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Abstract— Recent work by Zymnis et al. proposes an efficient
primal-dual interior-point method, using a truncated Newton
method, for solving the network utility maximization (NUM)
problem. This method has shown superior performance relative
to the traditional dual-decomposition approach. Other recent
work by Bickson et al. shows how to compute efficiently and
distributively the Newton step, which is the main computational
bottleneck of the Newton method, utilizing the Gaussian belief
propagation algorithm.

In the current work, we combine both approaches to create
an efficient distributed algorithm for solving the NUM probl em.
Unlike the work of Zymnis, which uses a centralized approach,
our new algorithm is easily distributed. Using an empirical
evaluation we show that our new method outperforms previous
approaches, including the truncated Newton method and dual-
decomposition methods. As an additional contribution, this is the
first work that evaluates the performance of the Gaussian belief
propagation algorithm vs. the preconditioned conjugate gradient
method, for a large scale problem.

I. I NTRODUCTION

We consider a network that supports a set of flows, each of
which has a nonnegative flow rate, and an associated utility
function. Each flow passes over a route, which is a subset
of the edges of the network. Each edge has a given capacity,
which is the maximum total traffic (the sum of the flow rates
through it) it can support. The network utility maximization
(NUM) problem is to choose the flow rates to maximize the
total utility, while respecting the edge capacity constraints
[1], [2]. We consider the case where all utility functions
are concave, in which case the NUM problem is a convex
optimization problem.

A standard technique for solving NUM problems is based
on dual decomposition [3], [4]. This approach yields fully
decentralized algorithms, that can scale to very large networks.
Dual decomposition was first applied to the NUM problem in
[5], and has led to an extensive body of research on distributed
algorithms for network optimization [6]–[8] and new ways to
interpret existing network protocols [9].

Recent work by Zymniset al.presented a specialized
primal-dual interior-point method for the NUM problem [10].
Each Newton step is computed using the preconditioned
conjugate gradient method (PCG). This proposed method had
a significant performance improvement over the dual decom-
position approach, especially when the network is congested.

Furthermore, the method can handle utility functions which
are not strictly concave. The main drawback of the primal-dual
method is that it is centralized, while the dual decomposition
methods are easily distributed.

Other recent work by Bicksonet al. [11] proposes an
efficient way for computing the Newton step, which is the
main computational effort of the primal-dual interior-point
method using the Gaussian belief propagation (GaBP) algo-
rithm, which is an efficient distributed algorithm.

In the current paper we propose to combine both previous
approaches. We present an efficient primal-dual interior point
method, where the Newton step computed in each iteration is
computed using the GaBP algorithm. Using extensive simula-
tions with very large scale networks we compare the perfor-
mance of our novel method to previous approaches including
an interior-point method using PCG, and dual decomposition
methods. Despite of being distributed, our new construction
exhibits significant performance improvements over previous
approaches.

Furthermore, we provide the first comparison of perfor-
mance of the GaBP algorithm vs. the PCG method. The
PCG method is a state-of-the-art method used extensively in
large-scale optimization applications. Examples includeℓ1-
regularized logistic regression [12], gate sizing [13], and slack
allocation [14]. Empirically, the GaBP algorithm is immuneto
numerical problems with typically occur in the PCG method,
while demonstrating a faster convergence. The only previous
work comparing the performance of GaBP vs. PCG we are
aware of is [15], which used a small example of25 nodes,
and the work of [16] which used a grid of25× 25 nodes.

We believe that our approach is general and not limited to
the NUM problem. It could potentially be used for the solution
of other large scale distributed optimization problems.

This paper is organized as follows. Section II briefly
overviews the NUM problem formulation. Section III outlines
previous algorithms for solving the NUM problem, including
dual descent and truncated Newton method. We present our
new construction which utilizes the GaBP algorithm in Section
IV. Section V provides simulation results comparing the
performance of the GaBP based algorithm with the previous
approaches. We conclude in Section VI.
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II. PROBLEM FORMULATION

There aren flows in a network, each of which is associated
with a fixed route,i.e., some subset ofm links. Each flow
has a nonnegativerate, which we denotef1, . . . , fn. With the
flow j we associate a utility functionUj : R → R, which is
concave and twice differentiable, withdomUj ⊆ R+. The
utility derived by a flow ratefj is given byUj(fj). The total
utility associated with all the flows is thenU(f) = U1(f1) +
· · ·+ Un(fn).

The total traffic on a link in the network is the sum of the
rates of all flows that utilize that link. We can express the
link traffic compactly using therouting or link-route matrix
R ∈ Rm×n, defined as

Rij =

{

1 flow j’s route passes over linki
0 otherwise.

Each link in the network has a (positive)capacity c1, . . . , cm.
The traffic on a link cannot exceed its capacity,i.e., we have
Rf ≤ c, where≤ is used for componentwise inequality.

The NUM problem is to choose the rates to maximize
total utility, subject to the link capacity and the nonnegativity
constraints:

maximize U(f)
subject to Rf ≤ c, f ≥ 0,

(1)

with variablef ∈ Rn. This is a convex optimization problem
and can be solved by a variety of methods. We say thatf is
primal feasible if it satisfiesRf ≤ c, f ≥ 0.

The dual of problem (1) is

minimize λT c+
∑n

j=1
(−Uj)

∗(−rTj λ)
subject to λ ≥ 0,

(2)

whereλ ∈ Rm
+ is the dual variable associated with the capacity

constraint of problem (1),rj is the jth column ofR and
(−Uj)

∗ is the conjugate of the negativejth utility function
[17, §3.3],

(−Uj)
∗(a) = sup

x≥0

(ax+ Uj(x)).

We say thatλ is dual feasible if it satisfiesλ ≥ 0 and λ ∈
∩n
j=1 dom(−Uj)

∗.

III. PREVIOUS WORK

In this section we give a brief overview of the dual-
decomposition method and the primal-dual interior point
method proposed in [10].

A. Dual decomposition

Dual decomposition [3]–[6] is a projected (sub)gradient
algorithm for solving problem (2), in the case when all utility
functions are strictly concave. We start with any positiveλ,
and repeatedly carry out the update

fj := argmax
x≥0

(

Uj(x) − x(rTj λ)
)

, j = 1, . . . , n,

λ := (λ− α (c−Rf))
+
,

whereα > 0 is the step size, andx+ denotes the entrywise
nonnegative part of the vectorx. It can be shown that for small
enoughα, f andλ will converge tof⋆ andλ⋆, respectively,
provided allUj are differentiable and strictly concave. The
term s = c − Rf appearing in the update is theslack in the
link capacity constraints (and can have negative entries during
the algorithm execution). It can be shown that the slack is
exactly the gradient of the dual objective function.

Dual decomposition is a distributed algorithm. Each flow is
updated based on information obtained from the links it passes
over, and each link dual variable is updated based only on the
flows that pass over it.

B. Primal-dual interior point method

The primal-dual interior-point method is based on using
a Newton step, applied to a suitably modified form of the
optimality conditions. The modification is parametrized bya
parametert, which is adjusted during the algorithm based
on progress, as measured by the actual duality gap (if it is
available) or a surrogate duality gap (when the actual duality
gap is not available).

We first describe the search direction. We modify the
complementary slackness conditions to obtain the modified
optimality conditions

−∇U(f) +RTλ− µ = 0

diag(λ)s = (1/t)1

diag(µ)f = (1/t)1,

where t > 0 is a parameter that sets the accuracy of
the approximation. (Ast → ∞, we recover the optimality
conditions for the NUM problem.) Here we implicitly assume
that f, s, λ, µ > 0. The modified optimality conditions can be
compactly written asrt(f, λ, µ) = 0, where

rt(f, λ, µ) =





−∇U(f) +RTλ− µ
diag(λ)s − (1/t)1
diag(µ)f − (1/t)1



 .

The primal-dual search direction is the Newton step for
solving the nonlinear equationsrt(f, λ, µ) = 0. If y =
(f, λ, µ) denotes the current point, the Newton step∆y =
(∆f,∆λ,∆µ) is characterized by the linear equations

rt(y +∆y) ≈ rt(y) + r′t(y)∆y = 0,

which, written out in more detail, are
2

4

−∇
2U(f) RT

−I
−diag(λ)R diag(s) 0
diag(µ) 0 diag(f)

3

5

2

4

∆f
∆λ
∆µ

3

5 = −rt(f, λ, µ).

(3)
During the algorithm, the parametert is increased, as the

primal and dual variables approach optimality. When we have
easy access to a dual feasible point during the algorithm, we
can make use of the exact duality gapη to set the value oft;
in other cases, we can use the surrogate duality gapη̂.

The primal-dual interior point algorithm is given in [17,
§11.7], [18].



The most expensive part of computing the primal-dual
search direction is solving equation (3). For problems of
modest size,i.e., with m and n no more than104, it can
be solved using direct methods such as a sparse Cholesky
decomposition.

For larger problem instances [10] proposes to solve (3)ap-
proximately, using a preconditioned conjugate gradient (PCG)
algorithm [19,§6.6], [20, chap. 2], [21, chap. 5]. When an
iterative method is used to approximately solve a Newton
system, the algorithm is referred to as aninexact, iterative,
or approximate Newton method (see [20, chap. 6] and its
references). When an iterative method is used inside a primal-
dual interior-point method, the overall algorithm is called
a truncated-Newton primal-dual interior-point method. For
details of the PCG algorithm, we refer the reader to the
references cited above. Each iteration requires multiplication
of the matrix by a vector, and a few vector inner products.

IV. OUR NEW CONSTRUCTION

Previous work of Zymniset al. [10] shows that when ap-
plying the interior-point Newton method to the NUM problem,
each Newton step involves a solution of Eq. 3, where the
solution (∆f,∆λ,∆µ)T is the Newton search direction.

Recent results by Bicksonet al. [22], [23] utilizes the GaBP
algorithm as an efficient distributed algorithm for solvinga
system of linear equations. For utilizing the GaBP algorithm,
we first normalize Eq. (3) by(1,−1/λ,−1/µ) to get the
following equivalent system of linear equations:
2

4

−∇
2U(f) RT

−I
R −diag(s/λ) 0
−I 0 diag(f/µ)

3

5

2

4

∆f
∆λ
∆µ

3

5 = −r̂t(f, λ, µ).

(4)
where r̂t(f, λ, µ) = ((−∇U(f) + RT − µ)T , (−s +
(λ/t))T , (−f+(µ/t))T )T . Note that the new system of linear
equations is symmetric, a condition required by the GaBP
algorithm.

The formulation (4) allows us to shift the linear system of
equations from an algebraic to a probabilistic domain. Instead
of solving a deterministic vector-matrix linear equation,we
now solve an inference problem in a graphical model describ-
ing a certain Gaussian distribution function. Following [24]
we define the joint covariance matrix

A ,

2

4

−∇
2U(f) RT

−I
R −diag(s/λ) 0
−I 0 diag(f/µ)

3

5 (5)

and the shift vectorb , ((−∇U(f) + RT − µ)T , (−s +
(λ/t))T , (−f + (µ/t))T )T . We further denote the search
directionx = (∆fT ,∆λT ,∆µT )T .

Given the covariance matrixA and the shift vectorb, one
can write explicitly the Gaussian density function

p(x) ∼ exp(−1/2xTAx+ bTx)

Now, we are interested in computing the MAP assignment:

x∗ = argmax
x

exp(−1/2xTAx+ bTx)

The corresponding graph of the covariance matrixA is G,
with edge potentials (‘compatibility functions’)ψij and self-
potentials (‘evidence’)φi. These graph potentials are deter-
mined according to the following pairwise factorization ofthe
Gaussian distributionp(x) ∝

∏n

i=1
φi(xi)

∏

{i,j} ψij(xi, xj),

resulting in ψij(xi, xj) , exp(−xiAijxj), and φi(xi) ,

exp
(

bixi − Aiix
2
i /2

)

. The set of edges{i, j} corresponds
to the set of non-zero entries inA (Eq. 5). Hence, we would
like to calculate the marginal densities, which must also be
Gaussian,

p(xi) ∝ N (µi = {A−1b}i, P
−1

i = {A−1}ii),

whereµi andPi are the marginal mean and inverse variance
(a.k.a. precision), respectively. Recall that, accordingto [24],
the inferred meanµ is identical to the desired solution of (Eq.
4). The GaBP update rules are summarized in Table I. We
use the notationN(i) as the set of nodei graph neighbors,
excludingi.

# Stage Operation
1. Initialize ComputePii = Aii andµii = bi/Aii.

SetPki = 0 andµki = 0, ∀k ∈ N(i).
2. Iterate PropagatePki andµki, ∀k ∈ N(i) .

ComputePi\j = Pii +
P

k∈N(i)\j Pki

µi\j = P−1
i\j (Piiµii +

P

k∈N(i)\j Pkiµki).
ComputePij = −AijP

−1
i\j

Aji

µij = −P−1
ij Aijµi\j .

3. Check If Pij andµij did not converge,
return to #2. Else, continue to #4.

4. Infer Pi = Pii +
P

k∈N(i) Pki

µi = P−1
i (Piiµii +

P

k∈N(i) Pkiµki).
5. Output xi = µi

TABLE I: Computingx = A−1b via GaBP [23].

It is known that if GaBP converges, it results in exact
inference [25]. Determining the exact region of convergence
remain open research problems. All that is known is a suffi-
cient (but not necessary) condition stating that GaBP converges
when the spectral radius satisfiesρ(|IK −A|) < 1 [26], [27].
A stricter sufficient condition [25], determines that the matrix
A must be diagonally dominant (i.e., |Aii| >

∑

j 6=i |Aij |, ∀i)
in order for GaBP to converge. Recently, a new technique
for forcing convergence for any column-dependent matricesis
proposed in [28]. An upper bound on convergence speed is
given in [11].

V. EXPERIMENTAL RESULTS

A. Small experiment

In our first example we look at the performance of our
method on a small network. The utility functions are all
logarithmic, i.e., Uj(fj) = log fj . There aren = 103 flows,
andm = 2·103 links. The elements ofR are chosen randomly
and independently, so that the average route length is10 links.
The link capacitiesci are chosen independently from a uniform



distribution on[0.1, 1]. For this particular example, there are
about104 nonzero elements inR (0.5% density).

We compare three different algorithms for solving the NUM
problem: The dual-decomposition method, a truncated Newton
method via PCG and a customized Newton method via the
GaBP solver. Out of the examined algorithms, the Newton
method is centralized, while the dual-decomposition and GaBP
solver are distributed algorithms. The source code of our
Matlab simulation is available on [29].
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Fig. 1: Convergence rate using the small settings.

Figure 1 depicts the solution quality, where the X-axis
represents the number of algorithm iterations, and the Y-axis is
the surrogate duality gap (using a logarithmic scale). As clearly
shown, the GaBP algorithm has a comparable performance to
the sparse Cholesky decomposition, while it is a distributed
algorithm. The dual decomposition method has much slower
convergence.

B. Larger experiment

Our second example is too large to be solved using the
primal-dual interior-point method with direct search direction
computation, but is readily handled by the truncated-Newton
primal-dual algorithm using PCG, the dual decomposition
method and the customized Newton method via GaBP. The
utility functions are all logarithmic:Uj(fj) = log fj. There are
n = 104 flows, andm = 2·104 links. The elements ofR andc
are chosen as for the small example. For dual decomposition,
we initialized all λi as 1. For the interior-point method, we
initialized all λi andµi as1. We initialize all fj asγ, where
we chooseγ so thatRf ≤ 0.9c.

Our experimental results shows, that as the system size
grows larger, the GaBP solver has favorable performance.
Figure 2 plots the duality gap of both algorithms, vs. the
number of iterations performed.

Figure 3 shows that in terms of Newton steps, both methods
had comparable performance. The Newton method via the
GaBP algorithm converged in 11 steps, to an accuracy of
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Fig. 2: Convergence rate in the larger settings.

10−4 where the truncated Newton method implemented via
PCG converged in 13 steps to the same accuracy. However,
when examining the iteration count in each Newton step (the
Y-axis) we see that the GaBP remained constant, while the
PCG iterations significantly increase as we are getting closer
to the optimal point.
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Fig. 3: Iteration count per Newton step.

We have experimented with larger settings, up ton = 105

flows, andm = 2 · 105 links. The GaBP algorithm converged
in 11 Newton steps with 7-9 inner iteration in each Newton
step. The PCG method converged in 16 Newton steps with an
average of 45 inner iterations.

C. Numerical issues

Overall, we have observed three types of numerical prob-
lems with the PCG method. First, the PCG Matlab implemen-
tation runs into numerical problems and failed to compute



the search direction. Second, the line search failed, which
means that no progress is possible in the computed direction
without violating the problem constraints. Third, when getting
close to the optimal solution, the number of PCG iterations
significantly increases.

The numerical problems of the PCG algorithm are well
known, see of example [30], [31]. In contrary, the GaBP
algorithm did not suffer from the above numerical problems.

Furthermore, the PCG is harder to distribute, since in each
PCG iteration a vector dot product and a matrix product
are performed. Those operations are global, unlike the GaBP
which exploits the sparseness of the input matrix.

VI. CONCLUSION

We propose an efficient distributed solution of the NUM
problem using a customized Newton method, implemented
via the GaBP algorithm. We compare the customized Newton
method performance with state-of-the-art algorithms, includ-
ing a dual descent method and a truncated Newton method,
over large scale settings. We observe both faster convergence
of the GaBP algorithm compared to both the preconditioned
conjugate gradient and sparse Cholesky factorization. Further-
more, the GaBP does not suffer from numerical problems
which affect the performance of the preconditioned conjugate
gradient method.

We believe that the NUM problem serves as a case study
for demonstrating the superior performance of the GaBP
algorithm in solving sparse systems of linear equations. Since
the problem of solving a system of linear equations is a
fundamental problem in computer science and engineering, we
envision many other applications for our proposed method.
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Birkhäuser, 2004.

[2] D. Bertsekas,Network Optimization: Continuous and Discrete Models.
Athena Scientific, 1998.

[3] G. B. Dantzig and P. Wolfe, “Decomposition principle forlinear pro-
grams,”Operations Research, vol. 8, pp. 101–111, 1960.

[4] N. Z. Shor, Minimization Methods for Non-Differentiable Functions.
Springer-Verlag, 1985.

[5] F. Kelly, A. Maulloo, and D. Tan, “Rate control for communication
networks: Shadow prices, proportional fairness and stability,” Journal
of the Operational Research Society, vol. 49, pp. 237–252, 1997.

[6] S. H. Low and D. E. Lapsley, “Optimization flow control I: Basic
algorithms and convergence,”IEEE/ACM Transactions on Networking,
vol. 7, no. 6, pp. 861–874, Dec. 1999.

[7] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: A mathematical theory of network
architectures,”Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312,
Jan. 2007.

[8] D. Palomar and M. Chiang, “A tutorial on decomposition methods and
distributed network resource allocation,”IEEE Journal of Selected Areas
in Communication, vol. 24, no. 8, pp. 1439–1451, Aug. 2006.

[9] S. H. Low, “A duality model of TCP and queue management algorithms,”
IEEE/ACM Transactions on Networking, vol. 11, no. 4, pp. 525–536,
Aug. 2003.

[10] A. Zymnis, N. Trichakis, S. Boyd, and D. Oneill, “An interior-point
method for large scale network utility maximization,” inProceedings of
the Allerton Conference on Communication, Control, and Computing,
2007.

[11] D. Bickson, Y. Tock, D. Dolev, and O. Shental, “Polynomial linear
programming with Gaussian belief propagation,” inthe 46th Allerton
Conf. on Communications, Control and Computing, Monticello, IL,
USA, 2008.

[12] K. Koh, S.-J. Kim, and S. Boyd, “An interior point methodfor large-
scaleℓ1-regularized logistic regression,”Journal of Machine Learning
Research, vol. 8, pp. 1519–1555, July 2007.

[13] S. Joshi and S. Boyd, “An efficient method for large-scale gate sizing,”
IEEE Trans. Circuits and Systems I: Fundamental Theory and Applica-
tions, vol. 5, no. 9, pp. 2760–2773, Nov. 2008.

[14] ——, “An efficient method for large-scale slack allocation,” in Engi-
neering Optimization, 2008.

[15] E. B. Sudderth, “Embedded trees: Estimation of Gaussian processes on
graphs with cycles,” Master’s thesis, University of California at San
Diego, February 2002.

[16] Y. Weiss and W. T. Freeman, “Correctness of belief propagation in
Gaussian graphical models of arbitrary topology,”Neural Computation,
vol. 13, no. 10, pp. 2173–2200, 2001.

[17] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge
University Press, 2004.

[18] S. J. Wright,Primal-Dual Interior-Point Methods. Society for Industrial
and Applied Mathematics, 1997.

[19] J. Demmel,Applied Numerical Linear Algebra. SIAM, 1997.
[20] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations.

SIAM, 1995.
[21] J. Nocedal and S. J. Wright,Numerical Optimization. Springer, 1999.
[22] D. Bickson, O. Shental, P. H. Siegel, J. K. Wolf, and D. Dolev,

“Linear detection via belief propagation,” inProc. 45th Allerton Conf. on
Communications, Control and Computing, Monticello, IL, USA, Sept.
2007.

[23] O. Shental, D. Bickson, P. H. Siegel, J. K. Wolf, and D. Dolev, “Gaussian
belief propagation solver for systems of linear equations,” in IEEE Int.
Symp. on Inform. Theory (ISIT), Toronto, Canada, July 2008.

[24] D. Bickson, O. Shental, P. H. Siegel, J. K. Wolf, and D. Dolev, “Gaussian
belief propagation based multiuser detection,” inIEEE Int. Symp. on
Inform. Theory (ISIT), Toronto, Canada, July 2008.

[25] Y. Weiss and W. T. Freeman, “Correctness of belief propagation in
Gaussian graphical models of arbitrary topology,”Neural Computation,
vol. 13, no. 10, pp. 2173–2200, 2001.

[26] J. Johnson, D. Malioutov, and A. Willsky, “Walk-sum interpretation and
analysis of Gaussian belief propagation,” inNIPS 05’.

[27] D. M. Malioutov, J. K. Johnson, and A. S. Willsky, “Walk-sums and
belief propagation in Gaussian graphical models,” inJournal of Machine
Learning Research, vol. 7, Oct. 2006.

[28] J. K. Johnson, D. Bickson, and D. Dolev, “Fixing convergence of Gaus-
sian belief propagation,” inInternational Symposium on Information
Theory (ISIT), Seoul, South Korea, July 2009.

[29] Gaussian Belief Propagation implementation in matlab[online]
http://www.cs.huji.ac.il/labs/danss/p2p/gabp/.

[30] K. C. Toh, “Solving large scale semidefinite programs via an iterative
solver on the augmented systems,”SIAM J. on Optimization, vol. 14,
no. 3, pp. 670–698, 2003.
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