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Abstract— Gaussian belief propagation (GaBP) is an iterative
message-passing algorithm for inference in Gaussian graphical
models. It is known that when GaBP converges it converges to the
correct MAP estimate of the Gaussian random vector and simple
sufficient conditions for its convergence have been established.

In this paper we develop a double-loop algorithm for forcing
convergence of GaBP. Our method computes the correct MAP
estimate even in cases where standard GaBP would not have
converged. We further extend this construction to compute
least-squares solutions of over-constrained linear systems. We
believe that our construction has numerous applications, since
the GaBP algorithm is linked to solution of linear systems of
equations, which is a fundamental problem in computer science
and engineering. As a case study, we discuss the linear detection
problem. We show that using our new construction, we are able
to force convergence of Montanari’s linear detection algorithm,
in cases where it would originally fail. As a consequence, we
are able to increase significantly the number of users that can
transmit concurrently.

I. I NTRODUCTION

The Gaussian belief propagation algorithm is an efficient
distributed message-passing algorithm for inference overa
Gaussian graphical model. GaBP is also linked to the canon-
ical problem of solving systems of linear equations [1]–[3],
one of the fundamental problems in computer science and
engineering, which explains the large number of algorithm
variants and applications. For example, the GaBP algorithmis
applied for signal processing [3]–[7], multiuser detection [8],
[9], linear programming [10], ranking in social networks [11],
support vector machines [12]etc.Furthermore, it was recently
shown that some existing algorithms are specific instances of
the GaBP algorithm, including Consensus propagation [13],
local probability propagation [14], multiuser detection [8],
Quadratic Min-Sum algorithm [1], Turbo decoding with Gaus-
sian densities [15] and others. Two general sufficient condi-
tions for convergence of GaBP in loopy graphs are known:
diagonal-dominance [16] and walk-summability [17]. See also
numerous studies in specific settings [1], [8], [13]–[18].

In this work, we propose a novel construction that fixes the
convergence of the GaBP algorithm, for any Gaussian model
with positive-definite information matrix (inverse covariance
matrix), even when the currently known sufficient conver-
gence conditions do not hold. We prove that our construction
converges to the correct solution. Furthermore, we consider
how this method may be used to solve for the least-squares
solution of general linear systems. As a specific application,

we discuss Montanari’s multiuser detection algorithm [8].By
using our construction we are able to show convergence in
practical CDMA settings, where the original algorithm did not
converge, supporting a significantly higher number of userson
each cell.

This paper is organized as follows. Section II outlines
the problem model. Section III gives a brief introduction to
the GaBP algorithm. Section IV describes our novel double-
loop construction for positive definite matrices. Section V
extends the construction for computing least-squares solution
of general linear systems. We provide experimental resultsof
deploying our construction in the linear detection contextin
Section VI. We conclude in Section VII.

II. PROBLEM SETTING

We wish to compute themaximum a posteriori(MAP)
estimate of a random vectorx with Gaussian distribution (after
conditioning on measurements):

p(x) ∝ exp{− 1
2x

TJx+ hTx} , (1)

where J ≻ 0 is a symmetric positive definite matrix (the
information matrix) andh is the potential vector. This problem
is equivalent to solvingJx = h for x given (h, J) or to solve
the convex quadratic optimization problem:

minimize f(x) , 1
2x

TJx− hTx. (2)

We may assume without loss of generality (by rescaling
variables) thatJ is normalized to have unit-diagonal, that is,
J , I − R with R having zeros along its diagonal. The off-
diagonal entries ofR then correspond topartial correlation
coefficients[19]. Thus, the fill pattern ofR (andJ) reflects the
Markov structure of the Gaussian distribution. That is,p(x) is
Markov with respect to the graph with edgesG = {(i, j)|ri,j 6=
0} .

If the model J = I − R is walk-summable[17], [18],
such that the spectral radius of|R| = (|rij |) is less than one
(ρ(|R|) < 1), then the method of GaBP may be used to solve
this problem. We note that the walk-summable condition im-
pliesI −R is positive definite. An equivalent characterization
of the walk-summable condition is thatI − |R| is positive
definite.
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# Stage Operation
1. Initialize Setαij = 0 andβij = 0, ∀(i, j) ∈ G

2. Iterate For all (i, j) ∈ G

αi\j = Jii +
P

k∈N(i)\j αki

βi\j = hi +
P

k∈N(i)\j βki

αij = −J2
ijα

−1
i\j

βij = −Jijα
−1
i\jβi\j

end
3. Check If α’s andβ’s have converged,

continue to #4. Else, return to #2.
4. Infer K̂i = (Jii +

P

k∈N(i) αki)
−1

µ̂i = K̂i(hi +
P

k∈N(i) βki).
5. Output x∗

i = µ̂i, ∀i.

TABLE I

COMPUTINGx∗ = argmaxx exp(− 1
2
xT Jx+ hTx) VIA GABP.

III. G AUSSIAN BELIEF PROPAGATION

The Gaussian belief propagation algorithm is an efficient
distributed message-passing algorithm for inference overa
Gaussian graphical model. Given the Gaussian density func-
tion (1) or objective function (2), we are interested in com-
puting the MAP assignment:

x∗ = argmax
x

p(x) = argmin
x
f(x)

The density p(x) specifies a graphical model with re-
spect to the graphG of the inverse covariance matrix
J , with edge potentials (‘compatibility functions’)ψij and
self-potentials (‘evidence’)ψi. These graph potentials pro-
vide a pairwise factorization of the Gaussian distribution
p(x) ∝

∏n
i=1 ψi(xi)

∏

{i,j}∈G ψij(xi, xj), with ψij(xi, xj) ,

exp(−xiJijxj), andψi(xi) , exp
(

− 1
2Jiix

2
i + hixi

)

. Then,
we would like to calculate the marginal densities, which must
also be Gaussian,

p(xi) ∼ N (µi = (J−1h)i,Ki , (J−1)ii) ,

whereµi andKi are the marginal mean and variance, respec-
tively. The GaBP update rules are summarized in Table I. We
write N(i) to denote the set of neighbors of nodei in G.

It is known that if GaBP converges, it results in the
exact MAP estimatex∗, although the variance estimateŝKi

computed by GaBP are only approximations to the correct
variances [16]. The walk-summable condition guarantees that
GaBP converges [17], generalizing the stricter condition [16]
that J is diagonally dominant (i.e., |Jii| >

∑

j 6=i |Jij |, ∀i).
An upper bound on convergence speed is given in [10].

IV. OUR CONSTRUCTION

This current paper presents a method to solve non-
walksummable models, whereJ = I − R is positive definite
butρ(|R|) ≥ 1, using GaBP. There are two key ideas: (1) using
diagonal loading to create a perturbed modelJ ′ = J+Γ which
is walk-summable (such that the GaBP may be used to solve
J ′x = h for any h) and (2) using this perturbed modelJ ′

and convergent GaBP algorithm as apreconditionerin a sim-
ple iterative method to solve the original non-walksummable
model.

A. Diagonal Loading

We may always obtain a walk-summable model bydiagonal
loading. This is useful as we can then solve a related system
of equations efficiently using Gaussian belief propagation. For
example, given a non-walk-summable modelJ = I − R we
obtain a related walk-summable modelJγ = J + γI that is
walk-summable for large enough values ofγ:

Lemma 1:Let J = I−R andJ ′ , J+γI = (1+γ)I−R.
Let γ > γ∗ where

γ∗ = ρ(|R|)− 1 . (3)

Then,J ′ is walk-summable and GaBP based onJ ′ converges.
Proof. We normalizeJ ′ = (1 + γ)I −R to obtainJ ′

norm =
I − R′ with R′ = (1 + γ)−1R, which is walk-summable if
and only ifρ(|R′|) < 1. Usingρ(|R′|) = (1+ γ)−1ρ(|R|) we
obtain the condition(1+γ)−1ρ(|R|) < 1, which is equivalent
to γ > ρ(|R|)− 1. ⋄

It is also possible to achieve the same effect by adding a
general diagonal matrixΓ to obtain a walk-summable model.
For example, for allΓ > Γ∗ whereγ∗ii = Jii −

∑

j 6=i |Jij |
it holds thatJ + Γ is diagonally-dominant and hence walk-
summable (see [17]). More generally, we could allowΓ to be
any symmetric positive-definite matrix satisfying the condition
I + Γ ≻ |R|. However, only the case of diagonal matrices is
explored in this present paper.

B. Iterative Correction Method

Now we may use the diagonally-loaded modelJ ′ = J + Γ
to solve Jx = h for any value ofΓ ≥ 0. The basic idea
here is to use the diagonally-loaded matrixJ ′ = J + Γ as
a preconditionerfor solving theJx = h using the iterative
method:

x̂(t+1) = (J + Γ)−1(h+ Γx̂(t)) (4)

Note that the effect of adding positiveΓ is to reduce the size
of the scaling factor(J + Γ)−1 but we compensate for this
damping effect by adding a feedback termΓx̂ to the inputh.
Each step of this iterative method may also be interpreted as
solving the following convex quadratic optimization problem
based on the objectivef(x) from (2):

x̂(t+1) = argmin
x

{

f(x) + 1
2 (x − x(t))TΓ(x− x(t))

}

(5)

This is basically a regularized version of Newton’s method to
minimize f(x) where we regularize the step-size at each iter-
ation. Typically, this regularization is used to ensure positive-
definiteness of the Hessian matrix when Newton’s method is
used to optimize a non-convex function. We instead use it to
ensure thatJ + Γ is walk-summable, so that the update step
can be computed via Gaussian belief propagation. Intuitively,
this will always move us closer to the correct solution, but
slowly if Γ is large. It is simple to demonstrate the following:



Lemma 2:Let J ≻ 0 andΓ � 0. Then,x̂(t) defined by (4)
converges tox∗ = J−1h for all initializations x̂(0).

Comment.The proof is given for a general (non-diagonal)
Γ � 0. For diagonal matrices, this is equivalent to requiring
Γii ≥ 0 for i = 1, . . . , n.

Proof. First, we note that there is only one possible fixed-
point of the algorithm and this isx∗ = J−1h. Supposēx is
a fixed point:x̄ = (J + Γ)−1(h + Γx̄). Hence,(J + Γ)x̄ =
h+ Γx̄ andJx̄ = h. For non-singularJ , we must then have
x̄ = J−1h. Next, we show that the method converges. Let
e(t) = x̂(t) − x∗ denote the error of thek-th estimate. The
error dynamics are thene(t+1) = (J+Γ)−1Γe(t). Thus,e(t) =
((J+Γ)−1Γ)ke(0) and the error converges to zero if and only
if ρ((J + Γ)−1Γ) < 1, or equivalentlyρ(H) < 1 whereH =
(J + Γ)−1/2Γ(J + Γ)−1/2 � 0 is a symmetric positive semi-
definite matrix. Thus, the eigenvalues ofH are non-negative
and we must show that they are less than one. It is simple to
check that ifλ is an eigenvalue ofH then λ

1−λ is an eigenvalue
of Γ1/2J−1Γ1/2 � 0. This is seen as follows:Hx = λx,
(J+Γ)−1Γy = λy (y = (J+Γ)−1/2x), Γy = λ(J+Γ)y, (1−
λ)Γy = λJy, J−1Γy = λ

1−λy and Γ1/2J−1Γ1/2z = λ
1−λz

(z = Γ1/2y) [note thatλ 6= 1, otherwiseJy = 0 contradicting
J ≻ 0]. Therefore λ

1−λ ≥ 0 and0 ≤ λ < 1. Thenρ(H) < 1,
e(t) → 0 and x̂(t) → x∗ completing the proof.⋄

Now, provided we also require thatJ ′ = J + Γ is walk-
summable, we may computex(t+1) = (J + Γ)−1h(t+1),
where h(t+1) = h + Γx̂(t), by performing Gaussian belief
propagation to solveJ ′x(t+1) = h(t+1). Thus, we obtain a
double-loop method to solveJx = h. The inner-loop performs
GaBP and the outer-loop computes the nexth(t). The overall
procedure converges provided the number of iterations of
GaBP in the inner-loop is made large enough to ensure a good
solution toJ ′x(t+1) = h(t+1). Alternatively, we may compress
this double-loop procedure into a single-loop procedure by
preforming just one iteration of GaBP message-passing per
iteration of the outer loop. Then it may become necessary
to use the following damped update ofh(t) with step size
parameters ∈ (0, 1):

h(t+1) = (1− s)h(t) + s(h+ Γx̂(t))

= h+ Γ((1− s)x̂(t−1) + sx̂(t)) (6)

This single-loop method converges for sufficiently small val-
ues ofs. In practice, we have found good convergence with
s = 1

2 . This single-loop method can be more efficient than the
double-loop method.

V. EXTENSION TO GENERAL L INEAR SYSTEMS

In this section, we efficiently extend the applicability of the
proposed double-loop construction for a general linear system
of equations (possibly over-constrained.) Given a full column
rank matrix J̃ ∈ R

n×k, n ≥ k, and a shift vector̃h, we are
interested in solving the least squares problemminx ||J̃x −
h̃||22. The naive approach for using GaBP would be to take the
information matrixJ̄ , (J̃T J̃), and the shift vector̄h , J̃T h̃.

Note thatJ̄ is positive definite and we can use GaBP to solve
it. The MAP solution is

x = J̄−1h̄ = (J̃T J̃)−1J̃h , (7)

which is the pseudo-inverse solution.
Note, that the above construction has two drawbacks: first,

we need to explicitly computēJ andh̄, and second,̄J may not
be sparse in case the original matrix̃J is sparse. To overcome
this problem, following [9], we construct a new symmetric data
matrix ¯̄J based on the arbitrary rectangular matrixJ̃ ∈ R

n×k

¯̄J ,

(

Ik×k J̃T

J̃ 0n×n

)

∈ R
(k+n)×(k+n) .

Additionally, we define a new hidden variable vectorx̃ ,

{xT , zT}T ∈ R
(k+n), wherex ∈ R

k is the solution vector
and z ∈ R

n is an auxiliary hidden vector, and a new shift
vector ¯̄h , {0T

k×1, h
T }T ∈ R

(k+n).
Lemma 3:Solving ¯̄x = ¯̄J−1¯̄h and taking the firstk entries

is identical to solving Eq. 7.
Proof. Is given in [9].

For applying our double-loop construction on the new
system(¯̄h, ¯̄J) to obtain the solution to Eq. (7), we need to
confirm that the matrix¯̄J is positive definite. (See lemma 2).
To this end, we add a diagonal weighting−γI to the lower
right block:

Ĵ ,

(

Ik×k J̃T

J̃ −γIn×n

)

∈ R
(k+n)×(k+n) .

Then we rescaleĴ to make it unit diagonal (to deal with
the negative sign of the lower right block we use a complex
Gaussian notation as done in [8]). It is clear for a large enough
γ we are left with a walk-summable model, where the rescaled
Ĵ is a hermitian positive definite matrix andρ(|Ĵ − I|) < 1.
Now it is possible to use the double-loop technique to compute
Eq. 7. Note that adding−γI to the lower right block ofĴ is
equivalent to addingγI into Eq. 7:

x = (J̃T J̃ + γI)−1J̃Th (8)

whereγ can be interpreted as a regularization parameter.

VI. EXPERIMENTAL RESULTS

A. Linear detection in linear channels

Consider a discrete-time channel with a real input vec-
tor x = {x1, . . . , xK}T governed by an arbitrary prior
distribution, Px, and a corresponding real output vector
y = {y1, . . . , yK}T = f{xT } ∈ R

K . Here, the functionf{·}
denotes the channel transformation. By definition, linear de-
tection compels the decision rule to be

x̂ = ∆{x∗} = ∆{A−1b} , (9)

where b = y is the K × 1 observation vector and the
K × K matrix A is a positive-definite symmetric matrix
approximating the channel transformation. The vectorx∗ is
the solution (overR) to Ax = b. Estimation is completed
by adjusting the (inverse) matrix-vector product to the input



alphabet, dictated byPx, accomplished by using a proper
clipping function∆{·} (e.g., for binary signaling∆{·} is the
sign function).

For example, linear channels, which appear extensively in
many applications in communication and data storage systems,
are characterized by the linear relation

y = f{x} = Cx+ n ,

where n is a K × 1 additive noise vector andC = STS

is a positive-definite symmetric matrix, often known as the
correlation matrix. TheN×K matrixS describes the physical
channel medium while the vectory corresponds to the output
of a bank of filters matched to the physical channelS.

Assuming linear channels with AWGN with varianceσ2

as the ambient noise, the linear minimum mean-square error
(MMSE) detector can be described by usingA = C + σ2IK ,
known to be optimal when the input distributionPx is Gaus-
sian. In general, linear detection is suboptimal because ofits
deterministic underlying mechanism (i.e., solving a given set
of linear equations), in contrast to other estimation schemes,
such as MAP or maximum likelihood, that emerge from an
optimization criteria.

B. Montanari’s iterative algorithm for computing the MMSE
detector

Recent work by Montanariet al. [8] introduces an efficient
iterative algorithm for computing the MMSE detector. Follow-
ing this work, Bicksonet al.showed that this algorithm is an
instance of the GaBP algorithm [9].

In the current work, we apply our novel technique for
forcing the convergence of Montanari’s algorithm. To remind,
Montanari’s algorithm computes the MMSE solution

x = (C + σ2IK)−1y .

We use the following setting: given a random-spreading
CDMA code with chip sequence lengthn = 256, andk = 64
users. We assume a diagonal AWGN withσ2 = 1. Matlab
code of our implementation is available on [20].

Using the above settings, we have drawn at random random-
spreading CDMA matrix. Typically, the sufficient convergence
conditions for the GaBP algorithm do not hold. For example,
we have drawn at random a randomly-spread CDMA matrix
with ρ(|IK − CN |) = 4.24, where CN is a diagonally-
normalized version of(C + σ2IK). Sinceρ(|IK −CN |) > 1,
the GaBP algorithm for multiuser detection is not guaranteed
to converge.

Figure 1 shows that under the above settings, the GaBP
algorithm indeed diverged. Thex-axis represent iteration num-
ber, while the values of differentxi are plotted using different
colors. This figure depicts well the fluctuating divergence
behavior.

Next, we deployed our proposed construction and used a
diagonal loading to force convergence. Figure 2 shows two
different possible diagonal loadings. Thex-axis shows the
Newton step number, while they-axis shows the residual. We
experimented with two options of diagonal loading. In the
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Fig. 1. Divergence of the GaBP algorithm for the multiuser detection
problem, whenn = 256, k = 64.

first, we forced the matrix to be diagonally-dominant (DD).
In this case, the spectral radiusρ = 0.188. In the second case,
the matrix was not DD, but the spectral radius wasρ = 0.388.
Clearly, the Newton method converges faster when the spectral
radius is larger. In both cases the inner iterations converged in
five steps to an accuracy of10−6.
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Fig. 2. Convergence of the fixed GaBP iteration under the samesettings
(n = 256, k = 64)

The tradeoff between the amount of diagonal weighting to
the total convergence speed is shown in Figures 3,4. A CDMA
multiuser detection problem is shown (k = 128, n = 256).
Convergence threshold for the inner and outer loops where
10−6 and 10−3. The x-axis present the amount of diagonal
weighting normalized such that 1 is a diagonally-dominant
matrix.y-axis represent the number of iterations. As expected,
the outer loop number of iterations until convergence grows
with the increase ofγ. In contrast, the average number of inner
loop iterations per Newton step (Figure 4) tends to decrease
asγ increases. The total number of iterations (inner× outer)
represents the tradeoff between the inner and outer iterations
and has a clear global minima.

VII. C ONCLUSIONS ANDFUTURE WORK

We have presented an iterative method based on Gaussian
belief propagation which always converges to the correct
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global solution, even in models where Gaussian belief prop-
agation alone does not converge. Essentially, this involves
adding a diagonal-loading term to force the model to become
walk-summable such that GaBP converges in this modified
model and adding a feedback mechanism that corrects the
damping caused by the diagonal-loading term.

We believe that there are numerous applications for our
construction in many domains, since GaBP is related to the
solution of linear systems of equations. As an example, we
discuss the case of multiuser detection. We gave a concrete
example, where a state-of-the-art linear iterative algorithm for
detection fails to converge. Using our construction we are
able to force convergence for computing the correct MMSE
detector.

There are a number of directions for further development.
Most importantly, it would be very useful to develop a simple
method to selectΓ so as to optimize the rate of convergence
of the overall method. In the double-loop method, it is seen
that there is a trade-off in deciding how largeΓ should
be. For largerΓ (beyond the threshold of walk-summability)
GaBP converges faster by accelerating the inner-loop of our
algorithm. However, largerΓ will also make the outer-loop
converge more slowly. Hence, we must somehow balance these
competing objectives in choosingΓ. In the single-loop method,
it would be useful to develop an adaptive method to optimize
the step-size parameters. Lastly, it may also prove useful

to exploit a more general class of perturbations beyond the
diagonal-loading method used in this paper.
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