arxiv:0901.4192v3 [cs.IT] 4 Jul 2009

Fixing Convergence of Gaussian Belief Propagation

Jason K. Johnson Danny Bickson Danny Dolev
Center for Nonlinear Studies/T-4 IBM Haifa Research Lab School of Computer Science and Engineering
Los Alamos National Laboratory Mount Carmel, Haifa 31905, Israel Hebrew University of Jerusalem
Los Alamos, NM 87545 Email: dannybi@il.ibm.com Jerusalem 91904, Israel
Email: jasonj@lanl.gov Email: dolev@cs.huji.ac.il

Abstract— Gaussian belief propagation (GaBP) is an iterative we discuss Montanari’'s multiuser detection algorithm By.
message-passing algorithm for inference in Gaussian graptal ysing our construction we are able to show convergence in
models. It is known that when GaBP converges it converges thé practical CDMA settings, where the original algorithm diotn

correct MAP estimate of the Gaussian random vector and simp i ianificantly hiah b f
sufficient conditions for its convergence have been establied. converge, supporting a signinicantly higher number of users

In this paper we develop a double-loop algorithm for forcing €ach cell.
convergence of GaBP. Our method computes the correct MAP  This paper is organized as follows. Sectibh Il outlines
estimate Sven In cases Wher‘zl stﬁndard GaBP would not havethe problem model. Sectidollil gives a brief introduction to
converged. We further extend this construction to compute o 5app gigorithm. Sectidi]V describes our novel double-
least-squares solutions of over-constrained linear systes. We . o - -
believe that our construction has numerous applications, isce |00P construction for positive definite matrices. Sectioh V
the GaBP algorithm is linked to solution of linear systems of extends the construction for computing least-squaresisnlu
equations, which is a fundamental problem in computer sciece of general linear systems. We provide experimental resdilts

and engineering. As a case study, we discuss the linear deied  deploying our construction in the linear detection coniiext
problem. We show that using our new construction, we are able Sectio V). We conclude in Sectigi VI

to force convergence of Montanari’s linear detection algoithm,

in cases where it would originally fail. As a consequence, we

are able to increase significantly the number of users that aa Il. PROBLEM SETTING

transmit concurrently.

We wish to compute theanaximum a posterioriMAP)

estimate of a random vectorwith Gaussian distribution (after
The Gaussian belief propagation algorithm is an efficiegbnditioning on measurements):

distributed message-passing algorithm for inference @ver
Gaussian graphical model. GaBP is also linked to the canon- p(z) < exp{—32" Jz + h'z}, (1)
ical problem of solving systems of linear equations [1]+[3]
one of the fundamental problems in computer science amthere J - 0 is a symmetric positive definite matrix (the
engineering, which explains the large number of algorithinformation matrix) and: is the potential vector. This problem
variants and applications. For example, the GaBP algorighmis equivalent to solving/z = h for = given (h, J) or to solve
applied for signal processing [3]-[7], multiuser detewt|{8], the convex quadratic optimization problem:
[9], linear programming [10], ranking in social networksl]1
support vector machines [12}fc.Furthermore, it was recently minimize f(z) = %xTJ:v —hTz. (2)
shown that some existing algorithms are specific instantes o
the GaBP algorithm, including Consensus propagation [13)fe may assume without loss of generality (by rescaling
local probability propagation [14], multiuser detectio@],[ variables) that/ is normalized to have unit-diagonal, that is,
Quadratic Min-Sum algorithm [1], Turbo decoding with GausJ = I — R with R having zeros along its diagonal. The off-
sian densities [15] and others. Two general sufficient condliagonal entries of? then correspond tgartial correlation
tions for convergence of GaBP in loopy graphs are knowaoefficient§19]. Thus, the fill pattern of? (and.J) reflects the
diagonal-dominance [16] and walk-summability [17]. Sesoal Markov structure of the Gaussian distribution. Thatig;) is
numerous studies in specific settings [1], [8], [13]-[18].  Markov with respect to the graph with edggs= {(, j)|r:; #

In this work, we propose a novel construction that fixes tHg .
convergence of the GaBP algorithm, for any Gaussian modelf the model J = I — R is walk-summabldg17], [18],
with positive-definite information matrix (inverse cowvamce such that the spectral radius [@&| = (|r;;|) is less than one
matrix), even when the currently known sufficient convelp(|R|) < 1), then the method of GaBP may be used to solve
gence conditions do not hold. We prove that our constructitims problem. We note that the walk-summable condition im-
converges to the correct solution. Furthermore, we consigdies I — R is positive definite. An equivalent characterization
how this method may be used to solve for the least-squandsthe walk-summable condition is thdt— |R| is positive
solution of general linear systems. As a specific applicatiodefinite.

|. INTRODUCTION
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# Stage | Operation — and convergent GaBP algorithm ag@conditionerin a sim-
1. | Initialize | Seta,;; =0 andB;; =0, V(i,j) € G : . .
2. Tterate | Forall (i,) €G ple iterative method to solve the original non-walksumreabl
g = Jii + Dpencin, i model.
ﬂi_\,j__ hlja’cew)\j O A. Diagonal Loading
aij = —Jijo
Bij = —Jijon;Bing We may always obtain a walk-summable modetiggonal
end loading This is useful as we can then solve a related system
3. | Check [ If o’s andf’s have converged, of equations efficiently using Gaussian belief propagatmm
continue to #4. Else, return to #2. example, given a non-walk-summable modek I — R we
4| Infer | K = (Ji + Xpene ki) obtain a related walk-summable modg| = J + I that is
fii = Ki(hi + 3 4 eng) Bri)- walk-summable for large enough values-of
5 | Output | 2y = fui,Vi. Lemma 1:LetJ = I—RandJ 2 J+~I = (14+~)[—R.

Let v > v* where
TABLE | T

COMPUTING z* = arg max,, exp(—2z7 Jz + hTz) viA GABP. v =p(R])-1. (3)

Then,.J’ is walk-summable and GaBP based.fnconverges.
Proof. We normalizeJ’ = (1+~)I — R to obtainJ ., =

lIl. GAUSSIAN BELIEF PROPAGATION I — R with R" = (1 + +)~ 'R, which is walk-summable if
and only if p(|R'|) < 1. Usingp(|R'|) = (1+~)"1p(|R|) we

The Gaussian belief propagation algorithm is an efficie%,[ain the conditior{1 +~)~2p(|R|) < 1, which is equivalent

distributed message-passing algorithm for inference Gwertcw > p(IR]) - 1.

Gaussian graphical model. Given the Gaussian density func-It is also possible to achieve the same effect by adding a

tlon_ @) or ObJeCt'Ve. function[{2), we are interested in Comdeneral diagonal matrik to obtain a walk-summable model.
puting the MAP assignment: For example, for all’ > I'* where~}, = J;; — Z#i [Ji;]
2* = argmax p(z) = arg min f(z) it holds thatJ + I' is diagonally-dominant and hence walk-
z z summable (see [17]). More generally, we could allbwo be
The density p(z) specifies a graphical model with re-any symmetric positive-definite matrix satisfying the cibiod
spect to the graphG of the inverse covariance matrixI + I' - |R|. However, only the case of diagonal matrices is
J, with edge potentials (‘compatibility functions?,;; and explored in this present paper.
self-potentials (‘evidence’});. These graph potentials pro- ] _
vide a pairwise factorization of the Gaussian distributioR- !terative Correction Method
p(z) o< [T, i) I jyec Yij(@i, zj), with ¥ (i, 2;) £ Now we may use the diagonally-loaded modél= J + T
exp(—x;J;jx;), and;(z;) £ exp(— %Jlﬂ;? +hixi)- Then, to solve Jxz = h for any value ofl’ > 0. The basic idea
we would like to calculate the marginal densities, which tubere is to use the diagonally-loaded matrik = J +T" as
also be Gaussian, a preconditionerfor solving the Jz = h using the iterative
. N method:
p(@i) ~ N(pi = (J7 h)i K = (7)) Y = (J+ D)"Y (h+T2D) (4)

wherep,; and K; are the marginal mean and variance, respe,
tively. The GaBP update rules are summarized in Table I. 2 the scaling factorJ + )~ but we compensate for this

write N(i) to denote the set of neighbors of nod G. damping effect by adding a feedback tefi to the inputh.

It is known that 'I Glafp (r:]onr:/erge; it results in te-,0h step of this iterative method may also be interpreted as
exact MAP estimater™, although the variance estimaté§ solving the following convex quadratic optimization pref

computed by GaBP are only approximations to the corregl <ad on the objectivé(z) from @):
variances [16]. The walk-summable condition guaranteas th '

GaBP converges [17], generalizing the stricter conditb®] [  3(+1) — arg min {f(:c) +i@- T (z — x(t))} (5)
that J is diagonally dominantife., [Ji;| > >_, . [Jijl, Vi). ””
An upper bound on convergence speed is given in [10].  This is basically a regularized version of Newton’s method t
minimize f(z) where we regularize the step-size at each iter-
ation. Typically, this regularization is used to ensureifdes
This current paper presents a method to solve nodefiniteness of the Hessian matrix when Newton’'s method is
walksummable models, whete= I — R is positive definite used to optimize a non-convex function. We instead use it to
butp(|R|) > 1, using GaBP. There are two key ideas: (1) usingnsure that/ + I' is walk-summable, so that the update step
diagonal loading to create a perturbed modet= J+T" which can be computed via Gaussian belief propagation. Intlytive
is walk-summable (such that the GaBP may be used to sothés will always move us closer to the correct solution, but
J'xz = h for any h) and (2) using this perturbed modél slowly if T" is large. It is simple to demonstrate the following:

[fote that the effect of adding positiveis to reduce the size

IV. OUR CONSTRUCTION



Lemma 2:Let .J = 0 andI' = 0. Then,z(*) defined by[(#) Note thatJ is positive definite and we can use GaBP to solve
converges tac* = J ' for all initializations (9. it. The MAP solution is

CommentThe proof is given for a general (non-diagonal) = 17 A R
I' = 0. For diagonal matrices, this is equivalent to requiring v=J"h=(JJ)Th, (7)
I'y>0fori=1,...,n. which is the pseudo-inverse solution.

Proof. First, we note that there is only one possible fixed- Note, that the above construction has two drawbacks: first,
point of the algorithm and this is* = J~'h. Supposer is we need to explicitly computé andh, and second/ may not
a fixed point:z = (J +T')"'(h + I'z). Hence,(J + I')z = be sparse in case the original matss sparse. To overcome
h+T'z and Jz = h. For non-singulat/, we must then have this problem, following [9], we construct a new symmetri¢ada
& = J 'h. Next, we show that the method converges. Lenatrix J based on the arbitrary rectangular matiixe R™**
e® = 2 — z* denote the error of thé-th estimate. The B =
error dynamics are thert*+?) = (J4+T)~'Te®. Thus,e®) = JA ( T J ) e RUkFn)x(ktn)
((J+T)"')*e® and the error converges to zero if and only T Onxn
if p((J+T)7'T) <1, or equivalentlyp(H) < 1 whereH =  additionally, we define a new hidden variable vector2
(J +T)"V°T(J +T)~"/2 = 0 is a symmetric positive semi- {7 ,T\7 ¢ R(+n) wheres € R* is the solution vector
definite matrix. Thus, the eigenvalues Bf are non-negative gnd » ¢ R” is an auxiliary hidden vector, and a new shift
and we must show that they are less than one. It is simple\iectorp, 2 {07, hT}T € R(:+m).

kEx1»

check that if\ is an eigenvalue off then2 is an eigenvalue | omma 3: SolvingZ = J~'h and taking the first: entries

of T'/2J~11'/2 = 0. This is seen as followsHz = Az, s identical to solving EQ]7.

(J4T) Ty = Ay (y = (J+T)""/22), Ty = A(J+T)y, (1= Proof. Is given in [9].

MNPy = My, J-'Ty = 25y andT/2J 711122 = Ao For applying our double-loop construction on the new
(z = I''/2y) [note that\ # 1, otherwise.Jy = 0 contradicting system(h, .J) to obtain the solution to Eq[I(7), we need to
J > 0]. Therefore;2; > 0 and0 < A < 1. Thenp(H) < 1, confirm that the matrix/ is positive definite. (See lemma 2).

e — 0 andz(¥) — z* completing the proofo To this end, we add a diagonal weightirgyI to the lower
Now, provided we also require that = J + T' is walk- right block:

summable, we may compute(*tt) = (J + I)~1alt+D), / g1

where 1+ = h 4+ T#(®, by performing Gaussian belief JA& ( hk > e RUF+n)x(ktn)

propagation to solve/’z(**Y) = h(+1D Thus, we obtain a S Y xn

double-loop method to soluér = h. The inner-loop performs Then we rescale/ to make it unit diagonal (to deal with
GaBP and the outer-loop computes the nigkt. The overall the negative sign of the lower right block we use a complex
procedure converges provided the number of iterations @hussian notation as done in [8]). Itis clear for a large ghou
GaBP in the inner-loop is made large enough to ensure a googe are left with a walk-summable model, where the rescaled
solution toJ'z("*1) = p("+1). Alternatively, we may compress j is a hermitian positive definite matrix and|J — I|) < 1.

this double-loop procedure into a single-loop procedure Byow it is possible to use the double-loop technique to comput

preforming just one iteration of GaBP message-passing (&j.[7. Note that adding-~! to the lower right block of/ is
iteration of the outer loop. Then it may become necessagyuivalent to adding/! into Eq. 7:

to use the following damped update bf? with step size . .

parametes € (0,1): z= "I+l I h (8)
pO+D (1— S)h(t) +s(h+ ) where~ can be interpreted as a regularization parameter.

= h4+T((1- S)@(t—l) + Si(t)) (6) VI. EXPERIMENTAL RESULTS
o o A. Linear detection in linear channels

This single-loop method converges for sufficiently smalk va

ues ofs. In practice, we have found good convergence Wit[h

s = % This single-loop method can be more efficient than th

double-loop method.

Consider a discrete-time channel with a real input vec-
r o =1{x,...,0x}7 governed by an arbitrary prior
istribution, P,, and a corresponding real output vector
y=1{y1,...,ux}T = f{zT} € RE. Here, the functionf{-}
denotes the channel transformation. By definition, lineaxr d
tection compels the decision rule to be

In this section, we efficiently gxtend the applica_bility bkt F= Ale*y = ALAD), ©)
proposed double-loop construction for a general lineatesys
of equations (possibly over-constrained.) Given a fulucoh where b = y is the K x 1 observation vector and the
rank matrix.J € R"** n > k, and a shift vectoh, we are K x K matrix A is a positive-definite symmetric matrix
interested in solving the least squares problemn,, ||j:v — approximating the channel transformation. The veatbris
ﬁ||§. The naive approach for using GaBP would be to take thige solution (overR) to Az = b. Estimation is completed
information matrixJ £ (J7.J), and the shift vectoh £ JTh. by adjusting the (inverse) matrix-vector product to theuinp

V. EXTENSION TO GENERAL LINEAR SYSTEMS



alphabet, dictated by’., accomplished by using a proper
clipping functionA{-} (e.g., for binary signalingA{-} is the
sign function).

For example, linear channels, which appear extensively in
many applications in communication and data storage sygstem
are characterized by the linear relation

y=flz}=Cax+n,

wheren is a K x 1 additive noise vector and’ = S”'S ‘ ‘ ‘ ‘ ‘ ‘ ‘
is a positive-definite symmetric matrix, often known as the 2 4 6 8 10 12 14
correlation matrix. TheV x K matrix S describes the physical lteration number
channel medium while the vectgrcorresponds to the output
of a bank of filters matched to the physical chanfiel

Assuming linear channels with AWGN with variane€ Fig. 1. Divergence of the GaBP algorithm for the multiusetedgon
as the ambient noise, the linear minimum mean-square erpgPlem, whem = 256, k = 64.
(MMSE) detector can be described by usidg= C + 02 I,
known to be optimal when the input distributidf). is Gaus- . ) )
sian. In general, linear detection is suboptimal becausisof first, we forced the matrix to be diagonally-dominant (DD).
deterministic underlying mechanisme(, solving a given set In this case, the spectral radips= 0.188. In the second case,
of linear equations), in contrast to other estimation satgm the matrix was not DD, but the spectral radius was 0.388.

such as MAP or maximum likelihood, that emerge from afylearly, the Newton method converges faster when the sgectr
optimization criteria. radius is larger. In both cases the inner iterations corceng

five steps to an accuracy &b —°.
B. Montanari’s iterative algorithm for computing the MMSE

n=256 k=64

w
o

N
o
T

Value of X
| |
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detector - Convergence of fixed GaBP iteration with n=256,k=64
Recent work by Montanaet al. [8] introduces an efficient . oy * | | |
iterative algorithm for computing the MMSE detector. Fallo L T, X
ing this work, Bicksonet al. showed that this algorithm is an w07y Ty Trrea.,, .
instance of the GaBP algorithm [9]. = T '
In the current work, we apply our novel technique for L.z ol R .
forcing the convergence of Montanari’s algorithm. To redhin = e
Montanari’s algorithm computes the MMSE solution W'y : gfg;gg T, .
r=(C+o%lg) ty. ol +
107]20 é 1‘0 1‘5 2‘0 25
We use the following setting: given a random-spreading Newton step

CDMA code with chip sequence length= 256, andk = 64
users. We assume a diagonal AWGN with = 1. Matlab Fig. 2. Convergence of the fixed GaBP iteration under the ssettings
: . 2 . : (n = 256,k = 64)
code of our implementation is available on [20].
Usmg the above sett_lngs, we have drawr_1 at random random:l_he tradeoff between the amount of diagonal weighting to
spreading CDMA matrix. Typically, the sufficient convergen the total convergence speed is shown in Figures 3,4. ACDMA
conditions for the GaBP algorithm do not hold. For example 9 P 9 T

we have drawn at random a randomly-spread CDMA matrfey (B0 TSR 28 BERET B SR T e where
with p(|Ix — CV|) = 4.24, where CV is a diagonally- 9 P

—6 -3 Ay :
normalized version ofC + 02T ). Sincep(|Ix — CN|) > 1, 107% and 10~". The z-axis present the amount of diagonal

the GaBP algorithm for multiuser detection is not guaraﬂltegzve'g.htmg n_ormallzed such that 1 is a d|a}gonally—dom|nant
to converge. matrix. y-axis represent the number of iterations. As expected,

Figure[l shows that under the above settings, the Gagﬁ outer loop number of iterations until convergence grows

. : . ) . ' with the increase of. In contrast, the average number of inner
algorithm indeed diverged. Theaxis represent iteration num-IOO iterations per Newton step (Figure 4) tends to decrease
ber, while the values of different; are plotted using different b P p (Mg

colors. This figure depicts well the fluctuating divergenc%57 increases. The total number of |'§erat|0ns (mneomer) .
behavior. represents the tradeoff between the inner and outer besati
Next, we deployed our proposed construction and used
diagonal loading to force convergence. Figlite 2 shows two
different possible diagonal loadings. Theaxis shows the
Newton step number, while theaxis shows the residual. We We have presented an iterative method based on Gaussian
experimented with two options of diagonal loading. In theelief propagation which always converges to the correct

gd has a clear global minima.

VII. CONCLUSIONS ANDFUTURE WORK



Di | igti . f iterati . .
000 _>'agona’ WeigTng vs. nm of feratons to exploit a more general class of perturbations beyond the

diagonal-loading method used in this paper.
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