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Abstract— For each positive integer n, let Tn be a random
rooted binary tree having finitely many vertices and exactly
n leaves. We can view H(Tn), the entropy of Tn, as a measure
of the structural complexity of tree Tn in the sense that
approximately H(Tn) bits suffice to construct Tn. We are
interested in determining conditions on the sequence (Tn :
n = 1, 2, · · ·) under which H(Tn)/n converges to a limit as
n →∞. We exhibit some of our progress on the way to the
solution of this problem.

I. Introduction

We define a data structure to consist of a finite graph
(the structure part of the data structure) in which some
of the vertices carry a label (these labels constitute the
data part of the data structure). For example, in bioinfor-
matics applications, the abstract notion of data structure
can be used to model biological structures such as pro-
teins and DNA strands. As another application example,
in grammar-based data compression [2] [3], a data structure
is used in which the graph is a directed acyclic graph from
which the data string to be compressed is reconstructed by
making use of the graph structure together with labels on
the leaf vertices. Because of these and other potential ap-
plications of present day interest cited in [1], there is a need
for developing an information theory of data structures.

Suppose one employs a random data structure model.
Then each possible data structure would be generated with
a certain probability according to the model. Let us de-
note the random data structure according to the probabil-
ity model as (S, D), where S denotes the structure part and
D denotes the data part. We term the entropy H(S) as the
structural complexity of the random data structure (S, D)
and the conditional entropy H(D|S) as the data complexity
of (S, D). One challenge of the information theory of data
structures would be to examine how the structural com-
plexity and data complexity grow as the data structure
increases in size without bound, and also to determine how
these two complexity quantities compare to one another
asymptotically. For example, in the grammar-based com-
pression application, it is helpful if the ratio H(S)/H(D|S)
becomes negligibly small as the size of the data structure
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(S, D) grows [4].
Some initial advances have been made in developing the

information theory of data structures. In the paper [1], the
structural complexity of the Erdös-Rènyi random graphs is
examined. In the present paper, we examine the structural
complexity of random binary trees. Letting T denote a
random binary tree, its structural complexity is taken as
its entropy H(T ). For a class of random binary tree models,
we examine the growth of H(T ) as the number of edges of
T is allowed to grow without bound. Letting |T | denote
the number of leaves of T , for some models we will be able
to show that H(T )/|T | converges as |T | → ∞ (and identify
the limit), whereas for some other models, we will see that
H(T )/|T | oscillates as |T | → ∞.

Here is an outline of the rest of the paper. In Section
II, we define the type of random binary tree probability
model we will be using. In Section III, we specify the spe-
cific research questions we will be addressing regarding the
asympototic behavior of the entropy of a random binary
tree. In Section IV, we give two formulas for computing
the entropy of a random binary tree. In Sections V-VI, we
address the Section III questions for some particular ran-
dom tree models. In Section VII, our final section, we prove
some bounds for the entropy of a random binary tree.

II. Specification of Random Binary Tree Model

Let T be the set of all binary rooted trees having finitely
many vertices. For each positive integer n, let Tn be the
subset of T consisting of all trees in T with n leaves. We
define a random binary tree model to be a sequence (Tn :
n = 1, 2, · · ·) in which each Tn is a random tree selected
from Tn. We shall be interested in a particular type of
random binary tree model to be defined in this section.

If S is a finite set, we define a probability distribution
p on S to be a mapping from S into the interval of real
numbers [0, 1] such that

∑

s∈S

p(s) = 1.

For each tree t ∈ T , let |t| denote the number of leaves of
t. Furthermore, if t has at least two leaves, we define tL

(resp. tR) to be the subtree of t rooted at the left (resp.
right) child vertex of the root of t. Let Tn be any random
tree selected from Tn, where n ≥ 2. Then Tn induces the
probability distribution pn on the set of positive integers
In−1 = {1, 2, · · · , n− 1} in which

pn(i) = Prob[|TL
n | = i], i ∈ In−1. (1)

In this way, each random binary tree model (Tn : n =
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1, 2, · · ·) induces the sequence of probability distributions
{pn}∞n=2 in which each pn satisfies (1).

Conversely, let {pn}∞n=2 be any sequence in which each
pn is a probability distribution on the set of positive inte-
gers In−1. There will be a multiplicity of random binary
tree models (Tn : n = 1, 2, · · ·) which induce the sequence
{pn}∞n=2 as described in the preceding paragraph. We will
pick one of these random binary tree models and refer to it
as the binary random tree model induced by {pn}∞n=2. We
give both a probabilistic and a dynamic description of this
binary random binary tree model.

A. Probabilistic Description

Let P be a probability distribution on Tk (for fixed k ≥
1). Tree T selected randomly from Tk is defined to have
probability distribution P if

Prob[T = t] = P (t), t ∈ Tk.

Given a sequence {pn}∞n=2 in which each pn is a proba-
bility distribution on In−1, the random binary tree model
(Tn : n = 1, 2, · · ·) induced by {pn} is described probabilis-
tically according to (a.1)-(a.2) below.
(a.1): Let t1 be the unique tree belonging to T1 (t1 consists
of just one vertex, which is both root and leaf). Let P1

be the probability distribution on T1 in which P1(t1) = 1.
Then, random tree T1 has probability distribution P1 (that
is, with probability one, random tree T1 is equal to t1).
(a.2): Let n ≥ 2. Inductively, suppose that for each
k = 1, 2, · · · , n − 1, random tree Tk has probability distri-
bution Pk on Tk. Then, random tree Tn has the probability
distribution Pn on Tn in which

Pn(t) = pn(|tL|)P|tL|(tL)P|tR|(tR), t ∈ Tn. (2)

B. Dynamic Description

Given a sequence {pn}∞n=2 in which each pn is a proba-
bility distribution on In−1, let (Tn : n = 1, 2, · · ·) be the
random binary tree model induced by {pn} as defined prob-
abilistically in Section II.A. Random tree T1 is of course
equal to the unique tree in T1 with probability one. For
each fixed n ≥ 2, we can view random tree Tn as being dy-
namically generated as the result of several recursive steps,
described in (b.1)-(b.3) below.
(b.1): In the first recursive step, the unique tree t1 in T1

is labelled by assigning label n to the single vertex of t1.
This labelled tree is the result of the first recursive step.
(b.2) : In each recursive step beyond the first step, one
generates a labelled random tree by operating on the la-
belled tree T generated in the previous recursive step. In-
ductively, each vertex of T will have a positive integer label
such that the label on each internal vertex is equal to the
sum of the labels on its two children. Let v1, v2, · · · vk be
the leaves of T , and let integers n1, n2, · · · , nk be the cor-
responding leaf labels. For each leaf vm for which label
nm > 1, randomly select integer im from the set Inm−1

with probability pnm(im) (independently of all other such
leaves), and then grow two edges from leaf vm with left
edge terminating at a leaf of extended tree labelled im and

right edge terminating at a leaf of extended tree labelled
nm − im. The extended tree is the result of the current
recursive step.
(b.3): Iterate the preceding recursive step. The recursion
terminates with a binary tree having exactly n leaves, in
which each leaf is labelled 1; this tree is Tn.

III. Research Questions

In this section, we state the research questions that
we shall address concerning a random binary tree model.
These questions all have to do with entropy, as defined in
the usual information-theoretic sense as follows. If p is a
probability distribution on a finite set S, then its entropy
h(p) is defined as

h(p) =
∑

i∈S

−p(i) log2 p(i).

If X is a random object taking its values in a finite set S,
then its entropy H(X) is defined as

H(X) =
∑

i∈S

−Prob[X = i] log2 Prob[X = i].

In both of the preceding entropy formulas, the quantity
0 log2 0 is taken to be zero.

Let (Tn : n = 1, 2, · · ·) be a random binary tree model
as defined in Section II. Then we define the entropy rate of
the model to be the number

H∞ = lim sup
n→∞

H(Tn)/n.

The entropy rate H∞ tells us that we may describe the
tree Tn for large n using no more than about H∞ bits per
leaf (or H∞/2 bits per edge). There is in fact a natural
arithmetic coding scheme which on average would gener-
ate a binary codeword for Tn of length about nH∞ for
large n, and then tree Tn could be reconstructed from this
codeword. (The recursive steps in building Tn in Section
II.B are reflected as product factors in factorization of the
probability of the realization of Tn; this factorization is
employed by the arithmetic coding scheme.)

We define the random binary tree model (Tn) to be stable
if the sequence {H(Tn)/n} has a limit as n →∞ (the limit
of course must be H∞). We define (Tn) to be oscillatory if
the sequence {H(Tn)/n} fails to have a limit as n →∞.

We are interesting in answering the following questions:
• Under what circumstances will a random binary tree
model be stable or oscillatory?
• How can we compute the entropy rate of a random binary
tree model?

These questions have not yet been completely answered.
However, we have made some progress on these questions.
Our progress is detailed in the subsequent sections of this
paper.

IV. Two Formulas for H(Tn)

Let (Tn : n = 1, 2, · · ·) be a random binary tree model
induced by probability distributions {pn}∞n=2 as defined in
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Section II. We present two formulas for computing the en-
tropy H(Tn) of tree Tn. The first formula is recursive,
expressing H(Tn) in terms of previous tree entropies. The
second formula is direct, expressing tree entropies in terms
of the entropies of the distributions {pn}. These entropy
formulas prove to be useful later on in examining asymp-
totic properties of the sequence H(Tn)/n for various ran-
dom binary tree models.

A. Recursive Formula

Let (Tn : n = 1, 2, · · ·) be a random binary tree model in-
duced by probability distributions {pn}∞n=2. Starting with
H(T1) = 0, it is easy to see from formula (2) that the
subsequent tree entropies are given by the recursion

H(Tn) = h(pn) +
n−1∑

i=1

pn(i)[H(Ti) + H(Tn−i)], n > 1.

Let p∗n be the probability distribution on In−1 =
{1, 2, · · · , n− 1} in which

p∗n(i) = (1/2)(pn(i) + pn(n− i)), i ∈ In−1.

We can then rewrite our recursion more simply as

H(Tn) = h(pn) + 2
n−1∑

i=1

p∗n(i)H(Ti), n > 1. (3)

B. Direct Formula

Definition. Let t be any tree in T . For any integer j ≥ 2,
we define Nj(t) to be the number of vertices of t for which
the subtree of t rooted at the vertex has j leaves.

Theorem. Let (Tn : n = 1, 2, · · ·) be a random binary
tree model induced by probability distributions {pn}∞n=2.
Then

H(Tn) =
n∑

j=2

E[Nj(Tn)]h(pj), n ≥ 1. (4)

Proof. The proof is by induction. First, note that for-
mula (4) is obviously true for n = 1. Let n > 1 be arbitrary,
and, as our induction hypothesis, we assume formula (4)
holds for all smaller values of n. We show that the for-
mula holds for n as well. We denote random tree Tn more
simply as T for the purposes of this proof. Let each ver-
tex of T be labelled with positive integer label giving the
number of leaves of the subtree of T rooted at that vertex.
The root of tree T has two vertices as children, left ver-
tex vL labelled with random positive integer IL and right
vertex vR labelled with random positive integer IR. We
have IL + IR = n and pn is the probability distribution of
IL. Recall our notation TL (resp. TR) for the subtree of T
rooted at vL (resp. vR). We have

H(T ) = H(IL, TL, TR) = H(IL) + H(TL, TR|IL).

Since random trees TL and TR are conditionally indepen-
dent given IL,

H(TL, TR|IL) = H(TL|IL) + H(TR|IL)
= H(TL|IL) + H(TR|IR).

Since we also have H(IL) = h(pn), it follows that

H(Tn) = h(pn) + H(TL|IL) + H(TR|IR). (5)

IL takes values in the set In−1; let m be an arbitrary integer
from this set. The conditional distribution of TL given
IL = m is the same as the distribution of Tm. Therefore,
by the induction hypothesis,

H(TL|IL = m) = H(Tm) =
∞∑

j=2

E[Nj(Tm)]h(pj)

=
∞∑

j=2

E[Nj(TL)|IL = m]h(pj)

It follows that

H(TL|IL) =
∞∑

j=2

E[Nj(TL)]h(pj).

Similarly,

H(TR|IR) =
∞∑

j=2

E[Nj(TR)]h(pj).

Note that

Nj(TL) + Nj(TR) =
{

Nj(Tn), 1 ≤ j ≤ n− 1
0, j ≥ n

Therefore,

H(TL|IL) + H(TR|IR) =
∞∑

j=2

E[Nj(TL) + Nj(TR)]h(pj)

=
n−1∑

j=2

E[Nj(Tn)]h(pj).

We conclude that

H(Tn) =
n∑

j=2

E[Nj(Tn)]h(pj), (6)

because
• the j = n term on the right side of (6) is h(pn),
• the terms for which j < n on the right side of (6) sum to
H(TL|IL) + H(TR|IR), and
• equation (5) holds.
The proof by induction is now complete.

V. Two Stable Random Tree Models

In this section, we exhibit two stable random binary tree
models, the maximum entropy model and the binary search
tree model.

A. Maximum Entropy Model

Let Kn be the number of rooted binary trees with finitely
many vertices and exactly n leaves. The maximum en-
tropy random tree model is the model (Tn : n = 1, 2, · · ·) in
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which the corresponding probability distributions {pn}∞n=2

are given by

pn(i) =
KiKn−i

Kn
, i ∈ In−1.

It is not difficult to show that Tn is equiprobable over the
set of rooted binary trees with n leaves, that is,

Prob[Tn = t] = 1/Kn, t ∈ Tn.

It follows that

H(Tn) = log2 Kn, n ≥ 1.

It is well known [[5], Ch. 5] that

Kn+1 =
1

n + 1

(
2n

n

)
=

4n

√
πn3

(
1 + O

(
1
n

))
. (7)

It then follows that

lim
n→∞

H(Tn)/n = H∞ = 2.

The maximum entropy model is therefore stable. It is
called the maximum entropy model because 2 is the high-
est possible entropy rate of any of our random binary tree
models.

B. Binary Search Tree Model

We consider the random binary tree model (Tn : n =
1, 2, · · ·) in which the corresponding probability distribu-
tions {pn}∞n=2 are given by

pn(i) =
1

n− 1
, i ∈ In−1.

This model is of interest because of its ubiquity in the com-
puter science literature: if n keys are randomly permuted,
then the binary search tree formed from them has the same
distribution as the random tree Tn generated under this
model (see Section 5.5 of [5]). For this reason, we call this
model the binary search tree model.

Since h(pn) = log2(n − 1) and p∗n = pn, the recursive
formula (3) for H(Tn) gives us

H(Tn) = log2(n− 1) +
2

n− 1

n−1∑

i=1

H(Ti), n > 1.

The unique solution to this recursion (starting with
H(T1) = 0) is

H(Tn) = log(n− 1) + 2n

n−2∑

k=1

log k

(k + 1)(k + 2)
, n > 1.

We see from this that the binary search tree model is stable
and

lim
n→∞

H(Tn)/n = H∞ = 2
∞∑

k=1

log2 k

(k + 1)(k + 2)
≈ 1.736.

VI. Two Oscillatory Random Tree Models

In this section, we exhibit two oscillatory random binary
tree models, the binomial model and the bisection model.

A. Binomial Random Tree Model

The binomial random tree model (Tn : n = 1, 2, · · ·) is
the one in which the corresponding probability distribu-
tions {pn}∞n=2 are given by

pn(i) =
(

n− 2
i− 1

)
(1/2)n−2, i ∈ In−1.

Theorem. For the binomial random tree model (Tn),
there is a unique, nonconstant, continuous, periodic func-
tion P from the real line into itself, with period 1, such
that

H(Tn)/n = P (log2 n) + o(n). (8)

We have proved this theorem using the analytic depois-

sonization techniques of [6]. Moreover, we can identify the
function P . The fact that P is nonconstant implies that
the binomial random tree model is oscillatory.

Remark. Given one of our random binary tree models
(Tn), we are currently investigating conditions under which
there will exist a periodic function P satisfying (8). For
such models, the question concerning whether the model is
stable is easily answered: the model is stable if and only if
the periodic function P is constant.

B. Bisection Random Tree Model

The bisection random tree model is important in con-
nection with the bisection method of grammar-based data
compression [3][4]. We define the bisection random tree
model (Tn : n = 1, 2, · · ·) (induced by probability distribu-
tions {pn}) as follows. If integer n > 1 is odd, then

pn(i) =





1/2, i = bn/2c
1/2, i = dn/2e

0, elsewhere

If integer n > 1 is even, then

pn(i) =
{

1, i = n/2
0, elsewhere

We then have the following recursion:

H(Tn) =





0, n = 1
1 + H(Tbn/2c) + H(Tdn/2e), n > 1, n odd

2H(Tn/2), n > 1, n even

It is easy to see that

H(T2k) = 0, k = 1, 2, 3, · · · , (9)

and that
H(T3·2k) = 2k, k = 1, 2, 3, · · · . (10)

We easily conclude from (9)-(10) that the bisection random
tree model is oscillatory. With some more work, omitted
here, one can show that the bisection tree model has en-
tropy rate H∞ = 1/2.
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VII. Entropy Rate Bounds

In Section III, we posed the problem of determining a
way to compute the entropy rate of a general random bi-
nary tree model. Although we are still trying to solve this
problem, we have succeeded in obtaining the following re-
sult, which gives some bounds on entropy rate.

Theorem. Given the random binary tree model induced
by the probability distributions {pn}∞n=2, let H∞ be the
entropy rate of the model. Then
(i): H∞ ≤ ε if h(pn) ≤ ε for all n ≥ 2.
(ii): H∞ > 0 if lim infn→∞ h(pn) > 0.

Remarks. Part(i) of the Theorem allows us to easily
construct a variety of random binary tree models with ar-
bitrarily small entropy rate by controlling the entropies of
the pn distributions which induce the model. Random bi-
nary tree models with small entropy rate prove to be useful
in grammar-based data compression, as explained in [4].
Part(ii) of the Theorem tells us, for example, that the en-
tropy rate of a random binary tree model will be positive
whenever the entropies of the pn distributions are strictly
increasing.

Proof of Part(i). Let (Tn : n = 1, 2, · · ·) be a ran-
dom binary tree model induced by {pn}∞n=2 in which every
h(pn) ≤ ε. Then by formula (4),

H(Tn) ≤ ε

n∑

j=2

E[Nj(Tn)] = ε(n− 1), n ≥ 2.

From this it is clear that

H∞ = lim sup
n→∞

H(Tn)/n ≤ ε.

.
Proof of Part(ii). Let (Tn : n = 1, 2, · · ·) be a ran-

dom binary tree model induced by {pn}∞n=2 in which
lim infn→∞ h(pn) > 0. There exists positive real number α
and integer ` ≥ 2 such that

h(pn) ≥ α, for all n ≥ `.

Applying formula (4),

H(Tn) =
n∑

j=2

E[Nj(Tn)]h(pj) ≥ α[
n∑

j=`

E[Nj(Tn)]], n ≥ `.

It can be seen that there is a positive real number C such
that

n∑

j=`

Nj(t) ≥ Cn, n ≥ `, t ∈ Tn.

It follows that

H∞ ≥ lim inf
n→∞

H(Tn)/n ≥ αC > 0.
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