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Abstract

In this paper, we consider quantized decoding of LDPC codes on the binary symmetric channel. The binary

message passing algorithms, while allowing extremely fasthardware implementation, are not very attractive from the

perspective of performance. More complex decoders such as the ones based on belief propagation exhibit superior

performance but lead to slower decoders. The approach in this paper is to consider message passing decoders that

have larger message alphabet (thereby providing performance improvement) as well as low complexity (thereby

ensuring fast decoding). We propose a class of message-passing decoders whose messages are represented by

two bits. The thresholds for various decoders in this class are derived using density evolution. The problem of

correcting a fixed number of errors assumes significance in the error floor region. For a specific decoder, the

sufficient conditions for correcting all patterns with up tothree errors are derived. By comparing these conditions

and thresholds to the similar ones when Gallager B decoder isused, we emphasize the advantage of decoding on

a higher number of bits, even if the channel observation is still one bit.
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I. INTRODUCTION

The performance of various hard decision algorithms for decoding low-density parity-check (LDPC)

codes on the binary symmetric channel (BSC), has been studied in great detail. Gallager [1] proposed

two binary message passing algorithms, namely Gallager A and Gallager B algorithms. A code of length

n is said to be(n, γ, ρ) regular if all the columns and all the rows of the parity-check matrix of the

code have exactlyγ and ρ non-zero values, respectively. Gallager showed [1] that there exist(n, γ, ρ),

ρ > γ ≥ 3 regular LDPC codes, with column weightγ and row weightρ, for which the bit error

probability approaches zero when we operate below the threshold (precise definition will be given in

Section IV). Richardson and Urbanke [2] analyzed ensemblesof codes under various message passing

algorithms. They also describeddensity evolution, a deterministic algorithm to compute thresholds. Bazzi

et al. [3] determined exact thresholds for the Gallager A algorithm and outlined methods to analytically

determine thresholds of more complex decoders. Zyablov andPinsker [4] were the first to analyze LDPC

codes under the parallel bit flipping algorithm, and showed that almost all codes in the regular ensemble

with γ ≥ 5 can correct a linear number of errors in the code length. Sipser and Spielman [5] established

similar results using expander graph based arguments. Burshtein and Miller [6] considered expansion

arguments to show that message passing algorithms are also capable of correcting a linear number of

errors in the code length.

In this paper, we consider hard decision decoding of a fixed LDPC code on the BSC. The BSC serves a

useful channel model in applications where there is no access to soft information and also where decoding

speed is a major factor. The binary message passing algorithms, while allowing extremely fast hardware

implementation, are not very attractive from the perspective of performance. More complex decoders such

as the ones based on belief propagation exhibit superior performance but lead to slower decoders. The

approach in this paper is to consider message passing decoders that have larger message alphabet (thereby

providing performance improvement) as well as low complexity (thereby ensuring fast decoding).

When an LDPC code is decoded by message passing algorithms, the frame error rate (FER) curve
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has two regions: as the crossover probabilityα decreases, the slope of the FER curve first increases (the

waterfall region), and then sharply decreases. This regionof low slope for smallα is called the error floor

region. The problem of correcting a fixed number of errors assumes significance in the error floor region,

where the slope of the FER curve is determined by the weight ofthe smallest error pattern uncorrectable

by the decoder [7].

For iterative decoding over the binary erasure channel (BEC), it is known that avoiding stopping sets

[8] up to sizet in the Tanner graph [9] of the code guarantees recovery fromt or less erasures. A similar

result for decoding over the BSC is still unknown. The problem of guaranteed error correction capability

is known to be difficult and in this paper, we present a first step toward such result by investigating the

conditions sufficient to guarantee the correction of three errors in column-weight-four codes.

Column-weight-four codes are of special importance because, under a fixed rate constraint (which

implies some fixed ratio of the left and right degrees), the performance of regular LDPC codes under

iterative decoding typically improves when the right and left degrees decrease. Burshtein [10] showed

that regular codes withγ = 4, like codes withγ ≥ 5, are capable of correcting a fraction of errors under

the parallel bit flipping algorithm. These results are perhaps the best (up to a constant factor) one can

hope for in the asymptotic sense. The proofs are, however, not constructive and the arguments cannot be

applied for codes of practical length. Chilappagariet al. [11] have shown that for a given column weight,

the number of variable nodes having expansion required by the bit flipping algorithm grows exponentially

with the girth of the Tanner graph of the code. However, sincegirth grows only logarithmically with the

code length, construction of high rate codes, with lengths in the order of couple of thousands, even with

girth eight is difficult.

Generally, increasing the number of correctable errors canbe achieved by two methods: (a) by increasing

the strength and complexity of a decoding algorithm or/and (b) by carefully designing the code, i.e.,

by avoiding certain harmful configurations in the Tanner graph. Powerful decoding algorithms such as

belief propagation, can correct error patterns which are uncorrectable by simpler binary message passing
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algorithms like the Gallager A/B algorithm. However, the analysis of such decoders is complicated due

to the statistical dependence of messages in finite graphs. It also depends on implementation issues such

as the numerical precision of messages. For Gallager B decoder, avoiding certain structures (known as

trapping sets [12]) in the Tanner graph has shown to guarantee the correction of three errors in column-

weight-three codes [13], and this paper is an extension of this result.

In this paper, we apply a combination of the above methods to column-weight-four codes. Specifically,

we make the following contributions: (a) We propose a class of message-passing decoders whose messages

are represented by two bits. We refer to these decoders as to two-bit decoders. (b) For a specific two-bit

decoder, we derive sufficient conditions for a code with Tanner graph of girth six to correct three errors.

The idea of using message alphabets with more than two valuesfor the BSC was first proposed by

Richardson and Urbanke in [2]. They proposed a decoder with erasures in the message alphabet. The

messages in such a decoder hence have three possible values.They showed that such decoders exhibit

thresholds close to the belief propagation algorithm. The class of two-bit decoders that we propose is a

generalization of their idea, since we consider four possible values for the decoder messages.

Since the main focus of the paper is to establish sufficient conditions for correction of three errors, we

do not optimize the decoders, but instead choose a specific decoder. Also, for the sake of simplicity we

only consider universal decoders, i.e., decoders which do not depend on the channel parameterα.

The rest of the paper is organized as follows. In Section II, we establish the notation and define a general

class of two-bit decoders. For a specific two-bit decoder, the sufficient conditions for correction of three

errors are derived in Section III. In Section IV, we derive thresholds for various decoders. Simulation

results in Section V illustrate that, for a given code, lowerFER can be achieved by a two-bit decoder

compared to the FER achieved by Gallager B algorithm.

II. THE CLASS OF TWO-BIT DECODERS

The Tanner graph of a code, whose parity-check matrixH has sizem× n, is a bipartite graph with a

set ofn variable nodes and a set ofm check nodes. Each variable node corresponds to a column of the
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parity-check matrix, and each check node corresponds to a row. An edge connects a variable node to a

check node if the corresponding element in the parity-checkmatrix is non-zero. A Tanner graph is said

to beγ-left regular if all variable nodes have degreeγ, ρ-right regular if all check nodes have degreeρ,

and (n, γ, ρ) regular if there aren variable nodes, all variable nodes have degreeγ and all check nodes

have degreeρ.

Gallager type algorithms for decoding over the BSC run iteratively. Let r be a binaryn-tuple input

to the decoder. In the first half of each iteration, each variable node sends a message to its neighboring

check nodes. The outgoing message along an edge depends on all the incoming messages except the one

coming on that edge and possibly the received value. At the end of each iteration, a decision on the value

of each bit is made in terms of all the messages going into the corresponding variable node.

Let ωj(v, c) be the message that a variable nodev sends to its neighboring check nodec in the first

half of the jth iteration. Analogously,̟ j(c, v) denotes the message that a check nodec sends to its

neighboring variable nodev in the second half of thejth iteration. Additionally, we defineωj(v, :) as the

set of all messages from a variablev to all its neighboring checks at the beginning of thejth iteration.

We defineωj(v, : \c) as the set of all messages that a variable nodev sends at the beginning of thejth

iteration to all its neighboring checks exceptc. The sets̟ j(c, :) and̟j(c, : \v) are similarly defined.

Remark: Since the message alphabet is finite, the message passing update rules can be described

using a lookup table and hence only a finite number of two-bit decoders are possible. We assume two

kinds of symmetry for the considered decoder. First, the Boolean function that represents any particular

decoder must be symmetric in the sense that swapping all inputs must imply a swap of the output, i.e.,

the decoder performance does not depend on the sent codeword. Secondly, we consider only symmetric

Boolean functions whose value depends only on the weight in the argument vector, not on positions of

zeros and ones. Such symmetric Boolean functions are natural choice for regular codes. For irregular

codes, asymmetric Boolean functions may lead to improved decoders, but this problem is out of the scope

of this paper. In this paper, we focus on a class of two-bit decoders that can be described using simple
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algebraic rules and illustrate with an example how the lookup table can be constructed from the algebraic

description.

Let the message alphabet be denoted byM = {−S,−W,W, S} where−S denotes a strong “1”,−W

denotes a weak “1”,W denotes a weak “0”,S denotes a strong “0” andS,W ∈ R
+. It should be

noted that this representation can be mapped onto the alphabet {11, 01, 00, 10}, but we use the symbols

throughout for the sake of convenience. The received valuerv ∈ {0, 1} on the channel of a variable node

v is mapped toRv ∈ {C,−C}, C ∈ R
+, as follows:1 → −C and 0 → C. It can be seen that each

message is associated with a value and strength (strength ofa message is an indication of its reliability).

Let N1(u) denote the set of nodes connected to nodeu by an edge. Let the quantitiestj(v, c) andtj(v),

j > 1 be defined as follows:

tj(v, c) =
∑

u∈N1(v)\c

̟j−1(u, v) +Rv , tj(v) =
∑

u∈N1(v)

̟j(u, v) +Rv (1)

Additionally, let

sign(̟j(c, v)) =
∏

u∈N1(c)\v

sign(ωj(u, c)),

wheresign(a) = 1, if a ≥ 0 andsign(a) = −1, if a < 0.

The message passing update and decision rules can be expressed as follows. The absolute value is

denoted by| · |.

ω1(v, c) = W · sign(Rv) , ̟j(c, v) =











































S · sign(̟j(c, v)), if ∀u ∈ N1(c)\v,

|ωj(u, c)| = S

W · sign(̟j(c, v)), otherwise
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For j > 1:

ωj(v, c) =



























































W · sign(tj(v, c)), if 0 < |tj(v, c)| < S

S · sign(tj(v, c)), if |tj(v, c)| ≥ S

W · sign(Rv), if tj(v, c) = 0

Decision:At the end ofjth iteration, the estimaterjv of a variable nodev is given by

rjv =



























































0, if tj(v) > 0

1, if tj(v) < 0

rv, if tj(v) = 0

The class of two-bit decoders described above can be interpreted as a voting scheme in the following

way: every message has two components, namely the value (0 or1) and the strength (weak or strong).

The sign of the message determines the value, whereas the values ofW and S denote the number of

votes. The received value is associated withC votes. To compute the outgoing message on the variable

node side, the total number of votes corresponding to0 and 1 are summed. The value of the outgoing

message is the bit with more number of votes and the strength is determined by the number of votes. In

the case of a tie, the outgoing message is set to the received value with a weak strength. Table I gives

an example of message update for a column-weight-four code,whenC = 2, S = 2 andW = 1. The

messageωj(v, c) goes out of variable nodev, and is computed in terms of the three messages going into

v from the neighboring check nodes different ofc. Table III shows the message passing update rules for

(C, S,W ) = (2, 2, 1). Table II shows the decision rules for(C, S,W ) = (2, 2, 1).

Different decoders in this class can be obtained by varying the values ofS,W and C. Hence, we

denote a particular decoder by the triplet(C, S,W ). Since there are only a finite number of two-bit

decoders, different choices forC, S andW might lead to the same decoder. LetC denote the class of
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above algebraically described decoders. Let us consider the set of all possible two-bit decoders which are

symmetric in the senses that the performance is the same for any codeword, and whose Boolean functions

do not depend on the location of0 and1 in the entries, but only on the weight. LetS denote such a set of

rules. Then the following question arises: is this setS encompassed inC? We do not intend to formally

address this question, but rather give a discussion.

The answer is obviously no. However, among all these rules inS, only a few are decoders, in the sense

that if no error occurred, the sent codeword is output. Amongthese latter rules, only a few are further

capable of correcting errors. We define the quality of a givenrule by its threshold of convergenceα⋆,

which is the maximum crossover probability of the BSC for which it is possible to achieve an arbitrary

small error probability under iterative decoding, as the codeword length tends to infinity. Thresholds of

two-bit decoders are further discussed in Section IV. In order to verify that the rules inC allow to reach

the best possible thresholds achievable with general two-bit decoders, we empirically checked that for

any rule inS\C with better threshold than a rule inC with reasonable threshold, there exists a rule in

C which has an at least as good threshold. Hence, we did an exhaustive scan of possible rules, for two

(dv, dc) regular code ensembles:(3, 4) and(4, 5), wheredv anddc are the connection degrees of variable

and check nodes, respectively. It is observed that for the(4, 5) regular code ensemble, no rule inS\C has

better threshold than any rule inC. For the(3, 4) regular code ensemble, only two rules inS\C have better

threshold than any rule inC, but with a very slight difference (0.078 for the former versus0.075 for the

latter). Thus, it is reasonable to assume the classC of algebraically described decoders are representative

of the best possible two-bit decoders.

In the next section, we focus on the two-bit decoder with(C, S,W ) = (2, 2, 1), and provide the

conditions on the Tanner graph of the code to correct all patterns with up to three errors. As shown in

Section IV, this decoder has better thresholds than one-bitdecoders for various code rates.
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III. GUARANTEED WEIGHT-THREE ERROR CORRECTION

In this section, we first find sufficient conditions on the Tanner graph of a code to ensure that the

code can correct up to three errors in the codeword, when the decoding is performed with the two-bit

decoder with(C, S,W ) = (2, 2, 1). As justified in the introduction, we consider only left-regular codes

with column weight four.

Since the code is linear and the channel and the decoder are symmetric, we can assume, without loss of

generality, that the all-zero codeword is transmitted overthe BSC. We make this assumption throughout

the paper. Hence, the variable nodes flipped by the channel are received as “1”.

The problem of guaranteed error correction capability assumes significance in the error floor region.

Roughly speaking, error floor is the abrupt degradation in the FER performance in the high SNR regime.

The error floor phenomenon has been attributed to the presence of a few harmful configurations in the

Tanner graph of the code, variously known as stopping sets (for the BEC), near codewords [14], trapping

sets (for iterative decoding on the BSC and the AWGN) and pseudo-codewords (for linear programming

decoding) [15]. While girth optimized codes have been knownto perform well in general, the code length

and the degree distribution place a fundamental limit on thebest achievable girth. Hence, additional

constraints on the Tanner graph are required to ensure better error floor performance.

The guaranteed error correction capability of column-weight-three LDPC codes under the Gallager A

algorithm is now completely understood (see [16], [17] for details). For column-weight-four LDPC codes

under the Gallager B algorithm, sufficient conditions to guarantee the correction of all error patterns

with up to three errors have been derived by Chilappagariet al.[18]. The conditions derived in [18]

impose constraints on the least number of neighboring checknodes for a given set of variable nodes. The

conditions that we derive are similar, but impose fewer constraints on the Tanner graph, thereby resulting

in codes with higher rates for the same length. A short discussion on this issue is provided at the end of

the section.

Let us first give some additional definition and notation.
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Definition 1: The neighborhood of depth one of a nodeu is denoted byN1(u) and is composed of

all the nodes such that there exists an edge between these nodes andu. Similarly, Nd(u) denotes the

neighborhood of depthd of nodeu and is composed of all the nodes such that there exists a path of

lengthd between these nodes andu.

Let E be a set of nodes, sayE = ∪iui, then the depthd neighborhood ofE is Nd(E) = ∪iNd(ui).

Now we state the main theorem.

Theorem 1:[Irregular expansion theorem] LetG be the Tanner graph of a column-weight-four LDPC

code with no 4-cycles, satisfying the following expansion conditions: each variable subset of size 4 has

at least 11 neighbors, each one of size 5 at least 12 neighbors, each one of size 6 at least 14 neighbors,

each one of size 8 at least 16 neighbors and each one of size 9 atleast 18 neighbors. The two-bit decoder,

with C = 2, S = 2 andW = 1, can correct up to three errors in the codeword within three iterations, if

and only if the above conditions are satisfied.

For ease in notation, each expansion condition will be denoted by “4→11 expansion condition”, “5→12

expansion condition” and so on.

Proof of sufficiency:

Remark: The proof can be followed more easily by looking at Tables IIand III. Let V 1 = {v11, v
1
2, v

1
3}

andC1 = N1(V
1). For more easily readable notation, letN2(V

1)\V 1 be denoted byV 2 andN1(V
2)\C1

by C2. Also, we say that a variable node is of typeT q
p when it hasp connections toC1 andq connection

to C2. The union of orderd neighborhoods of all theT q
p variable nodes is denoted byNd(T

q
p ).

We consider all the subgraphs induced by three erroneous variable nodes in a graph and prove that, in

each case, the errors are corrected. The possible subgraphsare shown in Figure 1. As shown, five cases

arise. In the reminder, we assume that the all-zero codewordhas been sent. We provide the proof for Case

4 and relegate the proofs for necessity and other cases to theAppendix.

Case 4: Consider the error configuration shown in Figure 1(d). In the second half of the first iteration
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we have:

̟1(c, : \V
1) = −W , c ∈ C1\{c14, c

1
7}

̟1(c, v) = −W , v ∈ V 1, c ∈ {c14, c
1
7}

̟1(c, v) = W , otherwise

Let us analyze the second iteration. For anyv ∈ V \V 1 andc ∈ C1, ω2(v, c) can never be−S because no

−S messages propagate in the first iteration. So, for anyv ∈ V \V 1 and c ∈ C1, ω2(v, c) = −W if and

only if ̟1(: \c, v) = −W , which implies thatv must have four connections toC1. This is not possible

as it would cause a 4-cycle. Hence:

ω2(v
1
2 , c) = −S , c ∈ {c15, c

1
6}

ω2(v
1
2 , c

1
4) = −W

ω2(v
1
2 , c

1
7) = −W

ω2(v
1
1 , : \c

1
4) = −W

ω2(v
1
3 , : \c

1
7) = −W

ω2(v, c) = −W v ∈ N0(T
1
3 ), c ∈ C2 ∩ N1(T

1
3 )

ω2(v
1
1 , c

1
4) = W

ω2(v
1
3 , c

1
7) = W

ω2(v, c) = W v ∈ N0(T
2
2 ), c ∈ C2 ∩ N1(T

2
2 )

ω2(v, c) = W v ∈ N0(T
1
3 ), c ∈ C1 ∩ N1(T

1
3 )

ω2(v, c) = S , otherwise

In the first half of the third iteration, we have

ω3(v
1
2 , :) = W

ω3(v
1
1 , : \c

1
4) = −W , ω3(v

1
1 , c

1
4) = W

ω3(v
1
3 , : \c

1
7) = −W , ω3(v

1
3 , c

1
7) = W
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Lemma 1:All variables inV 1 are corrected at the end of the third iteration because, for any v ∈ V 1,

̟3(:, v) = W or S.

Proof: The proof is by contradiction. Let us assume that there exists a variable inV \V 1, sayv, such that

there existsc ∈ C1 andω3(v, c) = −W or ω3(v, c) = −S. Since it is impossible that two−S messages

go into v, as it would cause a 4-cycle,ω3(v, c) = −W or ω3(v, c) = −S implies thatv receives from its

neighbors different ofc, at the end of the second iteration, three−W messages, or one−S and two−W

(see Table III).

• If v receives three−W : As proved previously,v cannot have four neighbors inC1. Hence,v must be

connected toc21 ∈ C2 such that̟ 2(c
2
1, v) = −W . With the above described values of the messages

in the second half of the second iteration, we see thatc21 must be connected to aT 1
3 variable inV 2,

say x2
1. Let notice that there cannot be more than twoT 1

3 variables inV 2, otherwise six variables

would be connected to only thirteen checks. We are interested in v which has at least one connection

to C1. v has at most three connections toC1. Three cases arise:

– If v has three connections toC1, thenv must have one neighboring check inC2, sayc21, which has

at least one neighboring variable, sayv′, in N0(T
1
3 ) different ofv. Then the set{v11, v

1
2, v

1
3, v, v

′}

has only eleven neighbors, therefore contradicting the5 → 12 expansion condition.

– If v has at two connections toC1, then v has two neighboring checks inC2, say c21 and c22,

which must have each at least one neighboring variable, sayv′ andv′′, in N0(T
1
3 ) different ofv.

Then the set{v11, v
1
2, v

1
3, v, v

′, v′′} has only twelve neighbors, therefore contradicting the6 → 14

expansion condition.

– If v has at only one connection toC1, thenv must have three neighboring checks inC2, each

of them connected to aT 1
3 variable. This has been previously proved to be impossible.

• If v receives two−W messages and one−S message:

– If v has at three connections toC1, then we end up in the same situation as in the first item,

where the5 → 12 expansion condition is not satisfied.
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– If v has at two connections toC1 (one to{c15, c
1
6} to receive a−S message, the other one to

propagate a−W or −S message toC1), then we end up in the same situation as in the first

item, where the6 → 14 expansion condition is not satisfied.

Hence,v11, v
1
2 andv13 are corrected at the end of the third iteration.

�

Lemma 2:No variable inV \V 1 can propagate−W at the beginning of the third iteration, except

variables of typeT 1
3 , andT 2

2 variables which have a common check node inC2 with a T 1
3 variable.

Proof:

• Consider a variablev which has two connections toC1. For this variablev to propagate−W at the

beginning of the third iteration, it is necessary to receivea −S or −W message from one of its two

check nodes inC2, which is the case only if it shares a check node inC2 with a T 1
3 variable.

• Consider a variablev which has exactly one connection toC1. For this variablev to propagate−W

at the beginning of the third iteration, it is necessary to receive a−S or −W message from two of

its three check nodes inC2, sayc21 andc22, which is the case only ifc21 andc22 are both shared byT 1
3

variables, sayv21 andv22. Then the set{v11, v
1
2, v

1
3, v

2
1, v

2
2, v} is connected to only 12 checks, therefore

contradicting the6 → 14 expansion condition.

• Consider a variablev which has no connection toC1. For this variablev to propagate−W at the

beginning of the third iteration, it is necessary to receivea −S or −W message from three of its

four check nodes inC2. This implies the existence of threeT 1
3 variables, which has already been

proved to be impossible.

�

Lemma 3:Any variable inV \V 1 is correctly decoded at the end of the third iteration.

Remark: That is to say that any variable inV \V 1 is decoded to its received value since it is not received

in error by hypothesis.Proof: According to Table III, no message−S propagates in the third iteration



14

since all variables inV 1 receive at least threeW messages at the end of the second iteration, and variables

in V \V 1 cannot receive more than one−S message. In that case, to be decoded as a one, a bit whose

received value is zero has to receive only−W messages according to the decision rule (see Table II).

That is for anyv ∈ V \V 1, v is wrongly decoded if and only if̟ 3(:, v) = −W . Let E denote the set of

T 2
2 variables which share a check inC2 with a T 1

3 variable.

Firstly, let consider a variable inE, sayv, and let us callv′ theT 1
3 variable with whichv shares a check

node inC2. There cannot exist in the graph, at the same time,v and aT 1
3 variable, sayv′′, different of

v′. If such variables would exist,v, v′, v′′ and the variables inV 1 would be connected to only 13 check

nodes, therefore contradicting the6 → 14 expansion condition. Secondly, nov ∈ V \V 1 can have more

than two neighboring checks in{c11, c
1
2, c

1
3, c

1
8, c

1
9, c

1
10}, otherwise it would introduce a 4-cycle. Hence, only

de following cases are possible for a variablev not in V 1 to receive four wrong messages:

• If v has no connection toE, two cases arise:

– If v has two connections in{c11, c
1
2, c

1
3, c

1
8, c

1
9, c

1
10} and two connections toN1(T

1
3 )∩C2. Thenv,

the variables inV 1 and the twoT 1
3 variables are connected to only 12 check nodes, therefore

contradicting the6 → 14 expansion condition.

– If v has at most one connection to{c11, c
1
2, c

1
3, c

1
8, c

1
9, c

1
10}, it must have at least three connections

to N1(T
1
3 ) ∩ C2. However, there cannot exist threeT 1

3 variables as it would imply that the set

made of these three variables andV 1 would be connected to only 13 check nodes, therefore

contradicting the6 → 14 expansion condition.

• If v has no connection toN1(T
1
3 ) ∩ C2, two cases arise:

– If v has two connections in{c11, c
1
2, c

1
3, c

1
8, c

1
9, c

1
10} and two connections toE. Let consider one of

the two variables inT 2
2 , sayv′, theT 1

3 variable with whichv′ shares a check node inC2, v and

the variables inV 1. Then this set of variables is connected only to 13 check nodes, therefore

contradicting the6 → 14 expansion condition.

– If v has at most one connection to{c11, c
1
2, c

1
3, c

1
8, c

1
9, c

1
10}, it must have at least three connections



15

to E. This implies the existence of three distinctT 1
3 variables, which is impossible, as above

mentioned.

�

Thus, the decoder converges to the valid codeword at the end of the third iteration.

Note that similar conditions for a column-weight-four LDPCcode of girth six to correct any weight-three

error pattern within four iterations, when it is decoded with Gallager B algorithm, has been found by

Chilappagariet al. [18]. The conditions are that each variable subset of size 4 has at least 11 neighbors,

each one of size 5 at least 12 neighbors, each one of size 6 at least 14 neighbors, each one of size 7 at

least 16 neighbors and each one of size 8 at least 18 neighbors. These conditions are stronger than the

ones of Theorem 1 in two aspects, on which we wish to have a short discussion.

On one hand, provided that the respective graph conditions are fulfilled, the number of required iterations

to correct three errors is lower for the(2, 2, 1) two-bit decoder than for the Gallager B decoder. However,

since messages are quantified over two bits for the former andover one bit for the latter, a lower number of

iterations does not necessarily mean a lower decoding complexity. We do not provide here further analysis

for comparison of decoding complexity between both kinds ofdecoding, as it would highly depend on

hardware choices.

On the other hand, the higher the rate of the code, the more difficult for the Tanner graph of the code

to satisfy the expansion conditions, since the variable nodes tend to be less and less connected when the

code rate increases. Hence, it is likely that weaker expansion conditions, obtained for the two-bit decoder,

make possible the construction of higher rate codes, with weight-three error correction capability, than

expansion conditions required by the one-bit Gallager B decoder do. However, determining analytically

the highest achievable rate for a given set of expansion conditions is a problem which may be very hard

to solve, and which is out of the scope of this paper.
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IV. A SYMPTOTIC ANALYSIS

This section intends to illustrate the interest of two-bit decoders over one-bit decoders, in terms of

decoding thresholds. In particular, we show that the two-bit decoder, for which expansion conditions for

weight-three-error correction has been derived, has better thresholds than one-bit decoders, for various

code rates.

A. Density evolution

P{Wj = X} =
∑

r∈{−C,C},n(W ),n(S),n(−W ):
f(T,r)=X

KγP{R = r}
∏

Y ∈M\{−S}

P{W j−1 = Y }n(Y )P{W j−1 = −S}n(−S) (2)

P{W j = X} =
∑

n(W ),n(S),n(−W ):
g(n(−S),n(−W ),n(W ))=X

Kρ

∏

Y ∈M\{−S}

P{Wj = Y }n(Y )P{Wj = −S}n(−S) (3)

Asymptotically in the codeword length, LDPC codes exhibit athreshold phenomenon [19]. In other

words, for α smaller than a certain threshold, it is possible to achieve an arbitrarily small bit error

probability under iterative decoding, as the codeword length tends to infinity. On the contrary, for noise

level larger than the threshold, the bit error probability is always larger than a strictly positive constant,

for any codeword length [19], [2].

In [2] and [19], Richardson and Urbanke presented a general method for predicting asymptotic per-

formance of binary LDPC codes. They proved a so-called concentration theorem [2] according to which

decoding performance over any random graph converges, as the code length tends to infinity, to the

performance when the graph is cycle-free. Thus, relevant evaluation of performance of binary LDPC

codes is possible in the limit case of infinite codeword lengths. The proposed density-evolution method

consists in following the evolution of probability densities of messages along the decoding iterations. The

messages in each direction are assumed to be independent andidentically distributed.

For the class of two-bit decoders, we derive thresholds for different values ofC and S. The code

is assumed to be regular with column weightγ and row degreeρ. The numbers ofW , S and −W

messages are denoted byn(W ), n(S) and n(−W ), respectively. In the sets of equations (2) and (3),

n(W ) ∈ [0, . . . , d], n(S) ∈ [0, . . . , d−n(W )], n(−W ) ∈ [0, . . . , d−n(W )−n(S)], whered is eitherγ or
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ρ, depending on the context. The number of−S messagesn(−S) is henced−1−n(W )−n(S)−n(−W ),

with d = γ or ρ depending on the context. Since the messages of the graph, ineach direction, are assumed

to be independent and identically distributed,Wj (resp.W j) denote the random variables distributed as

ωj(v, c) (resp.̟j(c, v)) for any pair(v, c) of connected variable and check nodes.X denotes an element

of the message alphabetM . Also, R ∈ {−C,C} denotes the random variable which corresponds to the

channem messages. The density evolution equations are given by the sets of equations (2) and (3), where:

T =
∑

Y ∈M

n(Y ) · Y

Kγ =

(

γ − 1

n(W )

)(

γ − 1− n(W )

n(S)

)(

γ − 1− n(W )− n(S)

n(−W )

)

Kρ =

(

ρ− 1

n(W )

)(

ρ− 1− n(W )

n(S)

)(

ρ− 1− n(W )− n(S)

n(−W )

)

The two functionsf andg are defined as follows:

f : Z2 → M

f(T, r) =































































W · sign(T + r), if 0 < |T + r| < S

S · sign(T + r), if |T + r| ≥ S

W · sign(r), if T + r = 0

g : N3 → M

g(n1, n2, n3) =






























































































W, if n3 + n2 > 0, n2 + n1 = 0 mod (2)

S, if n3 + n2 = 0, n2 + n1 = 0 mod (2)

−W, if n3 + n2 > 0, n2 + n1 = 1 mod (2)

−S, if n3 + n2 = 0, n2 + n1 = 1 mod (2)
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B. Thresholds of two-bit decoders

Table IV encompasses thresholds for various code parameters and decoding rules. Thresholds are given

in probability of crossover on the BSC. Algorithm E is presented in [2]. For the two-bit decoders, the set

(C,S,W) is given. When the threshold is below0.001, × is put in the box. The code rate is defined by

1− γ

ρ
. Table IV shows that the specific two-bit decoder with parameters (C, S,W ) = (2, 2, 1), has better

thresholds than one-bit decoders Gallager A and B algorithms. However, this decoder has not the best

threshold among the two-bit decoders. Indeed, we tried to achieve a trade-off between good thresholds

and not too strong conditions for three error correction. Nevertheless, the method of analysis applied in

the proof of the previous section is general, and can be applied to a variety of decoders to obtain similar

results.

Remark:Algorithm E and the presented dynamic two-bit decoder outperform the other ones, especially

for code rates3
4

(i.e., ρ = 16) and 7
8

(i.e., ρ = 32). Algorithm E, described in [2], is the aforementioned

decoder with erasures in the message alphabet. At each iteration, the weight affected to the channel

observation (equivalent toC in the two-bit decoder) is optimized [2]. The dynamic two-bit decoder is

based on the same idea: forS = 2 andW = 1, C is chosen at each iteration. The better thresholds of the

presented dynamic two-bit decoder over Algorithm E indicates that it is interesting to consider decoding

on a higher number of bits, even if the channel observation isstill one bit, to get better thresholds.

V. NUMERICAL RESULTS

We have formally proved the capability of weight-three-error correction of an LDPC code satisfying

conditions of Theorem 1 and decoded with the two-bit decoderwith (C, S,W ) = (2, 2, 1). To compare

this two-bit decoder with another one-bit decoder, namely Gallager B, we have plotted FER in Figure 2.

We consider a MacKay code, with column weight four, 1998 variable nodes and 999 check nodes. The

code rate is0.89. This code has been decoded with Gallager B and the above two-bit decoder. Figure 2

shows that the two-bit decoder has lower FER than Gallager B decoder. In particular, we observe better

waterfall performance using the two-bit decoder, and about1dB gain in the error-floor.
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VI. CONCLUSION

In this paper, we proposed a class of two-bit decoders. We have focused on a specific two-bit decoder

for which we have derived necessary and sufficient conditions for a code with Tanner graph of girth six

to correct any three errors within three iterations. These conditions are weaker than the conditions for a

code to correct three errors when it is decoded with GallagerB algorithm, which uses only one bit. We

have computed thresholds for various two-bit decoders, andshown that the decoder for which the previous

conditions has been derived has better thresholds than one-bit decoders, like Gallager A and B. Finally,

we have compared the frame error rate performance of the two-bit decoder and Gallager B algorithm for

decoding a column-weight-four code with high rate. The two-bit decoder performs better than Gallager

B both in the waterfall and in the error-floor region. This illustrates that it is interesting to use two bits

rather than one bit for decoding.

Future work includes extending the analysis to derive sufficient conditions to guarantee correction of

higher number of errors, as well as investigating on generalexpression of conditions in terms of the number

of quantization bits for the messages. While the focus of thepaper was on left-regular LDPC codes, the

general methodology and the approach presented in the paperare applicable to irregular LDPC codes

also. The analysis in the case of irregular codes will be morecomplex, but given that carefully designed

irregular LDPC codes outperform their regular counterparts, the study of guaranteed error correction under

different decoders for such codes is a problem worth investigating.
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APPENDIX

In this Appendix, we provide the proofs for Cases 1, 3, 4 and 5 as well as prove the necessity of the

conditions stated in Theorem 1.

Case 1: Consider the error configuration shown in Figure 1(a). In this case, variables 1, 2 and 3 send

incorrect−W messages to their neighbors in the first iteration. They receive W messages from all their

neighboring check nodes, they are therefore decoded correctly at the end of first iteration. Error occurs

only if there exists a variable node with correct received value that receives four−W messages from its

neighboring check nodes (see Table II). However, since variables 1, 2 and 3 are the only variables that

send incorrect messages in the first iteration, it is impossible to encounter such a variable node without

introducing a 4-cycle. Hence, this configuration convergesto the correct codeword at the end of the first

iteration.

Case 2: Consider the error configuration shown in Figure 1(b).

In the second half of the first iteration, we have:

̟1(c
1
4, v) = −W, v ∈ {v11 , v

1
2}

̟1(c, v) = −W, v ∈ V 2, c ∈ C1\c14

̟1(c, v) = W, otherwise

In the first half of the second iteration, according to Table III no −S messages can be sent by variables

neither inV \V 1 because no−S message propagate in the first iteration, nor variables inV 1 because they

all receive at least threeW messages:

ω2(v, c) = −W, v ∈ {v11 , v
1
2}, c ∈ C1\c14

ω2(v, c
1
4) = W, v ∈ {v11 , v

1
2}

ω2(v
1
3 , c) = W, c ∈ C1

ω2(v, c) = −W, v ∈ N0(T
1
3 ), c ∈ C2

ω2(v, c) = W, v ∈ N0(T
2
2 ), c ∈ C2
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ω2(v, c) = W, v ∈ N0(T
1
3 ), c ∈ C1

ω2(v, c) = S, otherwise

In the second half of the second iteration, the messages going out of certain check nodes depend on the

connection degree of these check nodes. However, we do not want that the proof be dependent on the

degree of connection of check nodes. Hence, we consider in the following the “worst” case, that is the

configuration where each message has the smallest possible value. In that case, the messages along the

edges in the second half of the second iteration are such that:

̟2(c, v) = −W, v ∈ V 2 ∩ N2({v
1
1 , v

1
2}), c ∈ C1\c14

̟2(c
1
4, :) = W

̟2(c, : \v) = −W, v ∈ N0(T
1
3 ), c ∈ C2 ∩ N1(T

1
3 )

̟2(c, v) = W, v ∈ V 2, c ∈ {c18, c
1
9, c

1
S , c

1
−S}

̟2(c, :) = W, c ∈ C1 ∩ N1(T
1
3 )

̟2(c, :) = W, c ∈ C2 ∩ N1(T
2
2 )

̟2(c, v) = S, otherwise

At the end of the second iteration, allv ∈ V 1 receive all correct messagesW or S. According to Table

II, all variables inV 1 are hence corrected at the end of the second iteration. For variables inV 2, since

no −S messages propagate in the second half of the second iteration, we see on Table II that variables

in V 2, which are not received in error, are decoded as 1 if and only if they receive four−W messages.

The following lemma prove that this is not possible.

Lemma 4:No variable node receives four incorrect−W messages at the end of second iteration.

Proof: Let v be such a variable. Then the four neighboring checks ofv must belong to{c11, c
1
2, c

1
3, c

1
5, c

1
6, c

1
7}∪

(C2 ∩ N1(T
1
3 )). Note that only two neighbors ofv can belong to{c11, c

1
2, c

1
3, c

1
5, c

1
6, c

1
7} without introducing

a 4-cycle. This implies that there are only three cases:

• v has two neighboring checks, sayc21 andc22, in C2∩N1(T
1
3 ), and two checks in{c11, c

1
2, c

1
3, c

1
5, c

1
6, c

1
7}.

Let v21 and v22 be the T 1
3 variables connected toc21 and c22. It results that the set of variables
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{v11, v
1
2, v

2
1, v

2
2, v} is connected to only11 checks, which contradicts the 5→12 expansion condition.

This case is hence not possible.

• v has one neighbor in{c11, c
1
2, c

1
3, c

1
5, c

1
6, c

1
7} and three neighbors inC2 ∩ N1(T

1
3 ), say c21, c

2
2 and c23.

Let v21, v22 and v23 be theT 1
3 variables connected toc21, c

2
2 and c13. It results that the set of variables

{v11, v
1
2, v

2
1, v

2
2, v

2
3, v} is connected to only13 checks, which contradicts the 6→14 expansion condition.

This case is hence not possible.

• v has four neighbors inC2 ∩ N1(T
1
3 ), say c21, c22, c23 and c24. Let v21 , v22 , v23 and v24 be theT 1

3

variables connected toc21, c
2
2, c

1
3 andc14. It results that the set of variables{v11, v

1
2, v

1
3, v

2
1, v

2
2, v

2
3, v

2
4, v}

is connected to only15 checks, which contradicts the 8→16 expansion condition. This case is hence

not possible.

�

Hence, the decoder converges at the end of the second iteration.

Case 3: Consider the error configuration shown in Figure 1(c). In the first iteration, the variables

1, 2 and 3 send incorrect−W messages to their neighboring checks. At the end of the first iteration,

they receive correct messages from all their neighboring checks. There is no variable that receives four

incorrect messages (as it will cause a four-cycle). Hence, the decoder successfully corrects the three errors.

Case 5: Consider the error configuration shown in Figure 1(e).

NeitherT 1
3 nor T 0

4 variable can exist inV 2 because it would contradict the4 → 11 expansion condition.

At the end of the first iteration, we have:

̟1(c, V
1) = W, c ∈ C1\{c11, c

1
4, c

1
7}

̟1(c, V
1) = −W, c ∈ {c11, c

1
4, c

1
7}

̟1(c, : \V
1) = W, c ∈ {c11, c

1
4, c

1
7}

̟1(c, : \V
1) = −W, c ∈ C1\{c11, c

1
4, c

1
7}
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̟1(c, :) = W, otherwise

Since a variable inV 2 has at most two connections toC1, these variables sendS messages to check

nodes inC1 at the begining of the second iteration. Hence:

ω2(v, c) = −W, v ∈ V 1, c ∈ {c11, c
1
4, c

1
7}

ω2(v, c) = −S, v ∈ V 1, c ∈ C1\{c11, c
1
4, c

1
7}

ω2(v, c) = S, v ∈ V 2, c ∈ C1

ω2(v, c) = W, v ∈ N0(T
2
2 ), c ∈ C\C1

ω2(v, c) = S, otherwise

Hence, at the end of the second iteration, we have:

̟2(c, v) = −W, v ∈ V 1, c ∈ {c11, c
1
4, c

1
7}

̟2(c, v) = S, v ∈ V 1, c ∈ C1\{c11, c
1
4, c

1
7}

̟2(c, v) = −S, v ∈ V \V 1, c ∈ C1\{c11, c
1
4, c

1
7}

̟2(c, v) = W, v ∈ V \V 1, c ∈ {c11, c
1
4, c

1
7}

̟2(c, :) = W, c ∈ N1(T
2
2 )\C

1

̟2(c, :) = S, otherwise

Hence, at the end of the second iteration, a variable inV 2 receives onlyW or S messages from check

nodes inC2. It therefore sendsS messages to check nodes inC1 at the begining of the third iteration.

As it is used in the sequel, let us mention more explicitly that a pair (v, c) ∈ N0(T
2
2 )× C2 is such that

N1((N1(v)∩C2)\{c})∩N0(T
2
2 ) = {v} means that the variablev is in N0(T

2
2 ) and the check node which

is (N1(v) ∩ C2)\{c} has no other neighbor inN0(T
2
2 ) exceptv. As well, a pair(v, c) ∈ N0(T

2
2 )× C2 is

such that((N1((N1(v) ∩ C2)\{c})) ∩ N0(T
2
2 ))\{v} 6= ∅ means that the variablev is in N0(T

2
2 ) and the

check node which is(N1(v) ∩ C2)\{c} has another neighbor inN0(T
2
2 ) different of v. We thus have at

the begining of the third iteration:

ω3(v, c) = W, v ∈ V 1, c ∈ {c11, c
1
4, c

1
7}

ω3(v, c) = −S, v ∈ V 1, c ∈ C1\{c11, c
1
4, c

1
7}

ω3(v, c) = S, v ∈ V 2, c ∈ C1
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ω3(v, c) = W, (v, c) ∈ N0(T
2
2 )× C2

such thatN1((N1(v) ∩ C2)\{c}) ∩N0(T
2
2 ) = {v}

ω3(v, c) = −W, (v, c) ∈ N0(T
2
2 )× C2

such that((N1((N1(v) ∩ C2)\{c})) ∩ N0(T
2
2 ))\{v} 6= ∅

ω3(v, c) = S, otherwise

It comes that at the end of the third iteration, for variablesin V 1 we have:

̟3(c, v) = W, v ∈ V 1, c ∈ {c11, c
1
4, c

1
7}

̟2(c, v) = S, v ∈ V 1, c ∈ C1\{c11, c
1
4, c

1
7}

(4)

Hence, according to Table II, all the variable nodes inV 1 are corrected. For messages going into variables

not in V 1, we have:

̟3(c, v) = −S, v ∈ V 2, c ∈ C1\{c11, c
1
4, c

1
7}

̟3(c, v) = W, v ∈ V 2, c ∈ {c11, c
1
4, c

1
7}

̟3(c, v) = W, (v, c) such thatc ∈ C2

and there is an even number ofv′ in N1(c) ∩N0(T
2
2 )\{v} such that

((N1((N1(v
′) ∩ C2)\{c})) ∩ N0(T

2
2 ))\{v

′} 6= ∅

̟3(c, v) = −W, (v, c) such thatc ∈ C2

and there is an odd number ofv′ in N1(c) ∩ N0(T
2
2 )\{v} such that

((N1((N1(v
′) ∩ C2)\{c})) ∩ N0(T

2
2 ))\{v

′} 6= ∅

̟3(c, v) = S, otherwise

Lemma 5:There is no decision error on all variables not inV 1 at the end of the third iteration.
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Proof: According to Table II, we have to show that the following four situations can not happen:

• Any variable not inV 1 cannot receive more than three−S messages. Indeed, it would imply that

the variable has at least three connections toC1\{c11, c
1
4, c

1
7}, which would contradict the4 → 11

expansion condition.

• If any variable, sayv, not in V 1 would receive two−S messages and at least one−W mes-

sage, it would imply that it has two connections toC1\{c11, c
1
4, c

1
7} and one connection to a check

node c such thatc ∈ C2 and there is an odd number ofv′ in N1(c) ∩ N0(T
2
2 )\{v} such that

((N1((N1(v
′)∩C2)\{c}))∩N0(T

2
2 ))\{v

′} 6= ∅. Let v′′ denote the variable of such a non-empty set.

Then{v11, v
1
2, v

1
3, v, v

′, v′′} is connected to only 13 check nodes, contradicting the6 → 14 expansion

condition.

• For sake of clarity, let us now use figures. Without loss of generality, Figures 3(a) and 3(b) illustrate

the configurations when the variablev receives, at the end of the third iteration, one−S message

and three−W messages, and when it receives one−S message, two−W messages and oneW

message, respectively. These configurations are not possible as they contradict the9 → 18 expansion

condition.

• Without loss of generality, Figure 3(c) illustrates the configurations when the variablev receives four

−W messages at the end of the third iteration. This configuration is not possible as it contradicts

the 8 → 16 expansion condition.

�

Hence, the decoder converges to the valid codeword at most atthe end of the third iteration. This completes

the Proof.

�

Proof of necessity:

Necessity of the4 → 11 condition
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Consider the subgraph shown in Figure 3(d). In this case, the4 → 11 condition is not satisfied. It is easy

to see that, even though we assume that onlyS messages are propagated from the check nodes which

have an odd degree in the subgraph, to the four variables, theerrors are not corrected at the end of the

third iteration.

Necessity of the5 → 12 condition

As mentioned in [18], there exists no graph of girth six whichsatisfies the4 → 11 condition but does

not satisfy the5 → 12 condition.

Necessity of the6 → 14 condition

Consider the graph shown in Figure 3(e). This graph satisfiesthe 4 → 11 and5 → 12 conditions but not

the 6 → 14 condition. This graph correspond to the analysis performedabove for Case 5. With message

values described in this above analysis, it is easy to see that the variables inV 2 are wrongly decided to

1 at the end of the third iteration. Hence, in order to guarantee the correction of three errors in three

iterations, the6 → 14 condition must be satisfied.

Necessity of the8 → 16 condition

Consider the graph shown in Figure 3(c). This graph satisfiesthe4 → 11, 5 → 12 and6 → 14 conditions

but not the8 → 16 condition. With message values described in the above analysis of Case 5, it is easy

to see thatv is wrongly decided to 1 at the end of the third iteration. Hence, in order to guarantee the

correction of three errors in three iterations, the8 → 16 condition must be satisfied.

Necessity of the9 → 18 condition

Consider the graph shown in Figure 3(b). This graph satisfiesthe 4 → 11, 5 → 12, 6 → 14 and8 → 16

conditions but not the9 → 18. With message values described in the above analysis of Case5, it is easy

to see that the variables inV 2 are wrongly decided to 1 at the end of the third iteration. Hence, in order

to guarantee the correction of three errors in three iterations, the9 → 18 condition must be satisfied.
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TABLE I
EXAMPLES OF MESSAGE UPDATE FOR A COLUMN-WEIGHT-FOUR CODE, WHEN C = 2, S = 2 AND W = 1.

# incoming−S messages 2 1 0 1
# incoming−W messages 0 1 2 0
# incomingW messages 1 0 0 1
# incomingS messages 0 1 1 1

Rv −C C C −C

ωj(v, c) −S W S −W
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TABLE II
DECISION RULE: NUMBER OF MESSAGES−S, −W , W AND S GOING INTO A VARIABLE , WHEN THIS VARIABLE NODE IS DECODED AS0
(RESP. 1) WHEN THE CHANNEL OBSERVATION IS1 (RESP. 0). THE CODE HAS COLUMN WEIGHT FOUR AND THE TWO-BIT DECODER HAS

(C,S,W ) = (2, 2, 1).

# −S # −W # W # S

mess. mess. mess. mess.
0 0 0 4
0 0 1 3
0 0 2 2

Received value 1 0 0 3 1
Decoded as 0 0 0 4 0

0 1 0 3
0 1 1 2
0 1 2 1
1 0 0 3
1 0 1 2
0 4 0 0
1 2 1 0
1 3 0 0

Received value 0 2 1 0 1
Decoded as 1 2 1 1 0

2 2 0 0
3 0 0 1
3 0 1 0
3 1 0 0
4 0 0 0
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TABLE III
UPDATE RULE: NUMBER OF MESSAGES−S, −W , W AND S GOING INTO THE VARIABLE NODE v LEADING TO DIFFERENT VALUES OF

THE MESSAGEωj(v, c) GOING OUT OFv, WHEN THE RECEIVED VALUE ISrv . THE CODE HAS COLUMN WEIGHT FOUR AND THE TWO-BIT

DECODER HAS(C,S,W ) = (2, 2, 1).

# −S # −W # W # S

mess. mess. mess. mess.
rv = 1 0 0 2 1

ωj(v, c) = W 0 0 3 0
0 1 0 2

rv = 1 0 0 0 3
ωj(v, c) = S 0 0 1 2

rv = 0 2 1 0 0
ωj(v, c) = −S 3 0 0 0

0 3 0 0
rv = 0 1 2 0 0

ωj(v, c) = −W 2 0 1 0
0 2 0 1
0 2 1 0
0 3 0 0
1 0 2 0
1 1 0 1

rv = 1 1 1 1 0
ωj(v, c) = −S 1 2 0 0

2 0 0 1
2 0 1 0
2 1 0 0
3 0 0 0
0 1 1 1

rv = 1 0 1 2 0
ωj(v, c) = −W 1 0 0 2

1 0 1 1
0 2 1 0

rv = 0 1 1 0 1
ωj(v, c) = W 1 1 1 0

2 0 0 1
0 0 0 3
0 0 1 2
0 0 2 1
0 0 3 0

rv = 0 0 1 0 2
ωj(v, c) = S 0 1 1 1

0 1 2 0
0 2 0 1
1 0 0 2
1 0 1 1
1 0 2 0
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TABLE IV
THRESHOLDS OF DIFFERENT DECODERS FOR COLUMN-WEIGHT-FOUR CODES WITH ROW DEGREEρ.

ρ Rate A B E (1,1,1)
8 0.5 0.0474 0.0516 0.0583 0.0467
16 0.75 0.0175 0.0175 0.0240 0.0175
32 0.875 0.00585 0.00585 0.00935 0.00585
ρ Rate (1, 2, 1) (1, 3, 1) (1, 4, 1) (2, 1, 1)
8 0.5 0.0509 0.0552 0.0552 0.0467
16 0.75 0.0165 0.0175 0.0175 0.0175
32 0.875 0.00562 0.00486 0.00486 0.00585
ρ Rate (2,2,1) (2,3,1) (2,4,1) (3,2,1)
8 0.5 0.0567 0.0532 0.0552 0.0467
16 0.75 0.0177 0.0168 0.0175 0.0218
32 0.875 0.00587 0.00568 0.00486 0.00921
ρ Rate (3,3,1) (3,4,1) (4,3,1) (4,4,1)
8 0.5 0.0657 0.0620 0.0486 0.0657
16 0.75 0.0222 0.0203 0.0227 0.0222
32 0.875 0.00755 0.00691 0.00871 0.00755
ρ Rate Dynamic two-bit

decoder with
S = 2 andW = 1

8 0.5 0.0638
16 0.75 0.0249
32 0.875 0.00953
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