3778; the
linear program for the optimal result returns 1.3778).

Figure 4(b) presents the results forN = 100 andc1 = . . . =
cN = 1. The bound given by Lemma 2 and the simple routing-
based scheme given by Algorithm 1 are hardly distinguishable
from each other. Forcs = 10, the sum delay achieved by
Algorithm 1 is 46.85, which is 51.5% that of the MutualCast
scheme (N ∗ N/(N − 1) = 90.91).

Note that if a scheme can achieve a sum delay very close to
the lower bound (6), thenT[i] of the scheme must be close to
optimal, for eachi. Such a scheme would lead to a desirable
operating point in the delay region because it is essentially
“universally” near-optimal. Thus Algorithm 1 is seen to be a
low-complexity algorithm with good performance.

VI. CONCLUSION

In this paper we formulated the problem of finding the set
of all achievable delays for information broadcasting in a P2P
network. We presented three results.

Section II provides a closed-form bound obtained by bound-
ing the delays separately for the node that finishes the first,
then the node that finishes the second, and so on. Each indi-
vidual delay bound follows from existing theoretical results on
multicasting in P2P networks. The bound is generally loose,
because it does not force consistency over time.

Section III shows how to use the technique of time-
expansion to introduce states along the time axis and thus force
a consistent solution over different epochs. This results in a
necessary and sufficient characterization of the delay region.
Furthermore, the technique is a general technique that can be
used to characterize delay tradeoff problems in other, non-P2P,
networks.

Section IV presents a simple routing-based scheme, built
directly on the intuition that to reduce the delays, it is
better to concentrate the resources and process theN “jobs”
sequentially. For a single server servingN equal-length jobs,
sequential processing of jobs can reduce the average delay to
half, compared to parallel processing of jobs. The network
information multicast problem, however, is more complicated
because of information causality issues. We address such
challenge by using a first stage of content distribution (to
ensure every node gets some data to serve others) followed by
sequential, concentrated serving. The end result is a simple and
near-optimal algorithm that can reduce the average delay up
to half compared to state-of-the-art P2P file transfer solutions.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network information
flow. IEEE Trans. Inform. Theory, 46(4):1204–1216, July 2000.

[2] S.-Y. R. Li, R. W. Yeung, and N. Cai, Linear network coding, IEEE
Trans. Inform. Theory, 49(2):371–381, Feb. 2003.

[3] J. Li, P. A. Chou, and C. Zhang. Mutualcast: an efficient mechanism for
one-to-many content distribution. InSIGCOMM ASIA Workshop. ACM,
Apr. 2005.

[4] D. M. Chiu, R. W. Yeung, J. Q. Huang, and B. Fan, Can networkcoding
help in P2P networks. In2nd Workshop on Network Coding (NetCod).
Apr. 2006.

[5] R. Kumar, Y. Liu, and K. W. Ross, Stochastic fluid theory for P2P
streaming systems. InInfocom 2007, Anchorage, Alaska. IEEE, 2007.

