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Abstract—Non-orthogonal space-time block codes (STBC) with
large dimensions are attractive because they can simultaneously
achieve both high spectral efficiencies (same spectral efficiency
as in V-BLAST for a given number of transmit antennas)as well
as full transmit diversity. Decoding of non-orthogonal STBCs
with large dimensions has been a challenge. In this paper, we
present a reactive tabu search (RTS) based algorithm for decod-
ing non-orthogonal STBCs from cyclic division algebras (CDA)
having large dimensions. Under i.i.d fading and perfect channel
state information at the receiver (CSIR), our simulation results
show that RTS based decoding of12× 12 STBC from CDA and
4-QAM with 288 real dimensions achievesi) 10−3 uncoded BER
at an SNR of just 0.5 dB away from SISO AWGN performance,
and ii) a coded BER performance close to within about 5 dB of
the theoretical MIMO capacity, using rate-3/4 turbo code ata
spectral efficiency of 18 bps/Hz. RTS is shown to achieve near
SISO AWGN performance with less number of dimensions than
with LAS algorithm (which we reported recently) at some extra
complexity than LAS. We also report good BER performance of
RTS when i.i.d fading and perfect CSIR assumptions are relaxed
by considering a spatially correlated MIMO channel model, and
by using a training based iterative RTS decoding/channel esti-
mation scheme.

Keywords – Non-orthogonal STBCs, large dimensions, low-comp-
lexity near-ML decoding, tabu search, high spectral efficiencies.

I. I NTRODUCTION

MIMO systems that employ non-orthogonal space-time block
codes (STBC) from cyclic division algebras (CDA) for ar-
bitrary number of transmit antennas,Nt, are attractive be-
cause they can simultaneously provide bothfull-rate (i.e.,Nt

complex symbols per channel use, which is same as in V-
BLAST) as well asfull transmit diversity[1],[2]. The 2 × 2
Golden code is a well known non-orthogonal STBC from
CDA for 2 transmit antennas [3]. High spectral efficiencies
of the order of tens of bps/Hz can be achieved using large
non-orthogonal STBCs. For e.g., a16× 16 STBC from CDA
has 256 complex symbols in it with 512 real dimensions; with
16-QAM and rate-3/4 turbo code, this system offers a high
spectral efficiency of 48 bps/Hz. Decoding of non-orthogonal
STBCs with such large dimensions, however, has been a chal-
lenge. Sphere decoder and its low-complexity variants are
prohibitively complex for decoding such STBCs with hun-
dreds of dimensions. Recently, we proposed a low-complexity
near-ML achieving algorithm to decode large non-orthogonal
STBCs from CDA; this algorithm, which is based on bit-
flipping approach, is termed as likelihood ascent search (LAS)
algorithm [4]-[6]. In this paper, we present areactive tabu
search (RTS) based approachto near-ML decoding of non-
orthogonal STBCs with large dimensions.

Key attractive features of the proposed RTS based decod-
ing are its low-complexity and near-ML performance in sys-
tems with large dimensions (e.g., hundreds of dimensions).

While creating hundreds of dimensions in space alone (e.g.,
V-BLAST) requires hundreds of antennas, use of non-ortho-
gonal STBCs from CDA can create hundreds of dimensions
with just tens of antennas (space) and tens of channel uses
(time). Given that 802.11 smart WiFi products with 12 trans-
mit antennas1 at 2.5 GHz are now commercially available [7]
(which establishes that issues related to placement of many
antennas and RF/IF chains can be solved in large aperture
communication terminals like set-top boxes/laptops), large
non-orthogonalSTBCs (e.g.,16×16STBCfromCDA) in com-
bination with large dimension near-ML decoding using RTS
can enable communications at increased spectral efficiencies
of the order of tens of bps/Hz (note that current standards
achieve only< 10 bps/Hz using only up to 4 tx antennas).

Tabu search (TS), a heuristic originally designed to obtainap-
proximate solutions to combinatorial optimization problems
[8]-[11], is increasingly applied in communication problems
[12]-[14]. For e.g., in [12], design of constellation labelmaps
to maximize asymptotic coding gain is formulated as a quadra-
tic assignment problem (QAP), which is solved using RTS
[11]. RTS approach is shown to be effective in terms of BER
performance and efficient in terms of computational com-
plexity in CDMA multiuser detection [13]. In [14], a fixed TS
based detection in V-BLAST is presented. In this paper, we
establish that RTS based decoding of non-orthogonal STBCs
can achieve excellent BER performance (near-ML and near-
capacity performance) in large dimensions at practically af-
fordable low-complexities. We also present a stopping-criteri-
on for the RTS algorithm. RTS for large dimension non-
orthogonal STBC decoding has not been reported so far. Our
results in this paper can be summarized as follows:

• Under i.i.d fading and perfect channel state information
at the receiver (CSIR), our simulation results show that
RTS based decoding of12×12 STBC from CDA and 4-
QAM (288 real dimensions) achievesi) 10−3 uncoded
BER at an SNR of just 0.5 dB away from SISO AWGN
performance, andii) a coded BER performance close to
within about 5 dB of the theoretical capacity using rate-
3/4 turbo code at a spectral efficiency of 18 bps/Hz.

• Compared to the LAS algorithm we reported recently in
[4]-[6], RTS achieves near-SISO AWGN performance
with less number of dimensions than with LAS; this is
achieved at some extra complexity compared to LAS.

• We report good BER performance when i.i.d fading and
perfect CSIR assumptions are relaxed by adopting a spa-
tially correlated MIMO channel model, and a training
based iterative RTS decoding/channelestimation scheme.

112 antennas in these products are now used only for beamforming.
Single-beam multi-antenna approaches can offer range increase and inter-
ference avoidance, but not spectral efficiency increase.
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The rest of this paper is organized as follows. The non-ortho-
gonal STBC MIMO system model is presented in Section
II. RTS algorithm for decoding non-orthogonal STBCs and
the proposed stopping criterion are presented in Section III.
Simulation results including uncoded and coded BER per-
formance of RTS decoding withi) perfect CSIR,ii) esti-
mated CSIR using an iterative RTS decoding/channel esti-
mation scheme, andiii) effect of spatial correlation are pre-
sented in Section IV. Conclusions are given in Section V.

II. N ON-ORTHOGONAL STBC MIMO SYSTEM MODEL

Consider a STBC MIMO system with multiple transmit and
receive antennas. An(n, p, k) STBC is represented by a ma-
trix Xc ∈ C

n×p, wheren andp denote the number of transmit
antennas and number of time slots, respectively, andk de-
notes the number of complex data symbols sent in one STBC
matrix. The(i, j)th entry inXc represents the complex num-
ber transmitted from theith transmit antenna in thejth time
slot. The rate of an STBC isk

p
. LetNr andNt = n denote the

number of receive and transmit antennas, respectively. Let
Hc ∈ CNr×Nt denote the channel gain matrix, where the
(i, j)th entry inHc is the complex channel gain from thejth
transmit antenna to theith receive antenna. We assume that
the channel gains remain constant over one STBC matrix and
vary (i.i.d) from one STBC matrix to the other. Assuming
rich scattering, we model the entries ofHc as i.i.dCN (0, 1).
The received space-time signal matrix,Yc ∈ C

Nr×p, can be
written as

Yc = HcXc +Nc, (1)

whereNc ∈ CNr×p is the noise matrix at the receiver and
its entries are modeled as i.i.dCN

(
0, σ2 = NtEs

γ

)
, where

Es is the average energy of the transmitted symbols, andγ is
the average received SNR per receive antenna [15], and the
(i, j)th entry inYc is the received signal at theith receive an-
tenna in thejth time-slot. Consider linear dispersion STBCs,
whereXc can be written in the form [15]

Xc =

k∑

i=1

x(i)
c A(i)

c , (2)

wherex(i)
c is theith complex data symbol, andA(i)

c ∈ C
Nt×p

is its corresponding weight matrix. The received signal model
in (1) can be written in an equivalent V-BLAST form as

yc =

k∑

i=1

x(i)
c (Ĥc a

(i)
c ) + nc = H̃cxc + nc, (3)

whereyc ∈ CNrp×1 = vec (Yc), Ĥc ∈ CNrp×Ntp = (I ⊗

Hc), a
(i)
c ∈ CNtp×1 = vec (A

(i)
c ),nc ∈ CNrp×1 = vec (Nc),

xc ∈ Ck×1 whoseith entry is the data symbolx(i)
c , and

H̃c ∈ CNrp×k whoseith column isĤc a
(i)
c , i = 1, 2, · · · , k.

Each element ofxc is anM -PAM/M -QAM symbol. Letyc,
H̃c, xc, nc be decomposed into real and imaginary parts as:

yc = yI + jyQ, xc = xI + jxQ,

nc = nI + jnQ, H̃c = HI + jHQ. (4)

Further, we defineHr ∈ R
2Nrp×2k, yr ∈ R

2Nrp×1, xr ∈
R2k×1, andnr ∈ R2Nrp×1 as

Hr =

(
HI −HQ

HQ HI

)
, yr = [yT

I yT
Q]

T , (5)

xr = [xT
I xT

Q]
T , nr = [nT

I nT
Q]

T . (6)

Now, (3) can be written as

yr = Hrxr + nr. (7)

Henceforth, we work with the real-valued system in (7). For
notational simplicity, we drop subscriptsr in (7) and write

y = Hx+ n, (8)

whereH = Hr ∈ R
2Nrp×2k, y = yr ∈ R

2Nrp×1, x = xr ∈
R

2k×1, andn = nr ∈ R
2Nrp×1. We assume that the channel

coefficients are known at the receiver but not at the transmit-
ter. LetA

△
= {aq, q = 1, 2, · · · ,M}, whereaq = 2q−1−M

denote theM -PAM signal set from whichxi (ith entry ofx)
takes values,i = 0, · · · , 2k− 1. The ML solution is given by

dML =
arg min
d ∈ A2k

dTHTHd− 2yTHd, (9)

whose complexity is exponential ink.

A. Full-rate Non-orthogonal STBCs from CDA

We focus on the decoding of square (i.e.,n= p=Nt), full-
rate (i.e.,k=pn=N2

t ), circulant (where the weight matrices

A
(i)
c ’s are permutation type), non-orthogonal STBCs from

CDA [1], whose construction for arbitrary number of trans-
mit antennasn is given by the matrix in Eqn.(9.a) given at
the bottom of the next page. In (9.a),ωn = e

j2π
n , j =

√−1,
anddu,v, 0 ≤ u, v ≤ n − 1 are then2 data symbols from a
QAM alphabet. Whenδ = t = 1, the code in (9.a) is in-
formation lossless (ILL), and whenδ = e

√
5 j and t = ej,

it is of full-diversity and information lossless (FD-ILL) [1].
High spectral efficiencies with largen can be achieved us-
ing this code construction. However, since these STBCs are
non-orthogonal, ML detection gets increasingly impractical
for largen. Consequently, a key challenge in realizing the
benefits of these large STBCs in practice is that of achieving
near-ML performance for largen at low decoding complexi-
ties. The BER performance results we report in Sec. IV show
that the RTS based decoding algorithm we present in the fol-
lowing section essentially meets this challenge.

III. RTS ALGORITHM FOR LARGE NON-ORTHOGONAL

STBC DECODING

In this section, we present the RTS algorithm, which is an
iterative local search algorithm, for decoding non-orthogonal
STBCs. The goal is to get̂x, an estimate ofx, giveny andH.

Neighborhood Definitions:For each vector in the solution
space, define the neighborhood structure as follows.Symbol
neighborhoodof a signal pointaq ∈ A, q = 1, 2, · · · ,M ,
is defined as a setN (aq) ⊂ A − {aq}; e.g., for 4-PAM,
A = {−3,−1, 1, 3}, one possible symbol neighborhood struc-
ture could beN (−3) = {−1, 1}, N (−1) = {−3, 1}, N (1) =



{−1, 3},N (3) = {1,−1}. Then,N
△
= |N (aq)|, ∀q ∈ {1 · · ·M}

is the number of symbol neighbors ofaq. Note that the max-
imum and minimum valueN can take isM − 1 and 1, re-
spectively. Letx(m) = [x

(m)
0 x

(m)
1 · · ·x

(m)
2k−1] denote the data

vector in themth iteration. We refer to the vector

z(m)(u, v) =
[
z
(m)
0 (u, v) z

(m)
1 (u, v) · · · z

(m)
2k−1(u, v)

]
, (10)

as the(u, v)th vector neighborof x(m), u = 0, · · · , 2k − 1,
v = 0, · · · , N − 1, if 1) x(m) differs fromz(m)(u, v) in the
uth coordinate, and2) the uth element ofz(m)(u, v) is the
vth symbol neighbor ofx(m)

u . That is,

z
(m)
i (u, v) =

{
x
(m)
i for i 6= u

wv(x
(m)
u ) for i = u,

(11)

wherewv(a), v = 0, 1, · · · , N−1 is thevth element inN (a).
So we will have2kN vectors which differ from a given vec-
tor in the solution space in only one coordinate. These2kN
vectors form the neighborhood of the given vector. It is noted
that bit-flipping is a special case withN = 1 andM = 2.

The algorithm is said to execute a move(u, v) if x(m+1) =
z(m)(u, v). The number of candidates to be considered for
a move in themth iteration is2kN . Since the coordinate
that changes in a move can takeM possible values forM -
PAM, the total number of possible moves is2kMN . The
tabu value of a move, which is a non-negative integer, means
that the move cannot be considered for that many number of
subsequent iterations, unless certain conditions are satisfied.

Tabu Matrix: A tabu matrix of size2kM × N is the matrix
whose entries denote the tabu values of moves. The(r, s)th
entry of thetabu matrix corresponds to the move(u, v) from
x(m) whenu = ⌊ r−1

M
⌋, v = s andx(m)

u = aq, whereq =
mod(r − 1,M) + 1.

RTS Algorithm:Let g(m) be the vector which has the least
ML cost found till themth iteration of the algorithm. Let
lrep be the average length (in number of iterations) between
two successive occurrences of the same solution vector (rep-
etitions), at the end of an iteration. Tabu period,P , a dy-
namic non-negative integer parameter, is defined. If a move
is marked as tabu in an iteration, it will remain as tabu forP

subsequent iterations. The algorithm starts with an initial so-
lution vectorx(0), which, for e.g., could be the MMSE or MF
output vector. Setg(0) = x(0), lrep = 0, andP = P0. All
the entries of thetabu matrix are set to zero. The following
steps 1) to 3) are performed in each iteration. Considermth
iteration in the algorithm,m ≥ 0.
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. (9.a)

Step 1): Define ymf
△
= HTy, R

△
= HTH, and f (m) △

=
Rx(m) − ymf . Let e(m)(u, v) = z(m)(u, v) − x(m). The
ML costs of the2kN neighbors ofx(m), namely,z(m)(u, v),
u = 0, · · · , 2k − 1; v = 0, · · · , N − 1, are computed as

φ(z(m)(u, v)) =
`

x
(m) + e

(m)(u, v)
´T

R
`

x
(m) + e

(m)(u, v)
´

−2
`

x
(m) + e

(m)(u, v)
´T

ymf

= φ(x(m)) + 2
`

e
(m)(u, v)

´T
Rx

(m)

+
`

e
(m)(u, v)

´T
Re

(m)(u, v)− 2
`

e
(m)(u, v)

´T
ymf

= φ(x(m)) + 2 e(m)
u (u, v) f (m)

u +
`

e
(m)
u (u, v)

´2
Ru,u

| {z }

△
=C

`

e
(m)
u (u,v)

´

, (12)

wheree(m)
u (u, v) is theuth element ofe(m)(u, v), f (m)

u is
uth element off (m), andRu,u is the(u, u)th element ofR.
φ(x(m)) on the RHS in (12) can be dropped since it will not
affect the cost minimization. Let

(u1, v1) =
arg min
u, v

C
(
e(m)
u (u, v)

)
. (13)

The move(u1, v1) is accepted if any one of the following two
conditions is satisfied:

i) φ(z(m)(u1, v1)) < φ(g(m))

ii) tabu matrix((u1−1)M+q, v1) = 0 whereq : x
(m)
u1 = aq ∈ A.

If move (u1, v1) is accepted, then make

x(m+1) = x(m) + e(m)(u1, v1). (14)

If move (u1, v1) is not accepted (i.e., neither of conditionsi)
andii) is satisfied), find(u2, v2) such that

(u2, v2) =
arg min

u, v :u 6= u1, v 6= v1
C
(
e(m)
u (u, v)

)
, (15)

and check for acceptance of the(u2, v2) move. If this also
cannot be accepted, repeat the procedure for(u3, v3), and so
on. If all the2kN moves are tabu, then all thetabu matrixen-
tries are decremented by the minimum value in thetabu matrix;
this goes on till one of the moves becomes permissible. Let
(u′, v′) be the index of the neighbor with the minimum cost
for which the move is permitted. The variablesq′, q′′, v′′ are
implicitly defined byx(m)

u′ = aq′ = wv′′(x
(m+1)
u′ ) (see defi-

nition of wv(a) below Eqn.(refeq11)), andx(m+1)
u′ = aq′′ ,

whereaq′ , aq′′ ∈ A.

Step 2: After a move is done, the new solution vector is
checked for repetition. For the channel model in (8), repe-
tition can be checked by comparing the ML costs of the so-
lutions in the previous iterations. If there is a repetition, the
length of the repetition from the previous occurrence is found,



the average length,lrep, is updated, and the tabu periodP is
modified asP = P + 1. If the number of iterations elapsed
since the last change of the value ofP exceedsβlrep, for a
fixed β > 0, makeP = P − 1. The minimum value of
P , however, will be 1. Note that this step, if executed, also
qualifies as the one which changedP . After a move(u′, v′)
is accepted, ifφ(x(m+1)) < φ(g(m)), make

tabu matrix((u′ − 1)M + q′, v′) = 0,

tabu matrix((u′ − 1)M + q′′, v′′) = 0, (16)

andg(m+1) = x(m+1); else,

tabu matrix((u′ − 1)M + q′, v′) = P + 1,

tabu matrix((u′ − 1)M + q′′, v′′) = P + 1, (17)

andg(m+1) = g(m).

Step 3):Update the entries of thetabu matrix as

tabu matrix(r, s) = max{tabu matrix(r, s)− 1, 0}, (18)

for r = 0, · · · , 2kM − 1, s = 0, · · · , N − 1. f (m) is updated as

f (m+1) = f (m) + e
(m)
u′ (u′, v′)Ru′ , (19)

whereRu′ is theu′th column ofR.

Stopping criterion: The algorithm can be stopped based on a
fixed number of iterations. Though convergence can be slow
at low SNRs (typ. hundreds of iterations), it can be fast (typ.
tens of iterations) at moderate to high SNRs. So rather than
fixing a large number of iterations to stop the algorithm ir-
respective of the SNR, we use an efficient stopping criterion
which makes use of the knowledge of the best ML cost in a
given iteration, as follows.

Since the ML criterion is to minimize‖Hx− y‖2, the mini-
mum value of the objective functionxTHTHx − 2xTHTy

is always greater than−yTy. We stop the algorithm when
the least ML cost achieved in an iteration is within certain
range of the global minimum, which is−yTy. We stop the
algorithm in themth iteration, if the condition

|φ(g(m))− (−yTy)|

| − yTy|
< α1, (20)

is met with at leastmin iter iterations being completed to
make sure the search algorithm has ‘settled.’ The bound is
gradually relaxed as the number of iterations increase and the
algorithm is terminated when

|φ(g(m))− (−yTy)|

| − yTy|
< mα2. (21)

In addition, we terminate the algorithm whenever the number
of repetitions of solutions exceedsmaxrep. Also, the maxi-
mum number of iterations is set tomax iter. We have found
that use of the following stopping criterion parameters results
in low complexity without compromising much on the per-
formance (compared to a fixed number of iterations of 300)
for 4-QAM: min iter = 20, max iter = 300, maxrep = 75,
α1 = 0.05, andα2 = 0.0005.

IV. SIMULATION RESULTS

In this section, we present the uncoded and coded BER per-
formance of the RTS algorithm in decoding non-orthogonal
STBCs withδ = t = 1 (i.e., ILL) andδ = e

√
5j, t = ej (i.e.,

FD-ILL2). The following RTS parameters are used in all the
simulations: MMSE initial vector,P0 = 2, β = 1, 0.1, α1 =

5%, α2 = 0.05%, maxrep=75,max iter = 300,min iter = 20.

A. Uncoded BER performance of RTS:

RTS versus LAS Performance: In Fig. 1, we plot the un-
coded BER of the RTS algorithm as a function of average re-
ceived SNR per receive antenna,γ [15], in decoding4×4 (32
dimensions),8×8 (128 dimensions) and12×12 (288 dimen-
sions) non-orthogonal ILL STBCs for 4-QAM andNt = Nr.
Perfect CSIR and i.i.d fading are assumed. For the same set-
tings, performance of the LAS algorithm in [4]-[6] are also
plotted for comparison. MMSE initial vector is used in both
RTS and LAS. As a reference, we have plotted the BER per-
formance on a SISO AWGN channel as well. From Fig. 1,
the following interesting observations can be made:

• the BER of the RTS algorithm improves and approaches
SISO AWGN performance asNt=Nr (i.e., STBC size)
is increased; e.g., performance close to within 0.5 dB
from SISO AWGN performance is achieved at10−3 un-
codedBER in decoding12 × 12 STBC with 288 real
dimensions.

• RTS algorithm performs better than LAS algorithm(see
RTS and LAS BER plots for4 × 4 and8 × 8 STBCs).
Further, while both RTS and LAS algorithms exhibit
large system behavior (i.e., BER improves asNt = Nr

is increased), RTS is able to achieve nearness to SISO
AWGN performance at10−3 BER with less number of
dimensions than with LAS. This is evident by observing
that, while LAS requires 512 dimensions (16×16STBC)
to achieve 1 dB closeness to SISO AWGN performance
at10−3 BER, RTS is able to achieve even 0.5 dB close-
ness with just 288 dimensions (12×12 STBC). RTS is
able to achieve this better performance because, while
the bit/symbol-flipping strategies are similar in both RTS
and LAS, the inherent escape strategy in RTS allows it
to move out of local minimas and move towards better
solutions. Consequently, RTS incurs some extra com-
plexity compared to LAS, without increase in the order
of complexity.

RTS performance in V-BLAST:A similar observation can be
made with uncoded BER of RTS detection in V-BLAST in
Fig. 2 forNt = Nr and 4-QAM. From Fig. 2, it is seen that
LAS requires 128 dimensions (64×64 V-BLAST) to achieve
performance within 1 dB of SISO AWGN performance at
10−3 BER, whereas RTS is able to achieve even better close-
ness with just 64 dimensions (32 × 32 V-BLAST). In sum-
mary, the ability to achieve near SISO AWGN performance
at less dimensions than LAS is an attractive feature of RTS.

2Our simulation results show that the BER performance of FD-ILL and
ILL STBCs with RTS decoding are almost the same.
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Fig. 1
UNCODED BER OF RTSDECODING OF4× 4, 8× 8 AND 12× 12

NON-ORTHOGONALSTBCS FROMCDA. Nt = Nr , ILL STBCS

(δ = t = 1), 4-QAM. RTSPARAMETERS:

P0 = 2, β = 1, α1 = 5%, α2 = 0.05%,max iter = 300,min iter = 20.

RTS achieves near SISO AWGN performance for increasingNt = Nr (i.e.,

STBC size). RTS performs better than LAS.

B. Turbo coded BER performance of RTS

Figure 3 shows the rate-3/4 turbo coded BER of RTS decod-
ing of 12× 12 non-orthogonal ILL STBC withNt = Nr and
4-QAM (corresponding to a spectral efficiency of 18 bps/Hz),
under perfect CSIR and i.i.d fading. The theoretical minimum
SNR required to achieve 18 bps/Hz spectral efficiency on a
Nt = Nr = 12 MIMO channel with perfect CSIR and i.i.d
fading is 4.27 dB (obtained through simulation of the ergodic
capacity formula [15]). ¿From Fig. 3, it is seen that RTS de-
coding is able to achieve vertical fall in coded BER close to
within about 5 dB from the theoretical minimum SNR, which
is good nearness to capacity performance. This nearness to
capacity can be further improved by 1 to 1.5 dB if soft deci-
sion values, proposed in [5], are fed to the turbo decoder.

C. Iterative RTS Decoding/Channel Estimation

Next, we relax the perfect CSIR assumption by considering
a training based iterative RTS decoding/channel estimation
scheme. Transmission is carried out in frames, where one
Nt × Nt pilot matrix (for training purposes) followed byNd

data STBC matrices are sent in each frame as shown in Fig.
4. One frame length,T , (taken to be the channel coherence
time) isT = (Nd+1)Nt channel uses. The proposed scheme
works as follows [16]:i) obtain an MMSE estimate of the
channel matrix during the pilot phase,ii) use the estimated
channel matrix to decode the data STBC matrices using RTS
algorithm, andiii) iterate between channel estimation and
RTS decoding for a certain number of times. For12 × 12
ILL STBC, in addition to perfect CSIR performance, Fig. 3
also shows the performance with CSIR estimated using the
above iterative RTS decoding/channel estimation scheme for
Nd = 8 andNd = 20. 2 iterations between RTS decoding
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Fig. 2
UNCODEDBER OF RTSDETECTION OFV-BLAST WITH Nt = Nr AND

4-QAM. RTSPARAMETERS: P0 = 2, β = 0.1, α1 = 5%, α2 =

0.05%,max iter = 300,min iter = 20. RTS achieves near SISO AWGN

performance for increasingNt = Nr . RTS performs better than LAS.

and channel estimation are used. WithNd = 20 (which cor-
responds to large coherence times, i.e., slow fading) the BER
and bps/Hz with estimated CSIR get closer to those with per-
fect CSIR.

D. Effect of MIMO Spatial Correlation

In Figs. 1 to 3, we assumed i.i.d fading. But spatial corre-
lation at transmit/receive antennas and the structure of scat-
tering and propagation environment can affect the rank struc-
ture of the MIMO channel resulting in degraded performance
[17],[18]. We relaxed the i.i.d. fading assumption by consid-
ering the correlated MIMO channel model proposed by Ges-
bert et al in [18], which takes into account carrier frequency
(fc), spacing between antenna elements(dt, dr), distance be-
tween transmit and receive antennas (R), and scattering envi-
ronment. In Fig. 5, we plot the uncoded BER of RTS decod-
ing of 12 × 12 FD-ILL STBC with perfect CSIR ini) i.i.d.
fading, andii) correlated MIMO fading model in [18]. It is
seen that, compared to i.i.d fading, there is a loss in diver-
sity order in spatial correlation forNt = Nr = 12; further,
use of more receive antennas (Nr = 14, Nt = 12), without
increase in the receiver aperture, alleviates this loss in perfor-
mance. Finally, we note that have carried out simulations of
RTS decoding for 16-QAM as well, where similar results re-
ported here for 4-QAM are observed. The RTS decoding can
be used to decodeperfect codes[19],[20] of large dimensions
as well.

V. CONCLUSIONS

We presented a reactive tabu search based low-complexity al-
gorithm for decoding high-rate non-orthogonal STBCs hav-
ing large dimensions that can achieve high spectral efficien-
cies of the order of tens of bps/Hz. The RTS algorithm was
shown to achieve near SISO AWGN uncoded BER perfor-
mance as well as near-capacity turbo coded BER performance
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TURBO CODEDBER OF RTSDECODING OF12× 12 NON-ORTHOGONAL

ILL STBC WITH Nt = Nr , 4-QAM, RATE-3/4 TURBO CODE, AND 18

BPS/HZ. RTSPARAMETERS:

P0 = 2, β = 1, α1 = 5%, α2 = 0.05%,max iter = 300,min iter = 20.

BER of RTS with estimated CSIR approaches close to that with perfect CSIR

for increasingNd (i.e., slow fading).
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TRANSMISSION SCHEME WITH ONE PILOT MATRIX FOLLOWED BYNd

DATA STBCMATRICES IN EACH FRAME.

in non-orthogonal STBC MIMO systems with large dimen-
sions. The algorithm performed well with estimated CSIR
using a training-based iterative decoding/channel estimation
scheme. In addition, the algorithm could perform well in the
presence of MIMO spatial correlation when more receive di-
mensions are used. Comparing the performance of RTS algo-
rithm with LAS algorithm (which we presented recently), we
pointed out that the ability to achieve near SISO AWGN per-
formance at less dimensions than LAS is an attractive feature
of RTS.
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