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Abstract— F. Brooks argues in [3] there is “no theory that gives ically, we study unlabeled graphs generated by a memoryless
us a metric for information embodied in structure”. Shannon gsource known as the Erdds-Rényi model [2] in which edges
himself alluded to it fifty years earlier in his little known 1953 are added randomly with probabiliy. This model induces

paper [14]. Indeed, in the past information theory dealt modly . N .
with “conventional data”, be it textual data, image or videodata. & probability distribution on structures from which Shanno

However, databases of various sorts have come into existenc €ntropy can be computed giving us a fundamental limit on
in recent years for storing “unconventional data” including lossless unlabeled graph compression. We prove that this
biological data, web data, topographical maps, and medicalata. stryctural entropyis

In compressing such data structures, one must consider twgpes

of information: the information conveyed by the structure itself n | n
and then the information conveyed by the data labels implargd h(p) —logn! +o(1) =

: . 2 2
in the structure. In this paper, we attempt to address the fomer

problem by studying information of graphical structures (i.e., \wheren is the number of vertices aridp) = —plogp— (1 —

unlabeled graphs). In particular, we consider Erdds-Renyi graphs . .
G(n,p) ovgr npveztices? in which edges are added rand):)nglyr\)/vith p)log(1—p) is the entropy rate of a conventional memoryless

probability p. We prove that the structural entropyof G(n,p) binary source. Then, we design and analyze an asymptgticall
is (5)h(p) —logn! + o(1) = (%)h(p) — nlogn + O(n), where optimal encoding algorithm that achieves the compressitan r
h(p) = —plogp — (1 — p)log(1l — p) is the entropy rate of a

conventional memoryless binary source. Then, we design a tw n h(p) — nlogn + O(n)

stage encoding that optimally compress unlabeled graphs ufo 2 p &

the first two leading terms of the structural entropy.

)1(e) = niogn -+ 0(a)

that matches on average the lower bound up to the first two
|. INTRODUCTION leading terms. Our algorithm is a two-stage scheme. First,

In 1948 Shannon introduced a metric for informatioH encodes a structure into two binary strings that are next
launching the field of information theory. However, as Ob(;ompressed using an arithmetic encoder. Experimentaltsesu

served by Brooks [3] and others [12], [17], there is no theog)l-n real data networks confirm efficiency and utility of our

that gives us a metric for information embodied in structur gorithm.

Shannon himself in his 1953 little known paper [14] argued fo Literature on graphical structl_Jre compression is scarhe. T
an extension of information theory to “non-conventionakda problem of succinct representation of general unlabelegigs

(i.e., lattices). Indeed, data is increasingly availahl@arious was mtroduceql more than twenty years ago by Turan [18].
forms (e.g., sequences, expressions, interactions, tstes) Naor [10] provided such a representation when all unlabeled
and in exponentially increasing amounts. For example, gfaphs (or structures) are equally probable. There alse hav

biology large amounts of data are now in public domain 0kﬁeen some heuristic methods for real-world graphs compres-
sion including Adler and Mitzenmacher [1], who proposed

Most of such data is multidimensional and context depende@f‘ encoding technique for web graphs, and similar idea has

Therefore, it necessitates novel theory and efficient #lgyos een _used in [15] for cOmpressing sparse g_raphs. Recently,
to extract meaningful information from non-conventionatal attention has been paid to grammar compression for some data

structures. Typically, a data file of this new type (e.g., bﬁtructu_res: F;eshhkin [11(]j.pr0po.sed ;’:m algorithm for a gmhi_
ological data, topographical maps, medical data, volumetEXtension of the one-dimensiona SEQUITUR compression

data) is a “data structure” conveying a “shape” and comﬁgstimethOd' However, SEQUITUR is known not to be asymp-

of labels implanted in the structure. In understanding su{?\tica"y optimal [13]. Therefore, the Peshkin method atfe

data structures, one must take into account two types kaf:kslagymptotlc Iophrr;}ahty mhthef.lD case.b':'o the best (.)f (?lu '
information: the information conveyed by the structurelits nhowledge our algorithm Is the first provable asymptotica

and the data labels implanted in the structure. In this papgpt'mal compression scheme for graphical structures.

we address the former problem by studying information of
graphical structures.

As the first step to understanding information in structure, In a random graph modél, the vertex se¥” consists ofn
we restrict our attention to structures on graphs. Morei§pedistinguishable vertices and edges between vertices aledad

gene regulation, protein interactions, and metabolicvyays.

Il. ENTROPY OF ARANDOM STRUCTURE



at random. In this setting, the graph entrafly is defined as and (vyv4)(vavs). For example,(vy)(vs)(vevs) stands for a

_ _ permutationr such thatr(v1) = v1, m(v4) = va, 7(v2) = v3,
Hg = E[-1log P(G)] = —GZEQP(G) log P(G), and 7(vs) — 5. Thus, by (2).G has 41/4 — 6 different

labelings as shown on the right. |
where P(G) is the probability of a grapld:. Throughout the
paper, the base of the logarithm is 2. e’ 1 21 s 2121312
In this study, we investigate graphical structural entréfmy lzl lXL lXL LEL &3 4&2 g

this purpose, it is convenient to introduce the unlabeledioa
of a random graph model that we shall calbmdom structure
model In such a model, graphs are generated in the sameéVith these preliminary definitions, we are now in the
manner as irg, but they are thought of as unlabeled graphmosition to present a relationship betweHyg and Hs.

and those having “the same structure” are considered to be.emma 1:If all isomorphic graphs have the same proba-
indistinguishable even if their labeled versions are déffe. A bility, then

set of all structures will be denoted k¥ For a given structure .

(or an unlabeled graph§ € S, the probability of S can be Hs = Hg —logn! + Z P(S)log [Aut(S)]

Ses
computed asP(5) = Yo geg P(G). HereG 2 S means Proof. Observe that for ang ands the entropyHg becomes

Fig. 2. The six different labelings of a graph

thatG andS have the same structure, that #sjs isomorphic P(S) P(S) P(S)
to G (two labeled graph&; andG, are called isomorphic if =YY SR lg =k == P(S)log ==+
and only if there is a one-to-one map frdi{G;) ontoV (G2) SeS @ =&, N($) N(S) Ses N(S)
that preserves the adjacency.) If all isomorphic labelegblys Geg
have the same probability, then for any labeled gré&p¥ S = Hs +logn! — Z P(S)log |Aut(S)|.
P(S) = N(5) - P(G), 6y 5es

) ) This proves the lemma. [ |
where N(S) is the number of different labeled graphs that
have the same structure &s The structural entropyHs of a Il MAIN RESULTS
random structureS can be defined then as In order to develop further the idea of information in a

random structure, we focus on the binomial random graph
model due to Erdds and Rényi [2]. In this mod&(n, p),

. Se“? ) given a real numbep (0 < p < 1), graphs are generated
where the summation is over all distinct structures. randomly on the vertex set = {1,2,---,n} with edges

Example: In Figure 1(left), we have all different graphs builtChosen independently with probability. If a araph & in
on three vertices. In Figure 1(right), we have all diff ncep y wifh P "y drap !

erené _ ok (3)—k B
. o - (n,p) hask edges, therP(G) = p"q\2/™" whereqg = 1 —p.
structures that can be generatedbwith N (1) = N(S1) = Let S(n,p) be the random structure model corresponding to

Hs = E[-log P(S)] = — Y _ P(S)log P(S),

1 andN(Sz) = N(S3) = 3. u G(n,p), that is, the unlabeled version 6(n,p). By (1) if
— k. (5)—k
611 02/1 Gail G \1 s . 52/ S € 8(n,p) hask edges, therP(S) = N(S)-p q( )=k,
R T A . A. Structural Entropy _
Gl Goul Gril Gaol S5 S To proceed we need to observe some important propgrty of
/N /. N A\ YANVAN S(n,p) (or equivalentlyG(n, p)) - asymmetryA graph is said
2 38 2 3 2 3 2 3 to be asymmetriaf its automorphism group does not contain
Fig. 1. All different graphs and structures with three 8 any permutation other than the identity (i-@ll)(v2) . (Un));

otherwise it is calledymmetric It is known that almost every

In order to compute the probability of a given structur@raph fromg(n, p) is asymmetric [6], [9]. In the sequel, we
S, one needs to estimat¥(S), representing the number of\ite ¥ « v to meanX = o(Y) whenn — co.

ways to construct a given structurg. For this, we need | emma 2 (Kim, Sudakov, and Vu, 200Epr all p satisfy-
to consider the symmetries or automorphisms of a graqhg nn o »oand1—p > B (e, both the graph

An automorphismof a graphG is an adjacency preservingang jts complement graph are connected graphs with high

permutation of vertices ofs. The collectionAut(G) of all - propapility.), a random grapts' € G(n, p) is symmetric with
automorphisms o7 is calledthe automorphism groupf G. probability O (n=*) for any positive constani > 1.

In group theory, it is well known that [7] Using this property, we are in the position to present our
N(S) — n! 5 first main result, namely the structural entropygif, p).
(5) = |Aut(S)] 2) Theorem 1:Let Hs be the entropy ofS(n, p), that is, the

structural entropy ofG(n,p). Then, for largen and all p

We also easily observe that< [Aut(S)| < nl. B I
satisfying 2% < p and1 —p > 22,

Example: In Figure 2, the graplir on the left has exactly four
automorphisms, that is, in the usual cyclic permutation rep Hs = (n)h— logn! + O (logn> 7

resentation(vy ) (va)(vs)(v4), (v1)(v4)(vav3), (V1v4)(v2)(v3), “ne a >0,

na



whereh := h(p) = —plogp — (1 — p) log (1 — p). V(G). In thei-th step, one vertex is removed randomly from
Proof. Let us first compute the entropsfg of G(n,p). In the first subset iP,_,. Then, for each subsét in P,_; — v
G(n,p), m = (}) distinct edges are independently selecte(ih its order), we encode theumber of neighborsf v in U
with probability p, and thus there ar@™ different labeled using[log(|U|+1)] bits. After that,P,_; — v becomes a finer
graphs. That is, each graph instance can be considered gmmition P; such that for each subsét in P,_, — v, U is
binary sequenc& of lengthm. Thus, divided into two smaller subsets; andU,, andU; precedes
n Us in P; whereU; is the set of all neighbors af in U and
2)h U, is the set of all non-neighbors afin U. These steps are
repeated untilP becomes empty.
Let A = > g 5 P(S)log|Aut(S)|. Since|Aut(S)| = 1 for  Wwhile the algorithm is running, the binary encodings of
all asymmetrics, the number of neighbors are concatenated in the order they
. are generated. In the course of the algorithm, we separately
4 = Z P(S)log | Aut(S)| maintain two types of encodings - those of length more than
one bits (i.e., for subset8’| > 1) and those of exactly one bit
< > P(S)-nlogn (. |Aut(S)| <n!<n") (ie., for subsetsU| = 1). The former type of encodings are
S € S(n,p), appended to a binary sequenBg. Similarly, the latter type
§ is symmetric of encodings form a binary sequenfBe.
- 0 (logri) for any constants > 1 (by Lemma 2) Example: Figure 3 shows the details of our encoding algo-
nv rithm step by step. In the tablé, denotes the step number,
Lemma 1 completes the proof. m andw denotes the randomly chosen vertex in each step. All
By Shannon’s source coding theorem, we conclude that tBgcodings whose length is bigger than one (denoteitalig
entropy computed in Theorem 1 is the fundamental limit on tH@nt) are appended t&;. The other encodings are appended
lossless compression of structut®s:, p). In the next section, t0 Ba. After ten stepsp, and B, are0100110100001110101
we design an asymptotically optimal compression algorithald 1001011000000101, respectively. n
matching the first two leading terms of the structural entrop

H = ~Bllog P(X7")] = —miBllog P(xy)] - (

SeS(n,p) andS is symmetric

B. Asymptotically Optimal Compression Algorithm F o | P —v | encoding apgcdefqhij
In this section, we present our algorithm that encodes struc “ : ; ZZ;”/’Z{)g:}g ‘l’ioglo ZJ; g%‘jzz’;
tures (or unlabeled graphs). For a given unlabeled g@ph c e 3 | d | gj/bc/aeh | 00,0L 11 | gj/c/bjaeh
our algorithm encode€ first into two binary sequences and } hot ] Z;g//z//zzh po oo g;g?%’yge
then compress them by an arithmetic encoder. We shall sho 6 | ¢ | b/hjefa | 1000 | b/hje/a
in Theorem 2 that the proposed algorithm is asymptotically ! /—; ; Z Z//Z/a i)' 8’0 Z//s/a
optimal up to the first two leading terms. 9 | ela 1 a
To describe the algorithm precisely, we need some defi- 0] a

nitions and notations. Amrdered partitionof a setX is a Fig. 3. An example for our encoding algorithm, given the gram the left

sequence of nonempty subsetsX6fsuch that every element

in X is in exactly one of these subsets. For example, oneWe can easily observe thds, is nothing but a binary

ordered partition of{a, b, c,d, e} is {a,b}, {e},{c,d} that is sequence generated by a binary memoryless sQuraeith

denoted byab/e/cd. It is equivalent toba/e/dc, but distinct p being the probability of generating "1’ if the input graph is

from e/ab/cd. Given an ordered partitio®® of a setX, we generated byS(n,p).

also define an order on the elementsXfas follows:a < b At the end of our encoding algorithm3, and B, are

in P if the subset containing precedes the subset containingompressed td3; and B; by an adaptive binary arithmetic

bin P. For examplea < ¢ ande < ¢ in P = ab/e/cd, encoder [4]. The algorithm also needs the number of vertices

bute ¢ a. An ordered partition?, of a setX is calledfiner n. As easy to see, the computational complexityig:?).

than ordered partitio®, of X if the following two conditions Now we describe oulecoding algorithmwhich fromn, By,

hold: (1) every element (i.e., subset &f of P; is a subset of and B, constructs a graph isomorphic to the original graph.

some element of%, and (2) for alla,b € X, a < bin P, if First we restoreB; and Bs by decompressing?l and Bo.

a < b in P,. For example, botlu/b/e/cd andab/e/d/c are Then, we create a grafh havingn vertices and no edges. The

finer thanab/e/cd. Finally, a subtraction of an element fromgeneral framework of our decoding algorithm is very similar

an ordered partition gives us another ordered partitiog.,(e.to that of our encoding algorithm. Again, one ordered partit

for P = ab/e/cd we find thatP — ¢ and P — e areab/e/d P of a subset of’(G) is maintained. LetP; be the ordered

andab/cd, respectively). partition afteri-th step. At the beginning?, = V(G). In i-th
Now we describe in details the proposed algorithm. It rurstep, we remove any vertax from the first subset inP;_;.

in n steps. During the course of the algorithm, one orderddhen, for each subsét in P;,_; — v (in its order), we extract

partition P of a subset o (G) is maintained. LetP; be the the first/ = [log (|JU| + 1)] bits from eitherB; (if |U| > 1)

ordered partition after the-th step. At the beginningly = or By (if |U| = 1). Let k be the number that bits represent.



TABLE |
THE AVERAGE LENGTH OF ENCODINGYIN BITS)

Networks # of nodes  # of edges our algorithm  adjacency matri)(,g) adjacency liste[logn] arithmetic coding
5 US Airports 332 2,126 8,118 54,946 19,134 12,991
5 Protein interaction (Yeast) 2,361 6,646 46,912 2,785,980 79,752 67,488
2 Collaboration (Geometry) 6,167 21,535 115,365 19,012,861 279,955 241,811
s Collaboration (Erdds) 6,935 11,85[7 62,617 24,043,645 154,141 147,377
o Genetic interaction (Human) 8,605 26,066 221,199 37,018,710 364,924 310,569

Internet (AS level) 25,881 52,407 301,148 334,900,140 786,105 396,060
g S(n,p) 1,000 p=0.001 2,353 499,500 5,000 5,717
S S(n,p) 1,000 p=0.01 34,431 499,500 50,019 40,414
g  S(n,p) 1,000 p=0.1 227,077 499,500 499,367 234,231
& S(n,p) 1,000 p=0.3 432,654 499,500 1,498,467 440,210

Then we select ank vertices inU and make an edge betweerClearly, the second leading termlogn plays significant role
v and each of thosk vertices. After thatP,_; — v becomes a in the compression of such graphs.
finer partition P; in the same way as our encoding algorithm.
These steps are repeated uiitibecomes empty. IV. ANALYSIS

To measure the performance of our algorithm,I¢6) be In this section, we analyze the performance of our compres-
the length of the encoding generated by our algorithm, $)at sion algorithm by first computing the expected lengths3ef
|B1| + |Bz|. In Section IV we sketch a proof th&g[L(S)] andB,, and ultimately proving Theorem 2.

matches the first two terms in the structural entropg of, p). In order to analyze our algorithm, we conveniently introgluc
Theorem 2:The average lengtiEg|[L(S)] of the com- a binary tree that better captures the progress of the #igori
pressed sequence does not exceed Given a graphG onn vertices, the binary tre&;, is built as
n 1 follows. At the beginning, the root node contains algraph
(2) h —nlogn + (c+ ®(logn))n+ O (n' "), vertices,V((), that one can also visualize asballs. Then

one graph vertex (bally is randomly removed fromx graph
a;ertices of the root node. The other- 1 graph vertices move
own to the left or right depending whether they are adjacent
vertices inG to v or not; adjacent vertices go to the left child
C. Experimental Results node and the others go to the right child. We create a new

In order to test our graphical structure compression algghild node inT;, if there is at least one graph vertex in that
rithm on real data, we apply it to both random and rea_TlOde- At this point, the tr_ee_ is of_helght 1 with— 1 vertices
world networks including biological, social, and techrgital I the nodes at level 1. Similarly, in theth step, we randomly
networks. Table | summarizes the results. For comparison,"Bmove one graph vertex (bali) from the leftmost node at
the table we list the lengths of three other encodings offigap!€vel 7 — 1. The other graph vertices at level- 1 move down
namely, the usual implementations of adjacency matriggf © the left or right depending whether they are adjacent to
bits, and adjacency list ot leaste[logn] bits (normally, ©F not. We repeat these steps until all vertices are removed.
2e[logn] bits) wheren is the number of vertices andis the
number of edges. Finally, in the last column of the table we
apply the arithmetic encoder to the adjacency matrix.

For “collaboration graphs” of Table | our algorithm achisve
more than twice better compression than the standard arith-
metic encoder. This seems to be a consequence of a small q
value ofp for these graphs, even if the “collaboration graphs” b

where b := h(p), ¢ is an explicitly computable constant
®(logn) is a fluctuating function with a small amplitude, an
7 iS some positive constant.

are not in G(n,p) but rather generated by power law
distribution (we still expect our analysis applies to thiedal
of graph generations). Consider again the structural pytro /
Hs of the G(n,p) model whenp — 0 satisfying conditions 7 J
of Theorem 1. Letp ~ w(n)(logn/n) for slowly growing

w(n) — oo asn — oo. In this case

Fig. 4. A graph and one of its corresponding binary trees
log2 n
h(p) ~ w(n) , .
n The construction of the tree and the progress of the al-
and therefore the structural entropy becomes gorithm is presented in Figure 4. In Figure 4(right), saddct
1 ) graph vertices are shown on the left. At each level, the dabse
Hs ~ 5(” — Dw(n)log”n —nlogn + O(n). of graph vertices, after removing the chosen vertex, are/sho




next to the nodes. In this example, the same vertex are sdlect; " (h _fa
as in Figure 3. We observe that the subsets of graph vertices h

at each level (from the left to the right) are the same as thghereh := h(p), v = 0.577--- is the Euler constant;, =
subsets in each step of our algorithm in F|gqre 3. plog?p+ qlog?q,

Let N, denote the number of graph vertices (balls) that
pass through node (excluding the vertex that is removed at
x, if any.) We observe that our algorithm needs to encode the
number of neighbors of a graph vertex ama¥g vertices for
each noder in T,,. This requireqlog(NN, +1)] bits. Then by
the construction

>

|B1| =
z€T,, and N;>1

1
Ty+1l+a-— 50(logn)) - Elogn—l—O(l),

= pttlogp 4+ ¢Flogg
a=-> T phti — gt
k=1

andd,(logn) is a fluctuating function foiog p/ log ¢ rational
with small amplitude and zero otherwise.

Finally, we compute the total expected length of the encod-
ing by observing that the arithmetic coder can compress on
average a file of sizen up to [4], [5] mh + %1ogm +0(1),
whereh is the entropy rate of the binary source.

[log(N + 1)1,

and
|By| = Z Z 1. ACKNOWLEDGMENT
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We first evaluateE[|B;[]. We shall prove in the journal Teéchnology, and the AFOSR Grant FA8655-08-1-3018.

version of this paper that

E[|B1]] < an [1]
[2
3]

(4]
The above recurrence can be solved using analytic tecrmiqu[g]
such as generating functions, Mellin transform, and Pois-
sonization [16]. This will lead to the following bound ¢, |.
. (6]
Theorem 3:For largen,
(7]

(8]

wherez,, satisfieszg = xz1 =0 and forn > 2

xn, = [log (n+1)] + Z (Z)pkq"_k(xk + Tp—k)-
k=0

1
E[|B:]] < 7 (B+ ®(logn))n+ O (nl_") ,
whereh := h(p), n is a positive constant,

B [log (b+ 1)]
f=lose ) Sy

9
=3.760 - -, )

[10]

and®(logn) is a fluctuating function fotog p/ log ¢ rational
with small amplitude and zero otherwise. (11]
Now we estimate the average [@8,|. We shall first prove [y

that

n(n—1)

2

for someb,,. Then we observe thadt, > y,, — n for somey,,
satisfyingyy, = 0 and forn >0

n n B
Ynt+1 =N + kz_o (k)pkqn k(yk + Yn—k)-

In fact, y,, represents the expected path length in a digitglﬂ

search tree over strings [8], and we adopt here the solutiof!8]

from [8]. In conclusion, we arrive at the following result.
Theorem 4:For largen,

[13]

[14]

[15]

[16]

BBy < "=

— 7 logn
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