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Abstract

In this paper, we consider quantized decoding of LDPC codethe binary symmetric channel. The binary
message passing algorithms, while allowing extremelytfasiware implementation, are not very attractive from the
perspective of performance. More complex decoders sucheasrtes based on belief propagation exhibit superior
performance but lead to slower decoders. The approachsmp#per is to consider message passing decoders that
have larger message alphabet (thereby providing perfaenanprovement) as well as low complexity (thereby
ensuring fast decoding). We propose a class of messagmgaiscoders whose messages are represented by
two bits. The thresholds for various decoders in this classderived using density evolution. The problem of
correcting a fixed number of errors assumes significance enetinor floor region. For a specific decoder, the

sufficient conditions for correcting all patterns with upttoee errors are derived. By comparing these conditions
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and thresholds to the similar ones when Gallager B decodesdd, we emphasize the advantage of decoding on

a higher number of bits, even if the channel observationilisoste bit.
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I. INTRODUCTION

The performance of various hard decision algorithms forodew low-density parity-check (LDPC)
codes on the binary symmetric channel (BSC), has been studigreat detail. Gallagef [1] proposed
two binary message passing algorithms, namely GallagerdAGadlager B algorithms. A code of length
n is said to be(n,~, p) regular if all the columns and all the rows of the parity-dheuatrix of the
code have exactly and p non-zero values, respectively. Gallager showed [1] thatettexist(n, v, p),

p > v > 3 regular LDPC codes, with column weight and row weightp, for which the bit error
probability approaches zero when we operate below the lbléqprecise definition will be given in
Section[1V). Richardson and Urbanke [2] analyzed ensemblesodes under various message passing
algorithms. They also describensity evolutiona deterministic algorithm to compute thresholds. Bazzi
et al. [3] determined exact thresholds for the Gallager A algonithnd outlined methods to analytically
determine thresholds of more complex decoders. ZyablovPansker [4] were the first to analyze LDPC
codes under the parallel bit flipping algorithm, and showet almost all codes in the regular ensemble
with v > 5 can correct a linear number of errors in the code length.eBiped Spielmarl [5] established
similar results using expander graph based argumentsh&imsand Miller [6] considered expansion
arguments to show that message passing algorithms are apsile of correcting a linear number of
errors in the code length.

In this paper, we consider hard decision decoding of a fixe@C2ode on the BSC. The BSC serves a
useful channel model in applications where there is nho adwesoft information and also where decoding
speed is a major factor. The binary message passing algwitiwhile allowing extremely fast hardware
implementation, are not very attractive from the perspeadf performance. More complex decoders such
as the ones based on belief propagation exhibit superidorp@aince but lead to slower decoders. The
approach in this paper is to consider message passing dedbdéehave larger message alphabet (thereby
providing performance improvement) as well as low compegthereby ensuring fast decoding).

When an LDPC code is decoded by message passing algorithed$raime error rate (FER) curve



has two regions: as the crossover probabilitgecreases, the slope of the FER curve first increases (the
waterfall region), and then sharply decreases. This regidow slope for smalky is called the error floor
region. The problem of correcting a fixed number of errorsias significance in the error floor region,
where the slope of the FER curve is determined by the weigttte@ftmallest error pattern uncorrectable
by the decoder [7].

For iterative decoding over the binary erasure channel (BEGs known that avoiding stopping sets
[8] up to sizet in the Tanner graph [9] of the code guarantees recovery fromless erasures. A similar
result for decoding over the BSC is still unknown. The prablef guaranteed error correction capability
is known to be difficult and in this paper, we present a firsp $tvard such result by investigating the
conditions sufficient to guarantee the correction of thmgers in column-weight-four codes.

Column-weight-four codes are of special importance bezausder a fixed rate constraint (which
implies some fixed ratio of the left and right degrees), thegomance of regular LDPC codes under
iterative decoding typically improves when the right ant egrees decrease. Burshteinl[10] showed
that regular codes with = 4, like codes withy > 5, are capable of correcting a fraction of errors under
the parallel bit flipping algorithm. These results are ppehthe best (up to a constant factor) one can
hope for in the asymptotic sense. The proofs are, howevearstructive and the arguments cannot be
applied for codes of practical length. Chilappaggtral. [L1] have shown that for a given column weight,
the number of variable nodes having expansion required é¥ithflipping algorithm grows exponentially
with the girth of the Tanner graph of the code. However, sigicéh grows only logarithmically with the
code length, construction of high rate codes, with lengththé order of couple of thousands, even with
girth eight is difficult.

Generally, increasing the number of correctable errordesachieved by two methods: (a) by increasing
the strength and complexity of a decoding algorithm or/apdky carefully designing the code, i.e.,
by avoiding certain harmful configurations in the TannerpfiraPowerful decoding algorithms such as

belief propagation, can correct error patterns which artrectable by simpler binary message passing



algorithms like the Gallager A/B algorithm. However, theabysis of such decoders is complicated due
to the statistical dependence of messages in finite graphtsd depends on implementation issues such
as the numerical precision of messages. For Gallager B decadoiding certain structures (known as
trapping sets [12]) in the Tanner graph has shown to guaahte correction of three errors in column-
weight-three codes [13], and this paper is an extensionisfrésult.

In this paper, we apply a combination of the above methodshmm-weight-four codes. Specifically,
we make the following contributions: (a) We propose a cldsa@ssage-passing decoders whose messages
are represented by two bits. We refer to these decoders astbit decoders. (b) For a specific two-bit
decoder, we derive sufficient conditions for a code with Barmgraph of girth six to correct three errors.

The idea of using message alphabets with more than two véduete BSC was first proposed by
Richardson and Urbanke inl[2]. They proposed a decoder wabkuees in the message alphabet. The
messages in such a decoder hence have three possible vethegsshowed that such decoders exhibit
thresholds close to the belief propagation algorithm. Tlasscof two-bit decoders that we propose is a
generalization of their idea, since we consider four pdesialues for the decoder messages.

Since the main focus of the paper is to establish sufficientlitimns for correction of three errors, we
do not optimize the decoders, but instead choose a specdadde Also, for the sake of simplicity we
only consider universal decoders, i.e., decoders whichalalepend on the channel parameier

The rest of the paper is organized as follows. In Section &l gstablish the notation and define a general
class of two-bit decoders. For a specific two-bit decodes,dtifficient conditions for correction of three
errors are derived in Section Ill. In Section IV, we deriveegholds for various decoders. Simulation
results in Section V illustrate that, for a given code, low&R can be achieved by a two-bit decoder

compared to the FER achieved by Gallager B algorithm.

II. THE CLASS OF TWGBIT DECODERS

The Tanner graph of a code, whose parity-check mdtikas sizem x n, is a bipartite graph with a

set ofn variable nodes and a set of check nodes. Each variable node corresponds to a columreof th



parity-check matrix, and each check node corresponds tavaAn edge connects a variable node to a
check node if the corresponding element in the parity-chmekrix is non-zero. A Tanner graph is said
to be~-left regular if all variable nodes have degregp-right regular if all check nodes have degree
and (n,~, p) regular if there arex variable nodes, all variable nodes have degresnd all check nodes
have degree.

Gallager type algorithms for decoding over the BSC run tieedy. Let r be a binaryn-tuple input
to the decoder. In the first half of each iteration, each Weiamode sends a message to its neighboring
check nodes. The outgoing message along an edge dependglmiatoming messages except the one
coming on that edge and possibly the received value. At tldeoéeach iteration, a decision on the value
of each bit is made in terms of all the messages going into ehegponding variable node.

Let w;(v, c) be the message that a variable nadsends to its neighboring check noden the first
half of the ;™ iteration. Analogouslyz;(c,v) denotes the message that a check nodmnds to its
neighboring variable node in the second half of thg’ iteration. Additionally, we definey;(v,:) as the
set of all messages from a variahleto all its neighboring checks at the beginning of tfi& iteration.
We definew;(v,: \c) as the set of all messages that a variable nodends at the beginning of thé"
iteration to all its neighboring checks exceptThe setsw;(c,:) andw;(c,: \v) are similarly defined.

Remark: Since the message alphabet is finite, the message passiage updes can be described
using a lookup table and hence only a finite number of two-bitodlers are possible. We assume two
kinds of symmetry for the considered decoder. First, thel®uoo function that represents any particular
decoder must be symmetric in the sense that swapping altanpust imply a swap of the output, i.e.,
the decoder performance does not depend on the sent codeSemrandly, we consider only symmetric
Boolean functions whose value depends only on the weighthenargument vector, not on positions of
zeros and ones. Such symmetric Boolean functions are hatioioice for regular codes. For irregular
codes, asymmetric Boolean functions may lead to improveddatss, but this problem is out of the scope

of this paper. In this paper, we focus on a class of two-biodecs that can be described using simple



algebraic rules and illustrate with an example how the Ipotable can be constructed from the algebraic
description.

Let the message alphabet be denoted\by- {—S, —W, W, S} where—S denotes a strong “1"-WW
denotes a weak “1"J¥ denotes a weak “0”S denotes a strong “0” and, W < R*. It should be
noted that this representation can be mapped onto the aphah 01,00, 10}, but we use the symbols
throughout for the sake of convenience. The received value {0, 1} on the channel of a variable node
v is mapped toR, € {C,—C},C € R*, as follows:1 — —C and0 — C. It can be seen that each
message is associated with a value and strength (strengitmefssage is an indication of its reliability).

Let \V; (u) denote the set of nodes connected to neddy an edge. Let the quantitiegv, ¢) andt;(v),

j > 1 be defined as follows:

ti(v,c) = Z wij_1(u,v)+ R, , t;(v)= Z wj(u,v) + R, (1)
Additionally, let

sign(w;(c,v)) = H sign(wj(u, c)),
ueN (c)\v

wheresign(a) = 1, if a > 0 andsign(a) = —1, if a <O0.
The message passing update and decision rules can be edfasdollows. The absolute value is

denoted by - |.
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S - sign(w;(c,v)), If Yu e Ni(c)\v,

_ jwj(u, c)] = S
wi(v,¢) =W -sign(R,) , wj(c,v)=

W - sign(w;(c,v)), otherwise
\



Forj > 1:

(

W - sign(t;(v,c)), if 0<|tj(v,c)| < S

wi(v,c) =9 S-sign(t;(v,c)), if [t;(v,c)] > S
W - sign(R,), if tj(v,c)=0
Decision: At the end of;'" iteration, the estimate/ of a variable node is given by
(
0, if tj(U) >0
o= 41 if t(v) <0
Ty, if t;(v) =0

\

The class of two-bit decoders described above can be ietegias a voting scheme in the following
way: every message has two components, namely the value 1D amd the strength (weak or strong).
The sign of the message determines the value, whereas thesvafil” and S denote the number of
votes. The received value is associated witlvotes. To compute the outgoing message on the variable
node side, the total number of votes corresponding tnd 1 are summed. The value of the outgoing
message is the bit with more number of votes and the stresgletermined by the number of votes. In
the case of a tie, the outgoing message is set to the recealad with a weak strength. Talle | gives
an example of message update for a column-weight-four cotlenC = 2, S =2 andW = 1. The
messagev; (v, c) goes out of variable node, and is computed in terms of the three messages going into
v from the neighboring check nodes differentofTable[lll shows the message passing update rules for
(C,S, W) =(2,2,1). Table[l shows the decision rules f6€', S, W) = (2,2, 1).

Different decoders in this class can be obtained by varyiveg walues ofS, W and C'. Hence, we
denote a particular decoder by the triplgt, S, W). Since there are only a finite number of two-bit

decoders, different choices far, S and W might lead to the same decoder. lLtdenote the class of



above algebraically described decoders. Let us consigesahof all possible two-bit decoders which are
symmetric in the senses that the performance is the samayarageword, and whose Boolean functions
do not depend on the location 6fand1 in the entries, but only on the weight. L&tdenote such a set of
rules. Then the following question arises: is this Seéncompassed i@? We do not intend to formally
address this question, but rather give a discussion.

The answer is obviously no. However, among all these rules ionly a few are decoders, in the sense
that if no error occurred, the sent codeword is output. Amtrese latter rules, only a few are further
capable of correcting errors. We define the quality of a ginde by its threshold of convergence,
which is the maximum crossover probability of the BSC for gbhit is possible to achieve an arbitrary
small error probability under iterative decoding, as thdemsord length tends to infinity. Thresholds of
two-bit decoders are further discussed in Sedfioh IV. Ireottd verify that the rules i€ allow to reach
the best possible thresholds achievable with general ttvddzoders, we empirically checked that for
any rule inS\C with better threshold than a rule i with reasonable threshold, there exists a rule in
C which has an at least as good threshold. Hence, we did an stkfescan of possible rules, for two
(dy,d.) regular code ensemble@, 4) and (4, 5), whered, andd. are the connection degrees of variable
and check nodes, respectively. It is observed that for4h&) regular code ensemble, no ruleShC has
better threshold than any rule ¢h For the(3, 4) regular code ensemble, only two rulesSRC have better
threshold than any rule i@, but with a very slight difference0(078 for the former versu$.075 for the
latter). Thus, it is reasonable to assume the ofas$ algebraically described decoders are representative
of the best possible two-bit decoders.

In the next section, we focus on the two-bit decoder with S, W) = (2,2,1), and provide the
conditions on the Tanner graph of the code to correct allepadtwith up to three errors. As shown in

Section1V, this decoder has better thresholds than ondduidders for various code rates.



IIl. GUARANTEED WEIGHT-THREE ERROR CORRECTION

In this section, we first find sufficient conditions on the Tangraph of a code to ensure that the
code can correct up to three errors in the codeword, when ¢hedihg is performed with the two-bit
decoder with(C, S, W) = (2,2,1). As justified in the introduction, we consider only left-tégr codes
with column weight four.

Since the code is linear and the channel and the decoder mmaetyic, we can assume, without loss of
generality, that the all-zero codeword is transmitted dlierBSC. We make this assumption throughout
the paper. Hence, the variable nodes flipped by the chaneekaeived as “1”.

The problem of guaranteed error correction capability mesusignificance in the error floor region.
Roughly speaking, error floor is the abrupt degradation mRER performance in the high SNR regime.
The error floor phenomenon has been attributed to the presgina few harmful configurations in the
Tanner graph of the code, variously known as stopping setst{e BEC), near codewords [14], trapping
sets (for iterative decoding on the BSC and the AWGN) and gs@odewords (for linear programming
decoding)[[15]. While girth optimized codes have been kntovperform well in general, the code length
and the degree distribution place a fundamental limit on libst achievable girth. Hence, additional
constraints on the Tanner graph are required to ensurer leetter floor performance.

The guaranteed error correction capability of column-wweihhree LDPC codes under the Gallager A
algorithm is now completely understood (seel [16].][17] fetadls). For column-weight-four LDPC codes
under the Gallager B algorithm, sufficient conditions to rguéee the correction of all error patterns
with up to three errors have been derived by Chilappagarl]18]. The conditions derived in_[18]
impose constraints on the least number of neighboring chedks for a given set of variable nodes. The
conditions that we derive are similar, but impose fewer tangts on the Tanner graph, thereby resulting
in codes with higher rates for the same length. A short dsionson this issue is provided at the end of
the section.

Let us first give some additional definition and notation.
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Definition 1: The neighborhood of depth one of a nodes denoted by\;(u) and is composed of
all the nodes such that there exists an edge between thess aodu. Similarly, NV;(u) denotes the
neighborhood of deptld of node« and is composed of all the nodes such that there exists a path o
lengthd between these nodes and

Let £ be a set of nodes, say = U;u;, then the depthl neighborhood ofF is Ny (F) = U;Ny(u;).

Now we state the main theorem.

Theorem 1:[Irregular expansion theorem] L&t be the Tanner graph of a column-weight-four LDPC
code with no 4-cycles, satisfying the following expansi@mditions: each variable subset of size 4 has
at least 11 neighbors, each one of size 5 at least 12 neighdsrk one of size 6 at least 14 neighbors,
each one of size 8 at least 16 neighbors and each one of size&tfl8 neighbors. The two-bit decoder,
with C' =2, S =2 andW = 1, can correct up to three errors in the codeword within thteeiions, if
and only if the above conditions are satisfied.

For ease in notation, each expansion condition will be d=hbly “4—11 expansion condition”, “5:12
expansion condition” and so on.

Proof of sufficiency

Remark The proof can be followed more easily by looking at Talilésddl. Let V! = {v], v}, vi}
andC' = N (V). For more easily readable notation, J&§(V')\V! be denoted by? and NV, (V?)\C*

by C2. Also, we say that a variable node is of typg when it hasp connections ta”! andgq connection

to C*. The union of orde¥ neighborhoods of all th@¢ variable nodes is denoted by,(7}).

We consider all the subgraphs induced by three erroneousbli@modes in a graph and prove that, in
each case, the errors are corrected. The possible subgaemishiown in Figurél1l. As shown, five cases
arise. In the reminder, we assume that the all-zero codehasdeen sent. We provide the proof for Case

4 and relegate the proofs for necessity and other cases tapipendix.

Case 4 Consider the error configuration shown in Figlte 1(d). le second half of the first iteration
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we have:
@i(e,:\V') = -W , ceC"\{c} e}
wi(ev) = -W | veVlce{c,ct}
wi(c,v) = W , otherwise

Let us analyze the second iteration. For any V\V'! andc € C*, wy(v, ¢) can never be-S because no
—S messages propagate in the first iteration. So, foraayV\V! andc € C*', wy(v,c) = =W if and
only if @ (: \c,v) = —W, which implies thatv must have four connections t@'. This is not possible

as it would cause a 4-cycle. Hence:

wo(v3,c) = —8 , cefcci}
wo(vy,cy) = —W
wo(vy,cd) = —W
wavg,:\ey) = -W
wa(vg,: \ep) = —W
wo(v,e) = W veN(Ty), c€C*NNI(T3)
wo(vi,cy) = W
wo(va, k) = W
wo(v,e) = W veN(TP), ceC*nNNI(TI)
walv,e) = W veNy(Ty), ceC'NN(TY)
we(v,e) = S , otherwise

In the first half of the third iteration, we have

w3(vi,:\ey) = =W , ws(vi,c)) =W

w3(vi,:\er) = =W , ws(vi,ch) =W
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Lemma 1:All variables in V! are corrected at the end of the third iteration because,fgrvac V1!,
ws(:,v) =W orS.
Proof: The proof is by contradiction. Let us assume that theretesis/ariable in’\ V!, sayv, such that
there exists: € C! andws(v,c) = =W or ws(v,c) = —S. Since it is impossible that twe-S messages
go intov, as it would cause a 4-cycle;(v, c) = —W or ws(v, c) = —S implies thatv receives from its
neighbors different o, at the end of the second iteration, thre®” messages, or oneS and two—W
(see TabléTll).

. If v receives three-1W: As proved previouslyy cannot have four neighbors @@'. Hence,y must be
connected ta? € C? such thatw,(c?,v) = —W. With the above described values of the messages
in the second half of the second iteration, we see thahust be connected toB} variable in1/2,
say z3. Let notice that there cannot be more than tip variables inV2, otherwise six variables
would be connected to only thirteen checks. We are intedeéste which has at least one connection
to C*. v has at most three connections@d. Three cases arise:

— If v has three connections €', thenv must have one neighboring checkdfi, sayc?, which has
at least one neighboring variable, sayin Ny(Ty) different ofv. Then the sefv], vi, v} v, v’}
has only eleven neighbors, therefore contradictingithe 12 expansion condition.

— If v has at two connections t6", thenv has two neighboring checks ii?, say ¢? and c3,
which must have each at least one neighboring variabley’sagdv”, in Ny(T3) different of v.
Then the sefvi, v, v3, v,v',v"} has only twelve neighbors, therefore contradictingéhe 14
expansion condition.

— If v has at only one connection t3', thenv must have three neighboring checksdf, each

of them connected to &; variable. This has been previously proved to be impossible.
« If v receives two—IW messages and oneS message:

— If v has at three connections @', then we end up in the same situation as in the first item,

where theb — 12 expansion condition is not satisfied.
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— If v has at two connections t6"' (one to{c},ct} to receive a—S message, the other one to
propagate a-W or —S message t@''), then we end up in the same situation as in the first

item, where thes — 14 expansion condition is not satisfied.

Hence,vi, vi andv; are corrected at the end of the third iteration.
|

Lemma 2:No variable inV\V'! can propagate-1W at the beginning of the third iteration, except
variables of typely, and 7} variables which have a common check node’thwith a 7} variable.

Proof:

« Consider a variable which has two connections 6. For this variablev to propagate-WW at the
beginning of the third iteration, it is necessary to receiveS or —IW message from one of its two
check nodes irC?, which is the case only if it shares a check nod&’thwith a 7 variable.

« Consider a variable which has exactly one connection ¢¢. For this variablev to propagate-1W/
at the beginning of the third iteration, it is necessary tenee a—S or —IW message from two of
its three check nodes 6%, sayc? andc2, which is the case only if? andc3 are both shared by}
variables, say? andv2. Then the se{v}, v, v, v?, v3, v} is connected to only 12 checks, therefore
contradicting the — 14 expansion condition.

« Consider a variable which has no connection t6". For this variablev to propagate-W at the
beginning of the third iteration, it is necessary to receave S or — I message from three of its
four check nodes 0. This implies the existence of thrél variables, which has already been

proved to be impossible.

Lemma 3:Any variable inV\V! is correctly decoded at the end of the third iteration.
Remark That is to say that any variable #i\1'! is decoded to its received value since it is not received

in error by hypothesisProof: According to Tablé 1ll, no messageS propagates in the third iteration
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since all variables iV receive at least thred” messages at the end of the second iteration, and variables
in V\V! cannot receive more than oneS message. In that case, to be decoded as a one, a bit whose
received value is zero has to receive onlyI’ messages according to the decision rule (see Table II).
That is for anyv € V\V'!, v is wrongly decoded if and only ifo3(:,v) = —TV. Let E denote the set of
T3 variables which share a check @i¥ with a 7} variable.

Firstly, let consider a variable i, sayv, and let us calb’ the 7 variable with whichv shares a check
node inC?. There cannot exist in the graph, at the same timand a7} variable, say”, different of
v'. If such variables would exist;, v/, v” and the variables iv'' would be connected to only 13 check
nodes, therefore contradicting tiie— 14 expansion condition. Secondly, noc V\V! can have more
than two neighboring checks i}, i, ci, ¢k, cd, ci,}, otherwise it would introduce a 4-cycle. Hence, only
de following cases are possible for a variableot in V! to receive four wrong messages:

« If v has no connection t@, two cases arise:

— If v has two connections ifici, ci, ¢}, ¢k, cl, cl,} and two connections t&/; (73 ) N C?2. Thenw,
the variables ini’! and the twoT} variables are connected to only 12 check nodes, therefore
contradicting thes — 14 expansion condition.

— If v has at most one connection {e}, ci, ¢}, ci, ¢d, ¢l }, it must have at least three connections
to N1(73) N C?. However, there cannot exist thrd@ variables as it would imply that the set
made of these three variables aind would be connected to only 13 check nodes, therefore
contradicting thes — 14 expansion condition.

. If v has no connection t&/; (73 ) N C?, two cases arise:

— If v has two connections ific}, ¢}, ci, ¢t, ¢b, cl,} and two connections t&. Let consider one of
the two variables iy, sayv’, the T} variable with whichv’ shares a check node @, v and
the variables inl’!. Then this set of variables is connected only to 13 check s\oierefore
contradicting thes — 14 expansion condition.

— If v has at most one connection {e}, ci, ¢}, ci, cd, ci,}, it must have at least three connections
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to E. This implies the existence of three distiri} variables, which is impossible, as above

mentioned.

Thus, the decoder converges to the valid codeword at the etige dhird iteration.

Note that similar conditions for a column-weight-four LDRGde of girth six to correct any weight-three
error pattern within four iterations, when it is decodedhmMgallager B algorithm, has been found by
Chilappagariet al. [18]. The conditions are that each variable subset of sizas4at least 11 neighbors,
each one of size 5 at least 12 neighbors, each one of size @satlé neighbors, each one of size 7 at
least 16 neighbors and each one of size 8 at least 18 neighlitese conditions are stronger than the
ones of Theorerhll1 in two aspects, on which we wish to have & dgismussion.

On one hand, provided that the respective graph conditimn$uéfilled, the number of required iterations
to correct three errors is lower for thie, 2, 1) two-bit decoder than for the Gallager B decoder. However,
since messages are quantified over two bits for the formepaadone bit for the latter, a lower number of
iterations does not necessarily mean a lower decoding @xityl\We do not provide here further analysis
for comparison of decoding complexity between both kindsletoding, as it would highly depend on
hardware choices.

On the other hand, the higher the rate of the code, the mdiieulliffor the Tanner graph of the code
to satisfy the expansion conditions, since the variableeaddnd to be less and less connected when the
code rate increases. Hence, it is likely that weaker expansinditions, obtained for the two-bit decoder,
make possible the construction of higher rate codes, witiyhtehree error correction capability, than
expansion conditions required by the one-bit Gallager Bodec do. However, determining analytically
the highest achievable rate for a given set of expansionitions is a problem which may be very hard

to solve, and which is out of the scope of this paper.
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IV. ASYMPTOTIC ANALYSIS

This section intends to illustrate the interest of two-bécdders over one-bit decoders, in terms of
decoding thresholds. In particular, we show that the twadbcoder, for which expansion conditions for
weight-three-error correction has been derived, has rb#ttesholds than one-bit decoders, for various

code rates.

A. Density evolution

P{W; =X} = Z K,P{R=r} H P{ij1 — Y}"(Y)P{Wj,l _ _S}n(*S) @)
re{~C,C}n(W)n(S),n(~W): YeM\{-S}
f(Trr)=X
P{W;=X} = > K, [[ Pw,=vy®pw,=-5nc9 3)
n(W),n(S),n(-W): YeM\{-S}

g(n(=S5),n(=W),n(W))=X

Asymptotically in the codeword length, LDPC codes exhibitheeshold phenomenon [19]. In other
words, for a smaller than a certain threshold, it is possible to achiaveadbitrarily small bit error
probability under iterative decoding, as the codeword tlerignds to infinity. On the contrary, for noise
level larger than the threshold, the bit error probabilgyalways larger than a strictly positive constant,
for any codeword length [19], [2].

In [2] and [19], Richardson and Urbanke presented a geneedhad for predicting asymptotic per-
formance of binary LDPC codes. They proved a so-called aunaton theorem([2] according to which
decoding performance over any random graph converges,easadibe length tends to infinity, to the
performance when the graph is cycle-free. Thus, relevaatuation of performance of binary LDPC
codes is possible in the limit case of infinite codeword lesgfThe proposed density-evolution method
consists in following the evolution of probability denssiof messages along the decoding iterations. The

messages in each direction are assumed to be independeitteatidally distributed.

For the class of two-bit decoders, we derive thresholds ffferdnt values ofC' and S. The code
is assumed to be regular with column weightand row degreep. The numbers ofi//, S and —WW
messages are denoted hylV), n(S) and n(—W), respectively. In the sets of equations (2) apd (3),
n(W) e [0,....d,n(S) €[0,....,d—=n(W)], n(=W) € [0,...,d—n(W)—n(S)], whered is eithery or
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p, depending on the context. The number-daf messages(—S) is hencel—1—n(W)—n(S)—n(-W),

with d = v or p depending on the context. Since the messages of the grapacimdirection, are assumed
to be independent and identically distributétl; (resp.W ;) denote the random variables distributed as
w;(v, c) (resp.w;(c, v)) for any pair(v, c) of connected variable and check nod&sdenotes an element
of the message alphabgf. Also, R € {—C,C} denotes the random variable which corresponds to the

channem messages. The density evolution equations ane lgjvéhe sets of equations| (2) and (3), where:
T = > n)Y
_ (=1 [(r=1=nW)\ (v=1=n(W)—-n(S)
= (on) (e )CTEST)
=1\ [(p=1=nW)\ [(p—1—=n(W)—-n(S)
5 = () s )CT )
The two functionsf and g are defined as follows:

7> - M

W-sign(T+r), f0<|T+rl<S

f(r,r) = S sign(T + ), if |”T+rl>S

W - sign(r), if T+r=0

W, if ng+ng > 0,n2+n; =0 mod (2)

S, if ng+mn2 =0,n2+n; =0 mod (2)

—W, if ng+mns > 0,n2+n; =1 mod (2)

=S, if ng+ny=0,n2+n; =1mod (2)



18

B. Thresholds of two-bit decoders

Table[IM encompasses thresholds for various code parasnater decoding rules. Thresholds are given
in probability of crossover on the BSC. Algorithm E is pretehin [2]. For the two-bit decoders, the set
(C,S,W) is given. When the threshold is belov®01, x is put in the box. The code rate is defined by
1= Table[1M shows that the specific two-bit decoder with pararsdC, S, W) = (2,2, 1), has better
thresholds than one-bit decoders Gallager A and B algosthiowever, this decoder has not the best
threshold among the two-bit decoders. Indeed, we tried koege a trade-off between good thresholds
and not too strong conditions for three error correctionveheless, the method of analysis applied in
the proof of the previous section is general, and can be egppdi a variety of decoders to obtain similar
results.

Remark:Algorithm E and the presented dynamic two-bit decoder atp@ the other ones, especially
for code rates} (i.e., p = 16) andg (i.e., p = 32). Algorithm E, described in]2], is the aforementioned
decoder with erasures in the message alphabet. At eachiateréthe weight affected to the channel
observation (equivalent t@’ in the two-bit decoder) is optimized![2]. The dynamic twa-tecoder is
based on the same idea: f6r= 2 andW = 1, C is chosen at each iteration. The better thresholds of the
presented dynamic two-bit decoder over Algorithm E indisahat it is interesting to consider decoding

on a higher number of bits, even if the channel observatiatilisone bit, to get better thresholds.

V. NUMERICAL RESULTS

We have formally proved the capability of weight-threesercorrection of an LDPC code satisfying
conditions of Theorerh]1 and decoded with the two-bit decaddr (C, S, W) = (2,2,1). To compare
this two-bit decoder with another one-bit decoder, namedyladger B, we have plotted FER in Figure 2.
We consider a MacKay code, with column weight four, 1998 atalg nodes and 999 check nodes. The
code rate i9).89. This code has been decoded with Gallager B and the abovéitvaecoder. Figurél?2
shows that the two-bit decoder has lower FER than Gallageeddkr. In particular, we observe better

waterfall performance using the two-bit decoder, and alddli# gain in the error-floor.
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VI. CONCLUSION

In this paper, we proposed a class of two-bit decoders. We faused on a specific two-bit decoder
for which we have derived necessary and sufficient condition a code with Tanner graph of girth six
to correct any three errors within three iterations. Thesaditions are weaker than the conditions for a
code to correct three errors when it is decoded with Gall&atgorithm, which uses only one bit. We
have computed thresholds for various two-bit decoders shodn that the decoder for which the previous
conditions has been derived has better thresholds thatibaecoders, like Gallager A and B. Finally,
we have compared the frame error rate performance of thebtindecoder and Gallager B algorithm for
decoding a column-weight-four code with high rate. The tviodecoder performs better than Gallager
B both in the waterfall and in the error-floor region. Thisidtrates that it is interesting to use two bits
rather than one bit for decoding.

Future work includes extending the analysis to derive gafiicconditions to guarantee correction of
higher number of errors, as well as investigating on gerexjalession of conditions in terms of the number
of quantization bits for the messages. While the focus ofpiduger was on left-regular LDPC codes, the
general methodology and the approach presented in the papeapplicable to irregular LDPC codes
also. The analysis in the case of irregular codes will be ncoraplex, but given that carefully designed
irregular LDPC codes outperform their regular countepdhte study of guaranteed error correction under

different decoders for such codes is a problem worth ingastig.
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APPENDIX

In this Appendix, we provide the proofs for Cases 1, 3, 4 and Svall as prove the necessity of the
conditions stated in Theorem 1.

Case 1 Consider the error configuration shown in Figlie 1(a). lis tase, variables 1, 2 and 3 send
incorrect—IW messages to their neighbors in the first iteration. Theyived® messages from all their
neighboring check nodes, they are therefore decoded tigrigcthe end of first iteration. Error occurs
only if there exists a variable node with correct receivelli®dhat receives four- 1 messages from its
neighboring check nodes (see Table Il). However, sincealtas 1, 2 and 3 are the only variables that
send incorrect messages in the first iteration, it is imfmsgo encounter such a variable node without
introducing a 4-cycle. Hence, this configuration converngethe correct codeword at the end of the first

iteration.

Case 2 Consider the error configuration shown in Figlte 1(b).

In the second half of the first iteration, we have:

wl(ciav) = _Wa vE {’ULU%}
wi(e,v) = W, veV? cell\c
wi(c,v) = W, otherwise

In the first half of the second iteration, according to Tdllllmb —S messages can be sent by variables
neither inV\V'! because ne-S message propagate in the first iteration, nor variablég'ibecause they

all receive at least thred” messages:

wa(v,e) = =W, wve{vl,v}, ceCl\cl
wo(v,cl) = W, wve{v],vi}

wa(vde) = W, ceC?

wa(v,e) = =W, veN(T]), ceC?

wo(v,e) = W, veN(TE), ceC?
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wa(v,e) = W, veN(Ty), ceC!

wa(v,e) = S, otherwise

In the second half of the second iteration, the messageg gainof certain check nodes depend on the
connection degree of these check nodes. However, we do mndtthat the proof be dependent on the
degree of connection of check nodes. Hence, we considereitfiotlowing the “worst” case, that is the
configuration where each message has the smallest posaibke ¥n that case, the messages along the

edges in the second half of the second iteration are such that

walc,v) = W, veVinMNo({v],v3}), c€Cl\ey
wolcy,:) = W

wale,: \v) = W, veN(TY), ce€C*NN(T3)
walc,v) = W, veV? ce{c,chch,ctgl
wale,r) = W, ceC'nN(Ty)
walc,:) = W, ceC*nNN(T?)
wa(c,v) = S, otherwise

At the end of the second iteration, allc V! receive all correct messagés or S. According to Table
[ all variables inV'! are hence corrected at the end of the second iteration. Fiables in1V2, since
no —S messages propagate in the second half of the second iterat@see on Table]ll that variables
in V2, which are not received in error, are decoded as 1 if and drtlyely receive four—1W messages.
The following lemma prove that this is not possible.

Lemma 4:No variable node receives four incorreet’ messages at the end of second iteration.
Proof: Letv be such a variable. Then the four neighboring checksrofist belong td ¢{, c3, c3, 3, ¢§, 2 }U
(C? N N1(T4)). Note that only two neighbors af can belong td{ci, ¢}, ci, ¢k, ¢t c1} without introducing
a 4-cycle. This implies that there are only three cases:

. v has two neighboring checks, sayandc3, in C*NN; (T3 ), and two checks ifc], c3, c3, ¢, cg, b}

Let v? and v be theT; variables connected to? and c3. It results that the set of variables
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{vi,vi, v? v3 v} is connected to onlyt1 checks, which contradicts the-512 expansion condition.
This case is hence not possible.

. v has one neighbor idc}, c3, c3, ¢t ¢, ¢} and three neighbors 62 NN, (T3), sayci, ¢3 and c3.
Let vZ, v andvi be theT} variables connected tef, c3 andcl. It results that the set of variables
{vi,vd, v} v3 v2 v} is connected to only3 checks, which contradicts the-614 expansion condition.
This case is hence not possible.

. v has four neighbors irC? N N, (T}), say ¢?, ¢3, ¢2 and 3. Let v?, v3, v2 and v; be the T}
variables connected tg, c3, c; andc}. It results that the set of variablés!, vi, v, v? v3 vZ vZ v}
is connected to only5 checks, which contradicts the8L6 expansion condition. This case is hence

not possible.

Hence, the decoder converges at the end of the secondaterati

Case 3 Consider the error configuration shown in Figlde 1(c). le first iteration, the variables
1, 2 and 3 send incorrect|¥V messages to their neighboring checks. At the end of the feshtion,
they receive correct messages from all their neighborireck®i There is no variable that receives four

incorrect messages (as it will cause a four-cycle). Hermsedecoder successfully corrects the three errors.

Case 5 Consider the error configuration shown in Figlte 1(e).
Neither T3 nor T} variable can exist i/ because it would contradict the— 11 expansion condition.

At the end of the first iteration, we have:

wi(e, V) = W, ceC"\{c], ci,ct}
wl(ca Vl) = W, ce {C},Ci,c%}
wi(e,:\VY) = W, ce{eeer}

wl(ca: \Vl) = —VV, ce Cl\{c%ac}bc%}
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wi(c,:) = W, otherwise
Since a variable id/? has at most two connections @', these variables sensl messages to check

nodes inC! at the begining of the second iteration. Hence:

wo(v,c) =W, veV' ce{cl, ci ch

we(v,c) =8, veVl celC\{d,c],ci}
wo(v,e) =8, veV? cel!
wo(v,e) =W, veNy(TF), ceC\C*

wa(v,¢) =S, otherwise

Hence, at the end of the second iteration, we have:

wa(c,v) = —-W, wve Vi, ce {ci,c}l,c%}
wa(c,v) = S, wveVl, CGCl\{C%,C}l,C%}
walc,v) = =8, veV\V' ceC'\{c],ci ct}
walc,v) = W, veV\VY ce{cd,cich}
walc,:) = W, ce Ni(TH\C!

wa(c,:) = S, otherwise

Hence, at the end of the second iteration, a variablg3mreceives onlyiv or S messages from check
nodes inC?. It therefore send$ messages to check nodesdn at the begining of the third iteration.
As it is used in the sequel, let us mention more explicitlyt thapair (v, ¢) € Ny(T%) x C? is such that
N (N1 (v)NCH\{c}) NNy(T3) = {v} means that the variableis in NV, (73) and the check node which
is (N1 (v) N C?)\{c} has no other neighbor i, (73) exceptv. As well, a pair(v,c) € No(T3) x C? is
such that((N; (N (v) N C?)\{c})) N No(T$))\{v} # 0 means that the variableis in Ny(73) and the
check node which igN;(v) N C?)\{c} has another neighbor iN,(7%) different of v. We thus have at

the begining of the third iteration:
wy(v,e) = W, veVl ce{d,ci,ct}
wi(v,e) = =S, veVl ceC\{c,cl,cl}

wi(v,e) = S, weV? cel!
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walv,0) = W, (v,¢) € No(T3) x C?

such that\; (Vi (v) N C2)\{c}) NNo(T2) = {v}

wi(v,e) = =W, (v,¢) € No(T§) x C?

such that( (N (W1 (v) N C*)\{e})) N NG(T3))\{v} # 0

ws(v,¢) =S, otherwise
It comes that at the end of the third iteration, for variable$’! we have:

wy(c,v) = W, veV', ce{e,d,er}
wo(c,v) = S, veVlh CEOl\{C},C}l,C%}

(4)

Hence, according to Tabl€ Il, all the variable node¥inare corrected. For messages going into variables

not in V!, we have:

ws(e,v) = =S, veV? ceC\{e,ci, )
ws(e,v) = W, veV? celd,cycr}
ws(c,v) = W, (v,c) such thatc € C?

and there is an even number @fin A (c) N No(T3)\{v} such that

(VL(WNL(0) N C*)\{e}) NN (T)\{v'} # 0

w3(c,v) = —W, (v,c) such thatc € C?
and there is an odd number of in NV (c) N Ny(T5)\{v} such that

(VM) N C2N\{e}) NN (T3))\{v'} # 0

ws(c,v) =S, otherwise

Lemma 5:There is no decision error on all variables notlin at the end of the third iteration.
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Proof: According to Tabld 1l, we have to show that the following faituations can not happen:

« Any variable not inV'! cannot receive more than threeS messages. Indeed, it would imply that
the variable has at least three connectiongtq{c;, ¢!, cl}, which would contradict thet — 11
expansion condition.

o If any variable, sayv, not in V! would receive two—S messages and at least onél mes-
sage, it would imply that it has two connections@\{ci, ¢}, c}} and one connection to a check
node ¢ such thatc € C? and there is an odd number of in N;(c) N Ny(T)\{v} such that
(MM ) NCH\{e})) NN (TE))\{v'} # 0. Letv” denote the variable of such a non-empty set.
Then {v{,vi, v} v,v',v"} is connected to only 13 check nodes, contradictingéthe 14 expansion
condition.

« For sake of clarity, let us now use figures. Without loss ofegality, Figure$ B(a) and 3(b) illustrate
the configurations when the variablereceives, at the end of the third iteration, oné message
and three—W messages, and when it receives on€ message, two-1W messages and oné’
message, respectively. These configurations are not p@ssilihey contradict theé — 18 expansion
condition.

« Without loss of generality, Figuid 3(c) illustrates the figarations when the variable receives four
—IW messages at the end of the third iteration. This configuragonot possible as it contradicts

the 8 — 16 expansion condition.
[

Hence, the decoder converges to the valid codeword at mtys and of the third iteration. This completes

the Proof.

Proof of necessity

Necessity of the4 — 11 condition
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Consider the subgraph shown in Figlie 3(d). In this case4 thell condition is not satisfied. It is easy
to see that, even though we assume that ghignessages are propagated from the check nodes which
have an odd degree in the subgraph, to the four variablesgrtbes are not corrected at the end of the
third iteration.

Necessity of theb — 12 condition
As mentioned in[[18], there exists no graph of girth six whgztisfies thel — 11 condition but does

not satisfy theb — 12 condition.

Necessity of the6 — 14 condition
Consider the graph shown in Figure 3(e). This graph satities — 11 and5 — 12 conditions but not
the 6 — 14 condition. This graph correspond to the analysis perforatgalve for Case 5. With message
values described in this above analysis, it is easy to seehbavariables ini’? are wrongly decided to
1 at the end of the third iteration. Hence, in order to guamrthe correction of three errors in three

iterations, thes — 14 condition must be satisfied.

Necessity of the8 — 16 condition
Consider the graph shown in Figure 3(c). This graph satisiies — 11, 5 — 12 and6 — 14 conditions
but not the8 — 16 condition. With message values described in the above sisabf Case 5, it is easy
to see that is wrongly decided to 1 at the end of the third iteration. Henia order to guarantee the
correction of three errors in three iterations, the> 16 condition must be satisfied.

Necessity of the9 — 18 condition
Consider the graph shown in Figure 3(b). This graph satisfied — 11, 5 — 12, 6 — 14 and8 — 16
conditions but not th® — 18. With message values described in the above analysis of &;ases easy
to see that the variables #i? are wrongly decided to 1 at the end of the third iteration. ¢¢erin order

to guarantee the correction of three errors in three i@matithe9 — 18 condition must be satisfied.



27

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” PhD sigtation, MIT press, Cambridge, Massachusetts, 1963.

[2] T. J. Richardson and R. L. Urbanke, “The capacity of loansity parity-check codes under message-passing de¢otlHeE Trans.
on Inform. Theoryvol. 47, no. 2, pp. 599-618, Feb. 2001.

[3] L.Bazzi, T. Richardson, and R. Urbanke, “Exact thredsand optimal codes for the binary-symmetric channel arith@a’s decoding
algorithm A,” IEEE Trans. on Inform. Theoryol. 50, no. 9, pp. 2010-2021, Sep. 2004.

[4] V. Zyablov and M. S. Pinsker, “Estimation of the errorrction complexity for Gallager low-density code®toblems of Inform.
Transmissionvol. 11, no. 1, pp. 18-28, 1976.

[5] M. Sipser and D. Spielman, “Expander codd&EE Trans. on Inform. Theoryol. 42, no. 6, pp. 1710-1722, Nov. 1996.

[6] D. Burshtein and G. Miller, “Expander graph arguments fieessage passing algorithm$ZEE Trans. on Inform. Theoryol. 47,
no. 2, pp. 782-790, Feb. 2001.

[7]1 M.lvkovic, S. K. Chilappagari, and B. Vasic, “Eliminaiyy trapping sets in low-density parity check codes usingn€agraph lifting,”
IEEE Trans. on Inform. Theorwol. 54, no. 8, pp. 3763-3768, Aug. 2008.

[8] C. Di, D. Proietti, T. Richardson, E. Teletar, and R. Urke, “Finite length analysis of low-density parity-checkdes,” IEEE
Tansactions on Inform. Thearyol. 48, no. 6, pp. 1570-1579, Jun. 2002.

[9] R. M. Tanner, “A recursive approach to low complexity esd IEEE Trans. on Inform. Theoryol. 27, no. 5, pp. 533-547, Sep. 1981.

[10] D. Burshtein, “On the error correction of regular LDP@des using the flipping algorithm|EEE Trans. on Inform. Theoryol. 54,
no. 2, pp. 517-530, Feh. 2008.

[11] S. K. Chilappagari, D. V. Nguyen, B. Vasic, and M. W. Mellin, “On guaranteed error correction capability of LDP@des,” in
Proceedings of IEEE International Symp. on Inform. Thedigronto, Canada, Jul. 2008.

[12] T. J. Richardson, “Error floors of LDPC codes,” Rroceedings of 41st Annual Allerton Conf. on Comm., Cordarad Computing
2003, pp. 1426-1435

[13] S. K. Chilappagari, A. R. Krishnan, and B. Vasic, “LDPGdes which can correct three errors under iterative deggddim Proceedings
of IEEE Inform. Theory Workshopay, 2008.

[14] D. J. C. MacKay and M. J. Postol, “Weaknesses of Margualie Ramanujan—Margulis low-density parity-check codes,”
Proceedings of MFCSIT2002, Galwager. Electronic Notes in Theoretical Computer Sciencé, Y. Elsevier, 2003. [Online].
Available:|http://www.inference.phy.cam.ac.uk/madigtracts/margulis.html

[15] J. Feldman, M. Wainwright, and D. Karger, “Using linganogramming to decode binary linear codd&EE Trans. Inform. Theory
vol. 51, no. 3, pp. 954-972, March 2005.

[16] S. K. Chilappagari and B. Vasic, “Error correction chiity of column-weight-three LDPC codes/EEE Trans. Inform. Theory

accepted for publication. [Online]. Available: http:Xarorg/abs/0710.3427


http://www.inference.phy.cam.ac.uk/mackay/abstracts/margulis.html
http://arxiv.org/abs/0710.3427

28

[17] S. K. Chilappagari, D. V. Nguyen, B. Vasic, and M. W. Mallin, “Error correction capability of column-weight-tbe LDPC codes:
Part I1,” July 2008, submitted t¢tEEE Trans. Inform. Theory{Online]. Available: http://arxiv.org/abs/0807.3582

[18] S. K. Chilappagari, A. R. Krishnan, B. Vasic, and M. W. idallin, “Low-density parity-check codes which can cotréwee errors
under iterative decoding,” 2008, submittedlEEEE Trans. Inform. Theory{Online]. Available: http://arxiv.org/abs/0810.1105

[19] T. Richardson, A. Shokrollahi, and R. Urbanke, “Desigihcapacity-approaching irregular LDPC codeHZEE Trans. on Inform.

Theory vol. 47, no. 2, pp. 619-637, Feb. 2001.


http://arxiv.org/abs/0807.3582
http://arxiv.org/abs/0810.1105

FIGURES

1
U3
11

11
€ C10 “11 C12

(a) Case 1

1 1.1
€1 G €G3 ¢ C5 Cg C7 Cg Cg Cpp

(c) Case 3

1
V2

1.1 1 1

C5 C¢ C7 Cg

29

1 1 1
U1 U2 U3

1.1 .1 1 1 .1 1 1 1 1.1
€1 G €3 ¢ C5 Cg C7 Cg Cg Co ‘11
(b) Case 2
1 1 1
v1 U2 U3
S S NS B RS S N | 11
€1 G €3 ¢ C5 Cg C7 Cg Cg9 Cpp
(d) Case 4

1 1 1
1 V2 U3
R e T T T U O
€1 G €3 ¢4 C5 Cg C7 Cg O

(e) Case 5

Fig. 1. All possible subgraphs subtended by three erroneariable nodes.



FIGURES

10

100

10

10"

FER

10°

10°

100

100

—e—Gallager B
—e— Two-hit decoder with (C,S,W)=(2,2,1)

10”

Fig. 2. FER versus the crossover probabilityfor regular column-weight-four MacKay code

isn = 1998.

30

. The code raté.89 and the code length



FIGURES

Fig. 3.

(e)

31



TABLES

EXAMPLES OF MESSAGE UPDATE FOR A COLUMNWEIGHT-FOUR CODE WHENC' =2, S =2AND W = 1.

TABLE |
# incoming —S messages|| 2 110 1
# incoming —W messageg| O 1] 2 0
# incoming W messages|| 1 0|0 1
# incoming S messages 0 1)1 1
R, -c|cCc|C| -C
wj(v,c) -S|\ WS |-W
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TABLE I
DECISION RULE NUMBER OF MESSAGES-S, —W, W AND S GOING INTO A VARIABLE , WHEN THIS VARIABLE NODE IS DECODED ASQO
(RESP. 1) WHEN THE CHANNEL OBSERVATION IS1 (RESP. 0). THE CODE HAS COLUMN WEIGHT FOUR AND THE TWGBIT DECODER HAS
(C,8,W) = (2,2,1).

#H#-S | H#F-W | #W | #S

mess. mess. mess. | mess.

o
o
o
'

Received value 1
Decoded as 0

Received value Q
Decoded as 1

W WWNONDN - FEOFRFRFRF OO OO
O OO NFRFWNROORFRFREFEFOOOO
OO OO OO HOIFONH O WN -
OO OO OOOINWHFNWOFNW




TABLES

TABLE 1l

UPDATE RULE: NUMBER OF MESSAGES—S, —WW, W AND S GOING INTO THE VARIABLE NODE v LEADING TO DIFFERENT VALUES OF
THE MESSAGEw; (v, ¢) GOING OUT OFv, WHEN THE RECEIVED VALUE IS7,,. THE CODE HAS COLUMN WEIGHT FOUR AND THE TWGBIT
DECODER HAS(C, S, W) = (2,2,1).

H-S|H#-W | H#W | #S

mess. mess. mess. | mess.
Ty =1 0 0 2 1
wj(v,e) =W 0 0 3 0
0 1 0 2
Ty =1 0 0 0 3
wj(v,c) =S 0 0 1 2
Ty =0 2 1 0 0
wj(v,c) = =8 3 0 0 0
0 3 0 0
Ty =0 1 2 0 0
wji(v,e) = -W 2 0 1 0
0 2 0 1
0 2 1 0
0 3 0 0
1 0 2 0
1 1 0 1
Ty =1 1 1 1 0
wj(v,c) = =8 1 2 0 0
2 0 0 1
2 0 1 0
2 1 0 0
3 0 0 0
0 1 1 1
Ty =1 0 1 2 0
wj(v,¢) = W 1 0 0 2
1 0 1 1
0 2 1 0
Ty =0 1 1 0 1
wj(v,e) =W 1 1 1 0
2 0 0 1
0 0 0 3
0 0 1 2
0 0 2 1
0 0 3 0
o =0 0 1 0 2
wj(v,e) =8 0 1 1 1
0 1 2 0
0 2 0 1
1 0 0 2
1 0 1 1
1 0 2 0
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TABLES

THRESHOLDS OF DIFFERENT DECODERS FOR COLUMMEIGHT-FOUR CODES WITH ROW DEGREP.

TABLE IV

o | Rate A B E 11D
8 0.5 0.0474 0.0516 0.0583 0.0467
16 | 0.75 0.0175 0.0175 0.0240 0.0175
32 | 0.875 0.00585 0.00585 | 0.00935 | 0.00585
p | Rate (1,2, 1) 1,3,1) | (1,4 1) | 2,1,1)
8 0.5 0.0509 0.0552 0.0552 0.0467
16 0.75 0.0165 0.0175 0.0175 0.0175
32 | 0.875 0.00562 0.00486 | 0.00486 | 0.00585
P Rate (2,2,1) (2,3,1) 2,4,1) 3,2,1)
8 0.5 0.0567 0.0532 0.0552 0.0467
16 | 0.75 0.0177 0.0168 0.0175 0.0218
32 | 0.875 0.00587 0.00568 | 0.00486 | 0.00921
o | Rate 331 @41 | 431 | 441D
8 0.5 0.0657 0.0620 0.0486 0.0657
16 0.75 0.0222 0.0203 0.0227 0.0222
32 | 0.875 0.00755 0.00691 | 0.00871 | 0.00755
P Rate | Dynamic two-bit
decoder with
S=2andW =1

8 0.5 0.0638

16 0.75 0.0249

32 | 0.875 0.00953
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