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The Shannon Cipher System with a Guessing
Wiretapper: General Sources

Manjesh Kumar Hanawal and Rajesh Sundaresan

Abstract

The Shannon cipher system is studied in the context of general sources using a notion of computational secrecy
introduced by Merhav & Arikan. Bounds are derived on limiting exponents of guessing moments for general sources.
The bounds are shown to be tight for iid, Markov, and unifilar sources, thus recovering some known results. A
close relationship between error exponents and correct decoding exponents for fixed rate source compression on
the one hand and exponents for guessing moments on the other hand is established.

Index Terms
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large deviations, secrecy, sources with memory, fixed-ratesource coding

I. INTRODUCTION

We consider the classical cipher system of Shannon [1]. LetXn = (X1, · · · , Xn) be a message where
each letter takes values on a finite setX. This message should be communicated securely from a transmitter
to a receiver, both of which have access to a common secure keyUk of k purely random bits independent
of Xn. The transmitter computes the cryptogramY = fn(X

n, Uk) and sends it to the receiver over a
public channel. The cryptogram may be of variable length. The encryption functionfn is invertible for
any fixedUk. The receiver, knowingY andUk, computesXn = f−1

n (Y, Uk). The functionsfn andf−1
n

are published. A wiretapping attacker has access to the cryptogramY , knowsfn and f−1
n , and attempts

to identify Xn without knowledge ofUk. The attacker can use knowledge of the statistics ofXn. We
assume that the attacker has a test mechanism that tells him whether a guesŝXn is correct or not. For
example, the attacker may wish to attack an encrypted password or personal information to gain access to,
say, a computer account, or a bank account via internet, or a classified database [2]. In these situations,
successful entry into the system provides the natural test mechanism. We assume that the attacker is
allowed an unlimited number of guesses. Thekey ratefor the cipher system isR = k(ln 2)/n nats1 of
secrecy per message (or source) letter.

Merhav & Arikan [2] studied discrete memoryless sources (DMS) in the above setting and characterized
the best attainable moments of the number of guesses required by an attacker. In particular, they showed
that for a DMS with the governing single letter PMFP on X, the value of the optimal exponent for the
ρth moment(ρ > 0) is given by

E(R, ρ) = max
Q

{ρmin{H(Q), R} −D(Q ‖ P )} . (1)

The maximization is over all PMFsQ on X, H(Q) is the Shannon entropy ofQ, andD(Q ‖ P ) is the
Kullback-Leibler divergence betweenQ andP . They also showed thatE(R, ρ) increases linearly inR for
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DRDO-IISc Programme on Advanced Research in Mathematical Engineering, and by the University Grants Commission under Grant Part
(2B) UGC-CAS-(Ph.IV).

The material in this paper was presented in part at the IISc Centenary Conference on Managing Complexity in a DistributedWorld,
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Theory (ISIT 2009) held in Seoul, Korea, June 2009.

1We shall mostly usenat as the unit of information in this paper by taking natural logarithms.k(ln 2)/n nats per input symbol is the
same ask/n bits per input symbol.
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R ≤ H(P ), continues to increase in a concave fashion forR ∈ [H(P ), H
′

], whereH
′

is a threshold, and
is constant forR > H

′

. Unlike the classical equivocation rate analysis, atypical sequences do affect the
behavior ofE(R, ρ) for R ∈ [H(P ), H

′

] and perfect secrecy is obtained, i.e., cryptogram is uncorrelated
with the message, only forR > H

′

> H(P ). Merhav & Arikan also determined the best achievable
performance based on the probability of a large deviation inthe number of guesses, and showed that it
equals the Legendre-Fenchel transform ofE(R, ρ) as a function ofρ. Sundaresan [3] extended the above
results to unifilar sources. Hayashi & Yamamoto [4] proved coding theorems for the Shannon cipher
system with correlated outputs(Xn, Zn) where the wiretapper is interested inXn while the receiver in
Zn.

In this paper, we extend Merhav & Arikan’s notion of computational secrecy [2] to general sources.
One motivation is that secret messages typically come from the natural languages which are modeled
well as sources with memory, for e.g., a Markov source of appropriate order. Another motivation is that
the study of general sources clearly brings out the connection between guessing and compression, as
discussed next.

As with other studies of general sources,information spectrumplays crucial role in this paper. We
show thatE(R, ρ) is closely related to (a) the error exponent of a rate-R source code, and (b) the correct
decoding exponent of a rate-R source code, when exponentiated probabilities are considered (see Sec.
III-B2). In particular, the exponents in (a) and (b) appear in the first and second terms below when we
rewriteE(R, ρ) for a DMS as

E(R, ρ) = max

{

ρR− min
Q:H(Q)>R

D(Q ‖ P ),

min
Q:H(Q)≤R

{ρH(Q)−D(Q ‖ P )}

}

.

This brings out the fundamental connection between source coding exponents and key-rate constrained
guessing exponents. Further, unlike the case for the probability of a large deviation in the number of
guesses [2, Sec. V], both the error exponent and the correct decoding exponent determineE(R, ρ). We
extend the above result to general sources by getting upper and lower bounds onE(R, ρ). We then show
that these are tight for DMS, Markov and unifilar sources. Thebounds may be of interest even if they
are not tight because the upper bound specifies the amount of effort need by an attacker and the lower
bound specifies the secrecy strength of the cryptosystem to adesigner.

The limiting case asρ ↓ 0 in (b) yields classical framework for probability of correct decoding. This
special case is related to the work of Han [5] and Iriyama [6] who studied the dual problem of rates
required to meet a specified error exponent or a specified correct decoding exponent.

The paper is organized as follows. Section II relates our problem to a modification of Campbell’s
compression problem [7]. Section III gives bounds on the limits of exponential rate of guessing moments,
in terms of information spectrum quantities. Section IV evaluates the bounds for some specific examples.
Section V concludes the paper with additional remarks. Proofs are given in the appendices.

II. GUESSING WITH KEY-RATE CONSTRAINTS AND SOURCE COMPRESSION

In this section, we make a precise statement of our problem, and establish a connection between guessing
and source compression subject to a new cost criterion.

Let Xn denote the set of messages andM(Xn) the set of PMFs onXn. By a source, we mean a
sequence of PMFs(Pn : n ∈ N), where2 Pn ∈ M(Xn). Let Xn denote a message put out by the source
andUk the secure key ofk purely random bits independent ofXn. Recall that the transmitter computes
the cryptogramY = fn(X

n, Uk) and sends it to the receiver over a public channel.

2Sometimes we usePXn in place ofPn when we refer to the distribution of the random vectorXn.
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For a given cryptogramY = y, define aguessing strategy

Gn(· | y) : X
n → {1, 2, · · · , |X|n}

as a bijection that denotes the order in which elements ofX
n are guessed.Gn(x

n | y) = l indicates
that xn is the lth guess, when the cryptogram isy. With knowledge ofPn, the encryption functionfn,
and the cryptogramY , the attacker can exhaustively calculate the posterior probabilities of all plaintexts
PXn|Y (· | y) given the cryptogram. The attacker’s optimal guessing strategy is then to guess in the
decreasing order of these posterior probabilitiesPXn|Y (· | y). Let us denote this optimal attack strategy
asGfn. The key rate for the system isR = k(ln 2)/n nats of secrecy per source letter. Let(fn : n ∈ N)
denote the sequence of encryption functions, whereN denotes the set of natural numbers. This sequence is
known to the attacker. We assume that the attacker employs the aforementioned optimal guessing strategy.

For a givenρ > 0, key rateR > 0, define the normalized guessing exponent

Eg
n(R, ρ) := sup

fn

1

n
lnE [Gfn(X

n | Y )ρ] .

The supremum is taken over all encryption functions. Further define performance limits of guessing
moments as in [2]:

Eg
u(R, ρ) := lim sup

n→∞
Eg

n(R, ρ) (2)

Eg
l (R, ρ) := lim inf

n→∞
Eg

n(R, ρ). (3)

We next define the related compression quantities. A length functionLn : Xn → N is a mapping that
satisfies Kraft’s inequality:

∑

xn∈Xn

exp2{−Ln(x
n)} ≤ 1,

where the code alphabet is taken to be binary andexp2{a} = 2a. (We shall useexp to denote the inverse of
the natural logarithmln). Every length function yields an attack strategy with a performance characterized
as follows.

Proposition 1: Let Ln be any length function onXn. There is a guessing listGn such that for any
encryption functionfn, we have3

Gn(x
n | y) ≤ 2 exp2 {min {Ln(x

n), nR/(ln 2)}}

= 2 exp {min {Ln(x
n) ln 2, nR}} .

Proof: We use a technique of Merhav & Arikan [2]. LetGLn
denote the guessing function that

ignores the cryptogram and proceeds in the increasing orderof Ln lengths. SupposeGLn
proceeds in

the orderxn1 , x
n
2 , · · · . By [8, Prop. 2], we need at mostexp2{Ln(x

n)} guesses to identifyxn (This is a
simple consequence of the fact that there are at mostexp2{Ln(x

n)} strings of length less than or equal
to Ln(x

n)).
As an alternative attack, consider the exhaustive key-search attack defined by the following guessing list:

f−1
n

(

y, uk1
)

, f−1
n

(

y, uk2
)

, · · ·

whereuk1, u
k
2, · · · is an arbitrary ordering of the keys. This strategy identifies xn in at mostexp{nR} =

exp2{nR/(ln 2)} guesses. Finally, letGn(· | y) be the list that alternates between the two lists, skipping
those already guessed, i.e., the one that proceeds in the order

xn1 , f
−1
n

(

y, uk1
)

, xn2 , f
−1
n

(

y, uk2
)

, · · · . (4)

Clearly, for everyxn, we need at most twice the minimum over the two individual lists.

3We reiterate thatR is measured in nats.
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We now look at a weak converse in the expected sense to the above. We first state without proof the
following lemma which associates a length function to any guessing function (see [8, Prop. 1]).

Lemma 2:Given a guessing functionGn, there exists a length functionLGn
satisfying

LGn
(xn)− 1− log2 cn ≤ log2Gn(x

n) ≤ LGn
(xn), (5)

where

cn =

|X|n
∑

i=1

1

i
.

For a proof, we refer the reader to [8, Prop. 1]. We then have the following proposition.
Proposition 3: Fix n ∈ N, ρ > 0. There is an encryption functionfn and a length functionLn such

that every guessing strategyGn (and in particularGfn) satisfies

E [G(Xn | Y )ρ]

≥
1

(2cn)ρ(2 + ρ)
E [exp {ρmin {Ln (X

n) ln 2, nR}}] .

Proof: See Appendix A. The proof is an extension of Merhav & Arikan’sproof of [2, Th.1] to
sources with memory. The idea is to identify an encryption mechanism that maps messages of roughly
equal probability to each other. Our proof also suggests an asymptotically optimal encryption strategy for
sources with memory.

Remark 1:Note thatcn ≤ 1 + n ln |X|, so that

log2 cn
n

= O

(

log2 n

n

)

= o(1), (6)

a fact that will be put to good use in the sequel.
Propositions 1 and 3 naturally suggest the following codingproblem: identify

Es
n(R, ρ) := min

Ln

1

n
lnE [exp {ρmin {Ln(X

n) ln 2, nR}}] . (7)

The minimum is taken over all length functions. We may interpret the cost of using lengthLn(x
n) as

exp {min{Ln(x
n) ln 2, nR}}, i.e., the cost is exponential inLn, but saturates atexp{nR} and so all

lengths larger thannR nats (i.e.,nR/(ln 2) bits) enjoy the saturated cost. ThenEs
n(R, ρ) is the minimum

normalized exponent of theρth moment of this new compression cost. In analogy with (2) and (3) we
define

Es
u(R, ρ) = lim sup

n→∞
Es

n(R, ρ)

Es
l (R, ρ) = lim inf

n→∞
Es

n(R, ρ)

The following is a corollary to Propositions 1 and 3, and relatesEg
n(R, ρ) andEs

n(R, ρ).
Corollary 4: For a givenR, ρ > 0, we have

|Es
n(R, ρ)−Eg

n(R, ρ)| ≤
ln((4cn)

ρ(2 + ρ))

n
. (8)
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Proof: Let L∗
n be the length function that achievesEs

n(R, ρ). Using Proposition 1, and after taking
expectation, we have the guessing strategyGn that satisfies

E [exp {ρmin {L∗
n(X

n) ln 2, nR}}]

≥ sup
fn

1

2ρ
E [Gn(X

n | Y )ρ]

≥ sup
fn

1

2ρ
E [Gfn(X

n | Y )ρ]

≥
1

(4cn)ρ(2 + ρ)
E [exp {ρmin {Ln(X

n) ln 2, nR}}]

for somefn andLn, given by Proposition 3,

≥
1

(4cn)ρ(2 + ρ)
E [exp {ρmin {L∗

n(X
n) ln 2, nR}}] .

Take logarithms, normalize byn, usecn > 1 andρ > 0 to get (8).
We now state the equivalence between compression and guessing.
Theorem 5 (Guessing-Compression Equivalence):For any ρ > 0 and R > 0, we haveEs

u(R, ρ) =
Eg

u(R, ρ) andEs
l (R, ρ) = Eg

l (R, ρ).
Proof: From Corollary 4 and (6), magnitude of the difference betweenEg

n(R, ρ) andEs
n(R, ρ) decays

asO((lnn)/n) and vanishes asn→ ∞.
Thus, the problem of finding the optimal guessing exponent isthe same as that of finding the optimal

exponent for the coding problem in (7). WhenR ≥ ln |X|, the coding problem in (7) reduces to the
one considered by Campbell in [7]; this is a case where perfect secrecy is obtained and is studied in [8].
Proposition 1 shows that the optimal length function attaining the minimum in (7) yields an asymptotically
optimal attack strategy on the cipher system. Moreover, theencryption strategy in the proof of Proposition
3 (see Appendix A) is asymptotically optimal, from the designer’s point of view.

In the rest of the paper we focus on the equivalent compression problem and find bounds onEs
u and

Es
l .

III. GROWTH EXPONENT FOR THEMODIFIED COMPRESSIONPROBLEM

We begin with some words on notation. Recall thatM(Xn) denotes the set of PMFs onXn. The
Shannon entropy for aPn ∈ M(Xn) is

H(Pn) = −
∑

xn∈Xn

Pn(x
n) lnPn(x

n)

and the Rényi entropy of orderα 6= 1 is

Hα(Pn) =
1

1− α
ln

(

∑

xn∈Xn

Pn(x
n)α

)

. (9)

The Kullback-Leibler divergence or relative entropy between two PMFsQn andPn is

D(Qn ‖ Pn) =







∑

xn∈Xn

Qn(x
n) ln

Qn(x
n)

Pn(xn)
, if Qn ≪ Pn,

∞, otherwise,

whereQn ≪ Pn meansQn is absolutely continuous with respect toPn. We shall use(Xn : n ∈ N)
to denote a sequence of random variables onX

n, with corresponding sequence of probability measures
denoted byX := (PXn : n ∈ N). ThusX is a source andXn its n-letter message output. Abusing notation,
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we letM(XN) denote the set of all sequencesY = (PY n : n ∈ N) of probability measures, and for each
B := (Bn ⊆ X

n : n ∈ N), we define

M(B) :=
{

Y ∈ M(X) : lim
n→∞

PY n(Bn) = 1
}

.

In the rest of this sectionX is a fixed source. For anyY ∈ M(B) andρ > 0, define

Eu(Y,X, ρ) := lim sup
n→∞

1

n
{ρH(PY n)−D(PY n ‖ PXn)}

and
El(Y,X, ρ) := lim inf

n→∞

1

n
{ρH(PY n)−D(PY n ‖ PXn)}.

We next state a large deviation result that plays a key role inthe derivation of bounds onEs
u andEs

l .
Proposition 6: For all ρ ≥ 0 andB = (Bn ⊆ X

n : n ∈ N), we have

(1 + ρ) lim sup
n→∞

1

n
ln
∑

xn∈Bn

P
1

1+ρ

Xn (xn) = max
Y∈M(B)

Eu(Y,X, ρ) (10)

(1 + ρ) lim inf
n→∞

1

n
ln
∑

xn∈Bn

P
1

1+ρ

Xn (xn) = max
Y∈M(B)

El(Y,X, ρ) (11)

The maximum-achieving distribution in (10) and (11) is the sourceX∗ = (P ∗
Xn : n ∈ N) given by

P ∗
Xn(·) =

P
1

1+ρ

Xn (·)
∑

yn∈Bn
P

1

1+ρ

Xn (yn)
. (12)

Proof: See Appendix B.

Remark 2:This proposition is a generalization of Iriyama’s [6, Prop.1], which is obtained by setting
ρ = 0.

A. Upper Bound onEs
u

We first obtain an upper bound onEs
u. We useEXn [·] to denote the expectation with respect to

distributionPXn .
Proposition 7 (Upper Bound):Let R > 0 andρ > 0. Then

Es
u(R, ρ) ≤ min

0≤θ≤ρ

[

(ρ− θ)R + max
Y∈M(XN)

Eu(Y,X, θ)

]

.

Proof: We first recall the useful variational formula [9, Prop. 1.4.2]

lnEXn [exp{U(Xn)}]

= sup
PY n

{EY n [U(Y n)]−D(PY n ‖ PXn)} (13)
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for any U : Xn → R, whereR denotes set of real numbers. For notational convenience, let d(Y n) :=
D(PY n ‖ PXn). Observe that

lnEXn [exp {ρmin{Ln(X
n) ln 2, nR}}]

= sup
PY n

[ρEY n [min{Ln(Y
n) ln 2, nR}]− d(Y n)] (14)

≤ sup
PY n

[ρmin{EY n [Ln(Y
n) ln 2] , nR} − d(Y n)] (15)

= sup
PY n

{

min
0≤θ≤ρ

[(ρ− θ)nR + θEY n [Ln(Y
n) ln 2]

− d(Y n)

}

(16)

= min
0≤θ≤ρ

sup
PY n

{

(ρ− θ)nR + θEY n [Ln(Y
n) ln 2]

− d(Y n)

}

(17)

= min
0≤θ≤ρ

{

(ρ− θ)nR + sup
PY n

{

θEY n [Ln(Y
n) ln 2]

− d(Y n)

}}

.

In the above sequence of inequalities, (14) follows from thevariational formula (13) with

U(xn) = ρmin{Ln(x
n) ln 2, nR}.

Inequality (15) follows from Jensen’s inequality becausemin{·, nR} is concave for a fixednR. Equality
(16) follows from the identity

ρmin{a, b} = min
0≤θ≤ρ

{θa + (ρ− θ)b}.

Equality (17) follows because the term within braces is linear in θ for a fixedPY n , concave inPY n for a
fixed θ, and the sets[0, ρ] andM(Xn) are compact and convex; these permit an interchange of sup and
inf, thanks to a minmax theorem [10, Cor. 2, p. 53]. Takinginf overLn, and interchanging theinf over
Ln and themin over θ, we get

inf
Ln

lnEXn [exp {ρmin{Ln(Y
n) ln 2, nR}}]

≤ min
0≤θ≤ρ

{

(ρ− θ)nR + inf
Ln

sup
PY n

{

θEY n [Ln(Y
n) ln 2]

− d(Y n)

}}

= min
0≤θ≤ρ

{

(ρ− θ)nR + sup
PY n

{

θ inf
Ln

EY n [Ln(Y
n) ln 2]

− d(Y n)

}

+O(1)

}

(18)

= min
0≤θ≤ρ

{

(ρ− θ)nR + sup
PY n

{

θH(PY n)

− d(Y n)

}

+O(1)

}

(19)

= min
0≤θ≤ρ

{

(ρ− θ)nR + θH 1

1+θ
(PXn) +O(1)

}

. (20)
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Equality (18) follows because the function inside the innerbraces is concave inPY n , asymptotically
linear in Ln (see proof of [8, Prop. 6]), andM(Xn) is compact; this allows us to interchangeinf and
sup. Inequality (19) follows becauseinf of expected compression lengths over all prefix codes is within
ln 2 nats (1 bit) of entropy. The last equality follows from the well-known variational characterization of
Rényi entropy,

sup
PY n

{θH(PY n)−D(PY n ‖ PXn)} = θH 1

1+θ
(PXn), (21)

a fact that can also be gleaned from the variational formula (13). Divide both sides of (20) byn and take
limit supremum asn→ ∞ to get

Es
u(R, ρ)

≤ lim sup
n→∞

min
0≤θ≤ρ

{

(ρ− θ)R +
θ

n
H 1

1+θ
(PXn)

}

≤ min
0≤θ≤ρ

{

(ρ− θ)R + θ lim sup
n→∞

1

n
H 1

1+θ
(PXn)

}

= min
0≤θ≤ρ

{

(ρ− θ)R + max
Y∈M(XN)

Eu(Y,X, θ)

}

,

where the last inequality follows from Proposition 6 and theformula for Rényi entropy. This completes
the proof.

From the above proof it is clear that the upper bound holds with equality, when Jensen’s inequality
holds with equality in (15), i.e, the random variable(1/n)min{Ln(X

n) ln 2, nR} tends asymptotically to
a constant. This would happen, for example, when normalizedencoded lengths concentrate around the
entropy rate of the source.

B. Lower Bound onEs
l

We now derive a lower bound onEs
l . For a given distributionPY n arrange the elements of setX

n in the
decreasing order of theirPY n-probabilities as done in Sundaresan [3, Sec. IV]. Enumerate the sequences
from 1 to |X|n. Henceforth refer to a message by its index. LetTR(Y

n) denote the firstM = ⌊exp{nR}⌋
elements in the list. We denote the probability of this set byFY n , i.e.,

FY n =
∑

xn∈TR(Y n)

PY n(xn),

and the probability of the complement of this setT c
R(Y

n) by F c
Y n . Let the restriction ofPY n to this set

TR(Y
n) be P ′

Y n . Let L∗
n denote the length function that attainsEs

n(R, ρ) in (7). As the length functions
are uniquely decipherable we haveexp2{L

∗
n(i)} ≥ i.

Proposition 8 (Lower Bound):For a givenρ > 0 and rateR > 0, we have

Es
l (R, ρ) ≥ max

{

ρR + lim inf
n→∞

1

n
lnF c

Xn ,

(1 + ρ) lim inf
n→∞

1

n
ln

∑

xn∈TR(Xn)

P
1

1+ρ

Xn (xn)

}

. (22)

Remark 3:The first term contains limit infimum of the error exponent fora rate-R source code. The
second exponent is the correct decoding exponent for a rate-R code whenρ ↓ 0.
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Proof: The variational formula (13) applied to the functionU(xn) = ρmin{Ln(x
n) ln 2, nR} gives

inf
Ln

lnEXn [exp {ρmin {Ln(X
n) ln 2, nR}}]

= inf
Ln

sup
PY n

{ρEY n [min{Ln(Y
n) ln 2, nR}]− d(Y n)}

≥ sup
PY n

{

ρ inf
Ln

EY n [min{Ln(X
n) ln 2, nR}]− d(Y n)

}

(23)

where the interchange of inf and sup yields the lower bound in(23). Fix a distributionPY n and consider
the first term in (23). Using the enumeration indicated above, we may write

inf
Ln

EY n [min{Ln(Y
n) ln 2, nR}]

=

|X|n
∑

i=1

PY n(i)min{L∗
n(i) ln 2, nR}

=
M
∑

i=1

PY n(i)min{L∗
n(i) ln 2, nR}+

|X|n
∑

i=M+1

PY n(i)nR

≥

M
∑

i=1

PY n(i) lnG∗
n(i) + nRF c

Y n (24)

≥ FY n

M
∑

i=1

PY n(i)

FY n

LG∗

n
(i) ln 2− ln 2− ln(1 + n ln |X|)

+ nRF c
Y n (25)

≥ FY nH(P ′
Y n)− ln 2− ln(1 + n ln |X|) + nRF c

Y n . (26)

Inequality (24) follows because
L∗
n(i) ln 2 ≥ ln i = lnG∗

n(i)

with G∗
n the guessing strategy that guesses in decreasing order ofPY n probabilities.LG∗

n
in (25) denotes

the length function given by Lemma 2. Inequality (26) follows from the source coding theorem’s lower
bound. Substitute (26) in (23), normalize byn, and take limit infimum to get

Es
l (R, ρ)

≥ lim inf
n→∞

1

n
sup
PY n

{

ρFY nH(P ′
Y n) + F c

Y nρnR − d(Y n)

}

.

PY n may be thought of as a triplet made ofP ′
Y n , FY n , and the restriction ofPY n to T c

R(Y
n). We now

perform the optimization
sup
PY n

{ρFY nH(P ′
Y n) + F c

Y nρnR − d(Y n)} (27)

in four steps.
Step 1: We first optimize over permutations of probabilities over strings.FY n, F c

Y n , H(PY n), andH(P ′
Y n)

remain unchanged over these permutations. Observe that

−d(Y n) = H(PY n) +
∑

yn

PY n(yn) lnPXn(yn),

and so the maximum for−d(Y n) is attained when the permutation that ordersPXn(·) in decreasing order
also ordersPY n(·) in decreasing order. In particular,TR(Y n) equalsTR(Xn).
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Step 2: We now optimize over restriction ofPY n to T c
R(Y

n). For a fixedFY n , the log-sum inequality
yields

∑

xn∈T c
R
(Xn)

PY n(xn) ln
PY n(xn)

PXn(xn)
≥ F c

Y n ln
F c
Y n

F c
Xn

,

with equality if and only ifPY n(xn) = PXn(xn)
F c
Y n

F c
Xn

for all xn ∈ T c
R(PXn).

Step 3: To optimize overP ′
Y n rewrite (27) as

sup
PY n

{

ρFY nH(P ′
Y n) + F c

Y nρnR

−

M
∑

i=1

PY n(i) ln
PY n(i)

PXn(i)
−

|X|n
∑

M+1

PY n(i) ln
PY n(i)

PXn(i)

}

= sup
P ′

Y n ,FY n

{

ρFY nH(P ′
Y n) + F c

Y nρnR

−

M
∑

i=1

PY n(i) ln
PY n(i)

PXn(i)
− F c

Y n ln
F c
Y n

F c
Xn

}

(28)

= sup
P ′

Y n ,FY n

{

ρFY nH(P ′
Y n) + F c

Y nρnR

−FY nD(P ′
Y n ‖ P ′

Xn)−D(FY n||FXn)

}

(29)

= sup
FY n

{

ρFY nH 1

1+ρ
(P ′

Xn) + F c
Y nρnR

−D(FY n ‖ FXn)

}

. (30)

Equality (28) is obtained by substituting the attained lower bound in Step 2. In (29),P ′
Y n andP ′

Xn denote
conditional distributions ofPY n and PXn given TR(Y n) and TR(Xn), respectively, whereTR(Y n) =
TR(X

n) as argued in Step 1.D(FY n ||FXn) denotes the divergence between binary random variables
whose probabilities are{FY n , 1 − FY n} and {FXn , 1 − FXn} respectively. Finally we used variational
characterization of Rényi entropy given in (21) to arrive at (30).
Step 4: We now optimize overFY n ∈ [0, 1]. Let Z be a binary random variable defined as

Z =

{

ρH 1

1+ρ
(P ′

Xn) with probability FY n ,

ρnR with probability 1− FY n

By EFY n [Z] we mean the expectation ofZ with respect to the above distribution. SinceZ is a positive
random variable, the variational formula yields

sup
FY n

{EFY n [Z]−D(FY n ‖ FXn)} = lnEFXn [exp{Z}] .
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Continuing with the chain of equalities from (30) we get

sup
FY n

{

FY nρH 1

1+ρ
(P ′

Xn) + F c
Y nρnR −D(FY n ‖ FXn)

}

= ln







F c
Xn exp{nRρ}+ FXn

(

M
∑

i=1

P ′
Xn

1

1+ρ (i)

)1+ρ






= ln







F c
Xn exp{nRρ}+

(

M
∑

i=1

P
1

1+ρ

Xn (i)

)1+ρ






. (31)

Finally normalize both sides of (31) byn, take limit infimum, and apply [11, Lemma 1.2.15], which states
that the exponential rate of a sum is governed by the maximum of the individual terms’ exponential rates,
to get the desired result.

In the subsequent subsections we further lower bound each ofthe two terms under max on the right-
hand side of (22). For an arbitrary source we first recall the source coding error exponent. We also identify
the growth rate of sum of exponentiated probabilities of thecorrect decoding set. We then relate these to
the terms in the lower bound obtained in (22). We largely follow the approach and notation of Iriyama
[6], which we now describe.

GivenX = (PXn : n ∈ N) andY = (PY n : n ∈ N), we define the upper divergenceDu(· ‖ ·) and lower
divergenceDl(· ‖ ·) by

Du(Y ‖ X) := lim sup
n→∞

1

n
D(PY n ‖ PXn)

Dl(Y ‖ X) := lim inf
n→∞

1

n
D(PY n ‖ PXn).

For aY = (PY n : n ∈ N), denote thespectral sup-entropy-rate[5, Sec. II], [12] as

H(Y) := inf

{

θ : lim
n→∞

Pr

{

1

n
ln

1

PY n(Y n)
> θ

}

= 0

}

,

and thespectral inf-entropy-rateas

H(Y) := sup

{

θ : lim
n→∞

Pr

{

1

n
ln

1

PY n(Y n)
< θ

}

= 0

}

.

Also define, as in [6, Sec. II], the following quantity which determines the performance under mismatched
compression:

R(Y,X) := sup

{

θ :lim
n→∞

Pr

{

1

n
ln

1

PXn(Y n)
< θ

}

=0

}

.

1) Decoding Error Exponent:In this subsection we recall the decoding error exponent forfixed-rate
encoding of an arbitrary source. We identify the first term in(22) as composed of the exponent of minimum
probability of decoding error, and obtain a lower bound for it, or alternatively an upper bound on the
error exponent. This is made precise in the following definitions.

By an (n,Mn, ǫn)-code we mean an encoding mapping

φn : Xn → {1, 2, · · · ,Mn}

and a decoding mapping
ψn : {1, 2, · · ·Mn} → X

n
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with probability of errorǫn := Pr{ψn(φn(X
n)) 6= Xn}. R is r-achievable if for allη > 0 there exists a

sequence of(n,Mn, ǫn)-codes such that

lim sup
n→∞

1

n
ln

1

ǫn
≥ r (32)

lim sup
n→∞

1

n
lnMn ≤ R + η. (33)

The infimum fixed-length coding ratefor exponentr is

R̂(r|X) = inf{R : R is r-achievable}.

On the other hand, thesupremum fixed-length coding exponentfor rateR is

Ê(R|X) = sup{r : R is r-achievable}.

See Iriyama [6] and Han [12, Sec. 1.9] for a pessimistic definition for fixed rate source coding, i.e., the
liminf in place of limsup in (32). See also Iriyama & Ihara [13] for both the pessimistic and optimistic
definitions. These works obtained bounds on the infimum coding rate. In particular, Iriyama [6, Eqn. (13)],
Iriyama & Ihara [13, Eqn. (12)] obtained lower bounds on the infimum coding rateR̂(r|X) under the
optimistic definition, the definition of interest to us. We however work with the error exponent, and obtain
an upper bound on supremum coding exponent. This suffices to lower bound the first term in (22).

Clearly,Mn = ⌊exp{nR}⌋ satisfies (33), and with

r0 = lim sup
n→∞

1

n
log

1

F c
Xn

,

R is r0-achievable. It follows from the definition of̂E(R|X) that

lim sup
n→∞

1

n
ln

1

F c
Xn

≤ Ê(R|X)

so that
lim inf
n→∞

1

n
lnF c

Xn ≥ −Ê(R|X).

The following proposition upper bounds the supremum codingexponent.
Proposition 9: For any rateR > 0,

Ê(R|X) ≤ inf
Y:H(Y)>R

Du(Y ‖ X). (34)

Proof: See Appendix C.
Remark 4:WhenR ≥ ln |X|, the probability of decoding errorǫn = 0, so thatÊ(R|X) = +∞. The

right-hand side is an infimum over an empty set and is+∞ by convention, and the proposition holds for
suchR as well.

One can also show the alternative bound

Ê(R|X) ≤ inf
Y:R(Y,X)−Du(Y‖X)>R

Du(Y ‖ X). (35)

See the end of Appendix C on how to prove this. This result would be the functional inverse of Iriyama’s [6,
Eqn. (13)], while Proposition 9 is the functional inverse ofIriyama & Ihara’s [13, Eqn. (12)]. Proposition
9, as we will soon see, provides a more natural extension of Arikan & Merhav’s expression forE(R, ρ)
to general sources.
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2) Correct Decoding Exponent:We now study a generalization of the exponential rate for probability
of correct decoding.

For a given(n,Mn, ǫn)-code, let

An := {xn ∈ X
n : ψn(φn(x

n)) = xn}

denote the set of correctly decoded sequences. For a givenρ > 0, R is (r, ρ)-admissible if for everyη > 0
there exists a sequence of(n,Mn, ǫn)-codes such that

(1 + ρ) lim inf
n→∞

1

n
ln
∑

xn∈An

P
1

1+ρ

Xn (xn) ≥ r (36)

lim sup
n→∞

1

n
lnMn ≤ R + η. (37)

Unlike the exponent for the probability of error, herer can be positive or negative. Theinfimum fixed-length
admissible ratefor a givenr andρ > 0 is

R∗(r, ρ|X) = inf{R : R is (r, ρ)-admissible}.

It is easy to see that the set{R : R is (r, ρ)-admissible} is closed and soR∗(r, ρ|X) is (r, ρ)-admissible.
The supremum fixed-length coding exponentfor a givenR andρ is

E∗(R, ρ|X) = sup{r : R is (r, ρ)-admissible}.

Remark 5:The choice of limit infimum in (36) makes the definition of admissibility pessimistic. For
ρ ↓ 0, the above definitions reduce to the special case of exponential rate for probability of correct
decoding (see [12, Sec. 1.10]).

Clearly,An should beTR(Xn) to maximize the left-hand side of (36), and hence

E∗(R, ρ|X) = (1 + ρ) lim inf
n→∞

1

n
ln

∑

xn∈TR(Xn)

P
1

1+ρ

Xn (xn).

The following proposition gives an expression forE∗(R, ρ|X) and generalizes [6, Thm. 4] to any arbitrary
ρ > 0. En route to its derivation we find the expression forR∗(r, ρ|X).

Proposition 10: For anyρ > 0, we have

R∗(r, ρ|X) = inf
Y:El(Y,X,ρ)≥r

H(Y) (38)

E∗(R, ρ|X) = sup
Y:H(Y)≤R

El(Y,X, ρ). (39)

Proof: See Appendix D.

C. Summary of Bounds onEs
u andEs

l

We now combine Propositions 7-10 of the previous subsections to obtain the main result of the paper.
Theorem 11:For a givenρ > 0 andR > 0,

max

{

ρR − inf
Y:H(Y)>R

Du(Y ‖ X),

sup
Y:H(Y)≤R

El(Y,X, ρ)

}

≤ Es
l (R, ρ) ≤ Es

u(R, ρ)

≤ min
0≤θ≤ρ

{

(ρ− θ)R +max
Y

Eu(Y,X, θ)
}

. (40)
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Proof: The last inequality was proved in Proposition 7. Proposition 8 indicates that

Es
l (R, ρ)

≥ max

{

ρR + lim inf
n→∞

1

n
lnF c

Xn ,

(1 + ρ) lim inf
n→∞

1

n
ln

∑

xn∈TR(Xn)

P
1

1+ρ

Xn (xn)

}

≥ max
{

ρR− Ê(R|X), E∗(R, ρ|X)
}

(41)

≥ max

{

ρR− inf
Y:H(Y)>R

Du(Y ‖ X),

sup
Y:H(Y)≤R

El(Y,X, ρ)

}

, (42)

where (41) follows from the lower bound on̂E(R|X) and the definition ofE∗(R, ρ|X), and (42) from
Propositions 9 and 10.

IV. EXAMPLES

In this section we evaluate the bounds for some examples where they are tight, and recover some known
results.

Example 1 (Perfect Secrecy):First consider the perfect secrecy case, for example,R ≥ ln |X|. Because
of Remark 4 and because we may takeθ = ρ in the upper bound in (40), the limiting exponential rate of
guessing moments simplifies to

sup
Y

El(Y,X, ρ) ≤ Es
l (R, ρ)

≤ Es
u(R, ρ) ≤ max

Y

Eu(Y,X, ρ).

On account of (11) in Proposition 6, sup in the left-most termis achieved. From Proposition 6, upper and
lower bounds areρ times the liminf and limsup Rényi entropy rates of order1

1+ρ
. In a related work we

proved in [8, Prop. 7] that whenever theinformation spectrumof the source satisfies the large deviation
property with rate functionI, the Rényi entropy rate converges and limiting guessing exponent equals the
Legendre-Fenchel dual of the scaled rate functionI1(t) := (1 + ρ)I(t), i.e.,

Es
u(R, ρ) = Es

l (R, ρ) = sup
t∈R

{ρt− I1(t)}.

In the next examples, we consider the caseR < ln |X|.
Example 2 (An iid source):This example was first studied by Merhav & Arikan [2]. Recall that an

iid source is one for whichPn(x
n) =

∏n
i=1 P1(xi), whereP1 denotes the marginal ofX1. We will now

evaluate each term in (40).
We first argue that

inf
Y:H(Y)>R

Du(Y ‖ X) = inf
PY :H(PY )>R

D(PY ‖ P1). (43)

To prove that the left-hand side in (43) is less than or equal to the right-hand side, letPY ∈ M(X) be
such thatH(PY ) > R. Construct an iid sourcêY = (PŶ n : n ∈ N) such thatPŶi

= PY for all 1 ≤ i ≤ n.
The iid property easily implies that

Du(Ŷ ‖ X) = D(PY ‖ P1),
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and the law of large numbers for iid random variables yields

H(Ŷ) = H(PY ) > R. (44)

From (44), we have that the infimum on the left-hand side of (43) is over a larger set. We can therefore
conclude that “≤” holds in (43).

To prove “≥” in (43) we use the result (see [12, Th. 1.7.2])

H(Y) ≤ Hl(Y) := lim inf
n→∞

1

n
H(PY n)

to get that the infimum over a larger set is smaller, i.e.,

inf
Y:H(Y)>R

Du(Y ‖ X) ≥ inf
Y:Hl(Y)>R

Du(Y ‖ X). (45)

Because of (45) it is sufficient to prove

inf
Y:Hl(Y)>R

Du(Y ‖ X) ≥ inf
PY :H(PY )>R

D(PY ‖ P1). (46)

Let Y be such thatHl(Y) > R. Construct a sourcêY such that,PŶi
= PYi

for 1 ≤ i ≤ n and
Ŷ1, Ŷ2, · · · , Ŷn are independent. LetZ be another source such thatZ1, Z2, · · · , Zn is an iid sequence with
distribution

PZj
=

1

n

n
∑

i=1

PYi
, j = 1, 2, · · · , n.

As the marginals ofY n and Ŷ n with independent components are the same, it easily followsfrom the
formula for Kullback-Leibler divergence that

D(PY n ‖ PXn) = D(PY n ‖ PŶ n) +D(PŶ n ‖ PXn)

≥ D(PŶ n ‖ PXn)

=

n
∑

i=1

D(PŶi
‖ P1)

≥ nD(PZ1
‖ P1), (47)

where (47) follows from the convexity of divergence. From the concavity of Shannon entropy, we also
have

H(PY n) ≤

n
∑

i=1

H(PYi
) ≤ nH(PZ1

). (48)

Normalize byn take limsup in (47) and liminf in (48) to getDu(Y ‖ X) ≥ D(PZ1
‖ P1) andH(PZ1

) > R
for a PZ1

that is a limit point of the sequence(n−1
∑n

i=1 PYi
, n ∈ N). From these we conclude that (46)

holds. This proves (43).
Following a similar procedure as above, we can bound the other terms in (40) for an iid source as

sup
Y:H(Y)≤R

El(Y,X, ρ)

≥ sup
PY :H(PY )≤R

{ρH(PY )−D(PY ‖ P1)} (49)

and

sup
Y

Eu(Y,X, θ) = sup
PY

{θH(PY )−D(PY ‖ P1)}. (50)
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Substitution of (43) and (49) in the lower bound of (40) yields

Es
l (R, ρ) ≥ max

{

ρR− inf
PY :H(PY )>R

D(PY ‖ P1),

sup
PY :H(PY )≤R

{ρH(PY )−D(PY ‖ P1)}

}

= sup
PY

{ρmin{H(PY ), R} −D(PY ‖ P1)} . (51)

Similarly substitution of (50) in the upper bound of (40) yields

Es
u(R, ρ)

≤ min
0≤θ≤ρ

{

(ρ− θ)R + sup
PY

{θH(PY )−D(PY ‖ P1)}

}

= sup
PY

{

min
0≤θ≤ρ

{(ρ− θ)R + θH(PY )} −D(PY ‖ P1)

}

(52)

= sup
PY

{ρmin{H(PY ), R} −D(PY ‖ P1)} , (53)

where the interchange of sup and min in (52) holds because thefunction within braces is linear inθ and
concave inPY . From (51) and (53), we recover Merhav & Arikan’s result (1) for an iid source [2, Eqn.
(3)].

Example 3 (Markov source):In this example we focus on an irreducible stationary Markovsource
taking values onX and having a transition probability matrixπ.

Let Ms(X
2) denote the set ofstationaryPMFs defined by

Ms

(

X
2
)

=
{

Q ∈ M
(

X
2
)

:
∑

x1∈X

Q(x1, x) =
∑

x2∈X

Q(x, x2), ∀x ∈ X

}

.

Denote the common marginal byq and let

η(· | x1) :=

{

Q(x1, ·)/q(x1), if q(x1) 6= 0,
1/|X|, otherwise.

We may then denoteQ = q × η, whereq is the distribution ofX1 and η the conditional distribution of
X2 givenX1. Following steps similar to the iid case, we have

Es
u = Es

l = sup
Q∈Ms(X2)

{

ρmin{H(η | q), R} −D(η ‖ π | q)
}

,

where
H(η | q) :=

∑

x∈X

q(x)H(η(· | x)).

is the conditional one-step entropy, and

D(η ‖ π | q) =
∑

x1∈X

q(x1)D(η(· | x1) ‖ π(· | x1)).

For a unifilar source the underlying state space forms a Markov chain and the entropy and divergence of
the source equals those of the underlying Markov state spacesource [14, Thm. 6.4.2]. The arguments for
the Markov source are now directly applicable to a unifilar source.
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V. CONCLUSION

We saw the close connection between the problem of guessing asource realization given a cryptogram
and the problem of compression with saturated exponential costs. The latter is a modification of a problem
posed by Campbell [7]. Moreover, the exponents for both these problems coincide. This exponent is
determined by the error exponent and a generalization of correct decoding exponent for fixed length
block source codes.

We end this paper with some open questions.
• The equivalence between guessing and compression exploitsthe finite alphabet size assumption. Can

this be relaxed?
• How do the results of this paper extend to the case with receiver side information? Can the result of

Hayashi & Yamamoto be extended to general sources?
• If guessing to within a distortion is allowed, can the resultof Merhav & Arikan [15] be extended to

general sources? Both cases of perfect secrecy and key-rateconstrained secrecy remain open.

APPENDIX A
PROOF OFPROPOSITION3

Let Pn be any PMF onXn. Enumerate the elements ofXn from 1 to |X|n in the decreasing order of
their Pn-probabilities. LetM = exp{nR} denote the number of distinct key strings. For convenience,we
shall assume thatM is a power of 2 so that the number of key bitsk = nR/(ln 2) is an integer. The
general case will be easily handled towards the end of this section.

If M does not divide|X|n, append a few dummy messages of zero probability to make the number of
messagesN a multiple ofM . Further, index the messages from 0 toN − 1. Henceforth, we identify a
messagexn by its index.

Divide the messages into groups ofM so that messagem belongs to groupTj , wherej = ⌊m/M⌋,
and⌊·⌋ is the floor function. Enumerate the key streams from 0 toM − 1, so that0 ≤ u ≤ M − 1. The
function fn is now defined as follows. Form = jM + i set

fn(jM + i, u)
∆
= jM + (i⊕ u) ,

wherei⊕ u is the bit-wise XOR operation. Thus messages in groupTj are encrypted to messages in the
same group. The indexi identifying the specific message in groupTj, i.e., the lastk = nR/(ln 2) bits of
m, are encrypted via bit-wise XOR with the key stream. Givenu and the cryptogram, decryption is clear
– perform bit-wise XOR withu on the lastnR/(ln 2) bits of y.

Given a cryptogramy, the only information that the attacker gleans is that the message belongs to the
group determined byy. Indeed, ify ∈ Tj , then

Pn {Y = y} =
1

M
Pn {X

n ∈ Tj} ,

and therefore

Pn {X
n = m | Y = y} =

{

Pn{Xn=m}
Pn{Xn∈Tj}

, ⌊m/M⌋ = j,

0, otherwise,

which decreases withm for m ∈ Tj , because of our enumeration in the decreasing order of probabilities,
and is 0 form /∈ Tj . The attacker’s best strategyGfn(· | y) is therefore to restrict his guesses toTj and
guess in the orderjM, jM + 1, · · · , jM +M − 1. Thus, whenxn = jM + i, the optimal attack strategy
requiresi+ 1 guesses.
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We now analyze the performance of this attack strategy as follows.

E [Gfn(X
n|Y )ρ]

=

N/M−1
∑

j=0

M−1
∑

i=0

Pn{X
n = jM + i}(i+ 1)ρ

≥

N/M−1
∑

j=0

M−1
∑

i=0

Pn{X
n = (j + 1)M − 1}(i+ 1)ρ (54)

≥

N/M−1
∑

j=0

Pn{X
n = (j + 1)M − 1}

M1+ρ

1 + ρ
(55)

≥
1

1 + ρ

N/M−1
∑

j=0

M−1
∑

i=0

Pn{X
n = (j + 1)M + i}Mρ

(56)

=
1

1 + ρ

N−1
∑

m=M

Pn{X
n = m}Mρ (57)

where (54) follows because the arrangement in the decreasing order of probabilities implies that

Pn{X
n = jM + i} ≥ Pn{X

n = (j + 1)M − 1}

for i = 0, · · · ,M − 1. Inequality (55) follows because

M−1
∑

i=0

(i+ 1)ρ =
M
∑

i=1

iρ ≥

∫ M

0

zρ dz =
M1+ρ

1 + ρ
.

Inequality (56) follows because the decreasing probability arrangement implies

Pn{X
n = (j + 1)M − 1} ≥

1

M

M−1
∑

i=0

Pn{X
n = (j + 1)M + i}.

Inequality (57) follows because we takePn(X
n = m) = 0 for all the further dummy messages with

indicesm > N . Thus (57) implies that

N−1
∑

m=0

Pn{X
n = m} (min{m+ 1,M})ρ

=
M−1
∑

m=0

Pn{X
n = m}(m+ 1)ρ +

N−1
∑

m=M

Pn{X
n = m}Mρ

≤ E [Gfn(X
n|Y )ρ] + (1 + ρ)E [Gfn(X

n|Y )ρ]

= (2 + ρ)E [Gfn(X
n|Y )ρ] . (58)

Let G be the guessing function that guesses in the decreasing order of Pn-probabilities without regard to
Y , i.e.,G(m) = m+ 1. Let LG be the associated length function, given in Lemma 2. Now use (58) and
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Lemma 2 to get

E [Gfn(X
n|Y )ρ]

≥
1

2 + ρ
E [(min {G(Xn),M})ρ]

≥
1

2 + ρ
E

[(

min

{

exp2{LG(X
n)}

2cn
,M

})ρ]

≥
1

(2cn)ρ(2 + ρ)
E [exp {ρmin {LG(X

n) ln 2, nR}}] ,

(59)

where the last inequality follows by pulling out2cn and recognizing that2cnM ≥M ≥ exp{nR}. Since
Gfn is the strategy that minimizesE [G(Xn | Y )ρ] , the proof is complete for the cases whenk = nR/(ln 2)
is an integer.

WhennR/(ln 2) is not an integer, choosek = ⌈nR/(ln 2)⌉. ThenM = exp2{k} ≥ exp{nR}, and it
immediately follows that inequality (59) continues to hold. This completes the proof.

APPENDIX B
PROOF OFPROPOSITION6

We begin with the following lemma. Recall thatM(X) is the set of all probability measures onX and
M(B) the subset ofM(X) with support setB ⊆ X:

M(B) = {ν ∈ M(X) : ν(B) = 1}.

Lemma 12:For anyρ > 0, µ ∈ M(X) andB ⊆ X

(1 + ρ) ln
∑

x∈B

µ
1

1+ρ (x) = max
ν∈M(B)

{ρH(ν)−D(ν ‖ µ)}.

Remark 6: [6, Lemma 1] is the special case whenρ = 0.
Proof: Let µB(x) =

µ(x)
µ(B)

1{x ∈ B}. We then have

(1 + ρ) ln
∑

x∈B

µ
1

1+ρ (x)

= (1 + ρ) ln
∑

x∈B

µB

1

1+ρ (x) + lnµ(B)

= (1 + ρ) max
ν∈M(B)

{

∑

x∈B

ρ

1 + ρ
ν(x) ln

1

µB(x)

−D(ν ‖ µB)

}

+ lnµ(B) (60)

= (1 + ρ) max
ν∈M(B)

{

ρ

1 + ρ
{H(ν) +D(ν ‖ µ)}

−D(ν ‖ µ)

}

(61)

= max
ν∈M(B)

{ρH(ν)−D(ν ‖ µ)} . (62)
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where (60) follows from the variational formula for Rényi entropy of µB. The maximum achieving
distribution in (62) isµ∗ ∈ M(B) given by

µ∗(x) =
µ

1

1+ρ (x)
∑

y∈B µ
1

1+ρ (y)
1{x ∈ B},

a fact that is easily verified via direct substitution.
We now prove (11); proof of (10) is similar and therefore omitted. We begin by showing “≤” in

(11). Let X∗ = (P ∗
Xn : n ∈ N) ∈ M(B) be as defined in (12). It is straightforward to verify by direct

substitution that
(1 + ρ) ln

∑

xn∈Bn

P
1

1+ρ

Xn (xn) = ρH(P ∗
Xn)−D(P ∗

Xn ‖ PXn).

Normalize byn and take limit infimum, and use the definition ofEl(X
∗,X, ρ) to get

(1 + ρ) lim inf
n→∞

1

n
ln
∑

xn∈Bn

P
1

1+ρ

Xn (xn)

= El(X
∗,X, ρ) (63)

≤ max
Y∈M(B)

El(Y,X, ρ).

To prove “≥” in (11), let Y = (PY n : n ∈ N) ∈ M(B) be an arbitrary sequence. We may assume
that for all sufficiently largen, PY n ≪ PXn holds; otherwiseEl(Y,X, ρ) = −∞ and the inequality “≥”
holds automatically. DefineY∗ = (P ∗

Y n : n ∈ N) ∈ M(B) by

P ∗
Y n(yn) =

PY n(yn)

PY n(Bn)
1{yn ∈ Bn}.

It is clear thatP ∗
Y n ∈ M(Bn) for everyn. From Lemma 12, we have

(1 + ρ) ln
∑

xn∈Bn

P
1

1+ρ

Xn (xn)

= max
PY n∈M(Bn)

{ρH(PY n)−D(PY n ‖ PXn)}

≥ ρH(P ∗
Y n)−D(P ∗

Y n ‖ PXn). (64)
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We now study each term on the right-hand side of (64). The entropy term is lower bounded as follows:

ρH(P ∗
Y n)

=
ρ

PY n(Bn)

{

∑

xn∈Bn

PY n(xn) ln
1

PY n(xn)

}

+ ρ lnPY n(Bn)

=
ρ

PY n(Bn)







H(PY n)−
∑

xn∈Bc
n

PY n(xn) ln
1

PY n(xn)







+ ρ lnPY n(Bn)

=
ρ

PY n(Bn)

{

H(PY n)− PY n(Bc
n)H(PY n |Bc

n)

+ PY n(Bc
n) lnPY n(Bc

n)

}

+ ρ lnPY n(Bn)

≥
ρ

PY n(Bn)

{

H(PY n)− PY n(Bc
n)n ln |X|

+ PY n(Bc
n) lnPY n(Bc

n)

}

+ ρ lnPY n(Bn).

(65)

The divergence term is upper bounded, as in the proof of Iriyama’s [6, Prop. 1], as follows:

D(P ∗
Y n ‖ PXn)

= − lnPY n(Bn)

+
1

PY n(Bn)

∑

xn∈Bn

PY n(xn) ln
PY n(xn)

PXn(xn)

= − lnPY n(Bn) +
1

PY n(Bn)
D(PY n ‖ PXn)

−
1

PY n(Bn)

∑

xn∈Bc
n

PY n(xn) ln
PY n(xn)

PXn(xn)

≤ − lnPY n(Bn) +
1

PY n(Bn)
D(PY n ‖ PXn)

−
PY n(Bc

n)− PXn(Bc
n)

PY n(Bn)
(66)

≤ − lnPY n(Bn) +
1

PY n(Bn)
D(PY n ‖ PXn)

+
1

PY n(Bn)
. (67)

To get (66), we used the fact thatlnx ≥ 1− 1
x

for all x > 0 and in inequality (67) we used the relation

PY n(Bc
n)− PXn(Bc

n) ≥ −1.
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Substitution of (65) and (67) in (64) and the fact thatlimn→∞ PY n(Bn) = 1 yield

(1 + ρ) lim inf
n→∞

1

n
ln
∑

xn∈Bn

P
1

1+ρ

Xn (xn)

≥ lim inf
n→∞

1

n
{ρH(PY n)−D(PY n ‖ PXn)−O(1)}

= El(Y,X, ρ).

Since the choice ofY = (PY n : n ∈ N) ∈ M(B) was arbitrary, we have proved “≥” in (11).
From (63) and (11), the maximum is attained byX

∗, the distribution defined in (12). This completes
the proof.

APPENDIX C
PROOF OFPROPOSITION9

Iriyama & Ihara showed the following lower bound on the infimum coding rate ([13, Th.3, Eqn. (12)]):

sup
Y:Du(Y‖X)<r

H(Y) ≤ R̂(r|X). (68)

We claim that (68) is equivalent to (34). This proves the proposition.
We first show that (68) implies (34). Fix the sourceX. Let R be a given rate. Consider an arbitrary

candidate exponentr and an arbitrary sourceY. We argue that

R is r-achievable andH(Y) > R =⇒ r ≤ Du(Y ‖ X). (69)

Taking the infimum on the right-hand side of (69) overY with H(Y) > R, and then the supremum over
r will yield (34).

To argue (69) by contraposition, we shall show that

r > Du(Y ‖ X)

=⇒ eitherR is not r-achievable orH(Y) ≤ R,

or equivalently, we shall show that

r > Du(Y ‖ X) andH(Y) > R

=⇒ R is not r-achievable.

But the conditions on the left-hand side imply

sup
Y:Du(Y‖X)<r

H(Y) > R,

which together with (68) yieldŝR(r|X) > R, and this is the same as sayingR is not r-achievable. This
completes the proof of (68)⇒ (34). (This direction suffices to prove Proposition 9). The proof of the
other direction is analogous.

To prove the upper bound in (35), we begin with Iriyama’s [6, Eqn. (13)], which is

sup
Y:Du(Y‖X)<r

{R(Y,X)−Du(Y ‖ X)} ≤ R̂(r|X),

instead of (68). The rest of the proof is completely analogous to the proof of Proposition 9.
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APPENDIX D
PROOF OFPROPOSITION10

We use the following notations in this proof. For eachB = (Bn : n ∈ N) define

|B| := lim sup
n→∞

1

n
ln |Bn|

and
S(Y) :=

{

B : lim
n→∞

PY n(Bn) = 1
}

.

Note thatB ∈ S(Y) ⇔ Y ∈ M(B). We will first prove (38). Define a set

B(r, ρ|X) =

{

B := (Bn : n ∈ N) :

(1 + ρ) lim inf
n→∞

1

n
ln
∑

xn∈Bn

P
1

1+ρ

Xn (xn) ≥ r

}

. (70)

Then, by definition,
R∗(r, ρ|X) = inf {|B| : B ∈ B(r, ρ|X)} . (71)

Fix a B ∈ B(r, ρ|X). Proposition 6 then implies

(1 + ρ) lim inf
n→∞

1

n
ln
∑

xn∈Bn

P
1

1+ρ

Xn (xn)

= max
Y:B∈S(Y)

El(Y,X, ρ).

We can therefore conclude using (70) that the following set equivalence holds:

B(r, ρ|X) =
⋃

El(Y,X,ρ)≥r

S(Y). (72)

From (71) and (72) we get

R∗(r, ρ|X) = inf







|B| : B ∈
⋃

El(Y,X,ρ)≥r

S(Y)







= inf
Y

{|B| : El(Y,X, ρ) ≥ r,B ∈ S(Y)}

= inf
Y:El(Y,X,ρ)≥r

H(Y),

where last equality follows because

H(Y) = inf {|B| : B ∈ S(Y)}

as proved by Han & Verdú [16]. This proves (38).
We now prove (39). We first show that ifR is (r, ρ)-admissible thenr ≤ supH(Y)≤R El(Y,X, ρ).

SinceR is (r, ρ)-admissible, definition ofR∗(r, ρ|X) and (38) imply

R ≥ R∗(r, ρ|X) = inf
Y:El(Y,X,ρ)≥r

H(Y),

i.e., for all δ > 0 there exists âY such that

El(Ŷ,X, ρ) ≥ r and H(Ŷ) < R + δ,
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which further implies that
r ≤ sup

H(Y)<R+δ

El(Y,X, ρ).

Sinceδ was arbitrary, lettingδ ↓ 0 yields

r ≤ sup
H(Y)≤R

El(Y,X, ρ),

and the converse part is proved.
For the direct part it is sufficient to show that givenρ, anyR with

r := sup
H(Y)≤R

El(Y,X, ρ),

is (r, ρ)-admissible. By choice ofr, for all δ > 0, there exists âY such that

El(Ŷ,X, ρ) > r − δ and H(Ŷ) ≤ R.

This implies that
inf

El(Y,X,ρ)>r−δ
H(Y) ≤ R.

Sinceδ was arbitrary, letδ ↓ 0 and use (38) to get

R ≥ inf
El(Y,X,ρ)≥r

H(Y) = R∗(r, ρ|X),

i.e., is (r, ρ)-admissible. This completes the proof.
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