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Abstract—This paper considers a degraded Gaussian broadcast
channel over which Gaussian sources are to be communicated.
When the sources are independent, this paper shows that hybrid
coding achieves the optimal distortion region, the same as that of
separate source and channel coding. It also shows that uncoded
transmission is not optimal for this setting. For correlated
sources, the paper shows that a hybrid coding strategy has
a better distortion region than separate source-channel coding
below a certain signal to noise ratio threshold. Thus, hybrid
coding is a good choice for Gaussian broadcast channels with
correlated Gaussian sources.1

I. I NTRODUCTION

The transmission of sources over a Gaussian broadcast
channel [1] is a fundamental problem in information theory
and arguably one of the better understood questions. In the
case of independent sources over this degraded channel, the
capacity region is characterized in [2], [3]. The achievable
strategy for this channel in [2] is superposition coding, but
dirty paper coding [4] can also be used to the same effect.

In contrast, the existing body of work on correlated sources
over a broadcast channel is somewhat limited [5]. As source-
channel separation does not hold, it is difficult to construct
coding strategies and establish their optimality. Recently in [6],
uncoded transmission of correlated Gaussians over a Gaussian
broadcast channel was shown to be optimal below a signal to
noise ratio (SNR) threshold . In related work, the transmission
of a common source over a Gaussian broadcast channel with
receiver side information was studied in [7].

In this work, we consider hybrid coding as a strategy for the
Gaussian broadcast channel with or without correlated sources.
By hybrid coding, we mean strategies that superimpose un-
coded and coded transmission in communicating the sources
to the destinations. Our hybrid coding strategy bears close
resemblance to the dirty-paper-coding strategy using lattices,
as developed in [8]. We show that this hybrid strategy is
optimal for the Gaussian broadcast channel with independent
Gaussian sources. Extending it to the correlated case, we find
that the strategy performs better (in terms of the distortion
region achieved) than separate source and channel coding for
SNRs below a certain threshold.

1This work is supported by a grant from AT&T Labs Austin, a grant from
the Army Research Office and a grant from the Air Force Office ofSponsored
Research.

In the next section, we present the system model. In Section
III, we present an outer bound on the distortion region for this
channel. We present the achievable scheme and the resulting
distortion region for this channel in Section IV and conclude
with Section V.

II. SYSTEM MODEL

ENCODER

DECODER 1

DECODER 2

(S1, S2)

Z1

Z2

X

Y1

Y2

Ŝ1
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Fig. 1. System Model

The system model is depicted in Fig. 1. Consider a se-
quence of independent and identically distributed (i.i.d)pair
of correlated Gaussians{(S1(i), S2(i))}ni=1 with mean zero
and covariance matrix,

Σ(i) =

[

σ2 ρσ2

ρσ2 σ2

]

.

The goal is to transmit the pair over a degraded Gaussian
broadcast channel to Receivers 1 and 2 respectively at the
smallest possible distortion. We assume, with loss of gener-
ality, that ρ > 0 and that the variances ofS1(i) and S2(i)
are equal. The transmitter applies an encoding function on the
observed source sequence and transmits it over the channel.
Mathematically,

Xn = f(Sn
1 , S

n
2 )

whereSn
1 and Sn

2 denoten-length vectors. The transmitter
is limited by an average second moment constraint on the
channel input given by

1

n

n
∑

i=1

E[(X(i))2] ≤ P.
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The channel outputs at the two receivers are given by

Y1(i) = X(i) + Z1(i)

Y2(i) = X(i) + Z2(i)

for i = 1, . . . , n, where Z1(i) and Z2(i) form an i.i.d
sequence, independent of each other and are Gaussian dis-
tributed with mean zero and varianceN1 andN2. Further, we
assume that the broadcast channel is physically degraded with
N2 > N1. The receivers obtain estimates of the sources by
applying a function on the received outputs. This is represented
mathematically as

Ŝn
k = φk(Y

n
k )

for k = 1, 2. The goal is to obtain estimateŝSn
1 andŜn

2 within
the minimum possible mean squared error. Therefore, we wish
to obtain the smallest possibleD1 andD2 where

Dk =
1

n

n
∑

i=1

E[(Sk(i)− Ŝk(i))
2]

for k = 1, 2. The distortion regionD(σ2, ρ, P,N1, N2) is
defined as the set of all pairs(D1, D2) such that there exist
encoding and decoding functionsf , φ1 and φ2 resulting in
distortionsD1 andD2 at Receivers 1 and 2 respectively. Note
that all logarithms are with respect to base 2 throughout the
paper andE denotes the expected value of a random variable.

III. O UTER BOUND ON DISTORTION REGION

We now present an outer bound on the conditional distortion
region for the transmission of correlated Gaussian sources
over a degraded broadcast channel. Letφ1|2 be the decoding
function given the knowledge of bothY n

1 andSn
2 at Receiver

1. The conditional distortion regionDc(σ
2, ρ, P,N1, N2),

is defined as the set of all pairs(D1|2, D2) such that there
exist encoding functionf and decoding functionsφ1|2 and
φ2 resulting in distortionsD1|2 andD2 at Receivers 1 and 2
respectively. The region described by Theorem 1 below is an
alternative way of describing the outer bound region for the
same channel presented in [6].

Theorem 1: The conditional distortion region for transmis-
sion of correlated Gaussian sources over a degraded broadcast
channel,Dc(σ

2, ρ, P,N1, N2), consists of all pairs(D1|2, D2)
such that

D1|2 ≥ σ2(1− ρ2)

1 + α1P
N1

andD2 ≥ σ2

1 + (1−α1)P
α1P+N2

whereα1 ∈ [0, 1].
Proof: We first obtain a bound on the distortionD1|2. By

the data processing inequality (DPI), we have

I(Sn
1 ; Ŝ

n
1 |Sn

2 ) ≤ I(Sn
1 ;Y

n
1 |Sn

2 ). (1)

The distortion inSn
1 at Receiver 1 given that it knowsSn

2 and
Y n
1 is D1|2 and the variance ofSn

1 given Sn
2 is σ2(1 − ρ2).

SinceSn
2 is known at both the transmitter and Receiver 1,

I(Sn
1 ; Ŝ

n
1 |Sn

2 ) ≥
n

2
log

σ2(1− ρ2)

D1|2
(2)

by definition of the rate distortion function for Gaussian
sources [9]. Now,

I(Sn
1 ;Y

n
1 |Sn

2 ) = h(Y n
1 |Sn

2 )− h(Y n
1 |Sn

1 , S
n
2 )

=
n

2
log 2πe(α1P +N1)− h(Zn

1 ) (3)

=
n

2
log 2πe(α1P +N1)−

n

2
log 2πeN1

=
n

2
log 2πe

(

1 +
α1P

N1

)

. (4)

The equality in (3) results from the following argument. Since
n

2
log 2πeN1 ≤ h(Y n

1 |Sn
2 ) ≤

n

2
log 2πe(P +N1),

there exists anα1 ∈ [0, 1] such that

h(Y n
1 |Sn

2 ) =
n

2
log 2πe(α1P +N1). (5)

Therefore, from (2) and (4), we get

D1|2 ≥ σ2(1− ρ2)

1 + α1P
N1

.

For sourceSn
2 , using DPI we observe that

I(Sn
2 ; Ŝ

n
2 ) ≤ I(Sn

2 ;Y
n
2 ). (6)

The rate distortion function forSn
2 implies that

n

2
log

σ2

D2
≤ I(Sn

2 ; Ŝ
n
2 ). (7)

Also,

I(Sn
2 ;Y

n
2 ) = h(Y n

2 )− h(Y n
2 |Sn

2 )

≤ n

2
log 2πe(P +N2)− h(Y n

2 |Sn
2 ) (8)

≤ n

2
log 2πe(P +N2)−

n

2
log 2πe(α1P +N2)

(9)

=
n

2
log

(

1 +
(1− α1)P

α1P +N2

)

, (10)

since in (8), a Gaussian random variable maximizes entropy
for a given variance and (9) is true due to the following
discussion. Note that due to the physically degraded natureof
the broadcast channel,Y n

2 may be written asY n
2 = Y n

1 +Wn

whereW has varianceN2 −N1. Thus using (5) and entropy
power inequality, we get

h(Y n
2 |Sn

2 ) = h(Y n
1 +Wn|Sn

2 )

≥ n

2
log 2πe(α1P +N1 +N2 −N1)

=
n

2
log 2πe(α1P +N2).

Combining (6), (7) and (10), we obtain

D2 ≥ σ2

1 + (1−α1)P
α1P+N2

.



Note that the outer bound on the conditional distortion
region is obtained as a function ofα1. We now state a corollary
for the case of independent sources.

Corollary 1: The distortion region for transmission of inde-
pendent Gaussian sources over a degraded broadcast channel,
D(σ2, 0, P,N1, N2), consists of all pairs(D1, D2) such that

D1 ≥ σ2

1 + α1P
N1

andD2 ≥ σ2

1 + (1−α1)P
α1P+N2

whereα1 ∈ [0, 1].
Proof: We only present the proof forD1 since the result

for D2 is the same as in the theorem above. Note that

I(Sn
1 ; Ŝ

n
1 |Sn

2 ) = h(Sn
1 |Sn

2 )− h(Sn
1 |Sn

2 , Ŝ
n
1 )

= h(Sn
1 )− h(Sn

1 |Sn
2 , Ŝ

n
1 ) (11)

≥ h(Sn
1 )− h(Sn

1 |Ŝn
1 ) (12)

≥ n

2
log 2πe

σ2

D1
(13)

where (11) uses the independence ofSn
1 andSn

2 , (12) is true
because conditioning reduces entropy and (13) follows from
the rate distortion function for Gaussian sources.
Now combining the above with (1) and (4), we get

D1 ≥ σ2

1 + α1P
N1

IV. A CHIEVABLE DISTORTION REGION

In this section, we present achievable distortion regions for
transmitting independent and correlated Gaussian sources. We
briefly discuss aspects of the coding scheme that are common
for both the independent and correlated cases. The hybrid
schemes proposed in the following subsections are based on
lattices. LetΛ be a lattice of dimensionn. Let the quantized
value ofx ∈ R

n, Q(x) = argminr∈Λ‖x−r‖. The fundamental
Voronoi region ofΛ is defined asV0 = {x ∈ R

n : Q(x) = 0}.
Also, we denotexmodΛ = x − Q(x). We chooseΛ to
be a ‘good’ lattice for both source and channel coding [10]
and require it to have a second moment constraintσ2(Λ) =
R

V0
‖x‖2dx

R

V0
dx

= P ′ whereP ′ will be specified later. Note that the

transmitter has an average power constraintP .

A. Independent Gaussian Sources

We now compare a hybrid coding strategy with
uncoded transmission for communicating independent
Gaussian sources. A hybrid coding scheme is basically
a superposition of coded and uncoded transmission.
Let the distortion region achieved by the hybrid
scheme be Dh(σ

2, 0, P,N1, N2) = {(D1, D2) :
D1 andD2 are achieved by the hybrid scheme}.

Theorem 2: Dh(σ
2, 0, P,N1, N2) = D(σ2, 0, P,N1, N2)

Proof: Consider a hybrid coding scheme in which the
coded portion is given by

Xn
1 = [Sn

1 + βγSn
2 + Un] modΛ,

where β and γ are constants which will be specified later
and Un is the dither which is known apriori to both the
transmitter and receivers and is uniformly distributed inV0.
We sendSn

2 uncoded after scaling it appropriately to meet the
power constraint. In the following,α1 represents the power
allocation in the outer bound discussion. The channel input
is a superposition of coded and uncoded transmission and is
expressed as

Xn = αXn
1 + γSn

2 ,

whereα satisfies
α2P ′ = α1P (14)

and

γ =

√

(1− α1)P

σ2
. (15)

Note thatXn
1 andSn

2 are independent of each other on account
of addition of the uniform dither before the modulo operation.
We also observe that the scheme is similar to the dirty paper
coding strategy in [8] whereSn

2 resembles the interference
known at the transmitter. The output at the receivers is given
by

Y n
k = Xn + Zn

k (16)

for k = 1, 2.

At Receiver 1, we perform the following series of operations:

Rn
1 =[δY n

1 − Un] modΛ (17)

=[(δα − 1)Xn
1 + Sn

1 + (βγ + δγ)Sn
2 + δZn

1 ] modΛ
(18)

=[Sn
1 + γ(δ + β)Sn

2 + (δα− 1)Xn
1 + δZn

1 ] modΛ (19)

=[Sn
1 +Wn

1 ] modΛ (20)

whereWn
1 = γ(δ+β)Sn

2 +(δα−1)Xn
1 +δZn

1 is the effective
noise term independent ofSn

1 . Choosingβ = −δ and δ =
αP ′

α2P ′+N1

, we reduce the variance of the effective noise to
P ′N1

α2P ′+N1

. SinceΛ is a ‘good’ channel lattice, we requireP ′

to satisfy

σ2 +
P ′N1

α2P ′ +N1
≤ P ′, (21)

for correct decoding with high probability asn → ∞ [11][12].
This leads to

Rn
1 = [Sn

1 +Wn
1 ] modΛ = Sn

1 +Wn
1 .

Allowing P ′ to satisfy (21) with equality and using (14), we
obtain

P ′ = σ2α1P +N1

α1P
andα =

√

α1P

P ′ .

ThusW1 has variance P ′N1

α2P ′+N1

= σ2N1

α1P
. The estimator

Ŝn
1 =

σ2

σ2 + σ2 N1

α1P

Rn
1 ,

achieves a distortion inS1 of

D1 = σ2 − σ4

σ2 + σ2 N1

α1P

=
σ2

1 + α1P
N1

.



On the other hand, Receiver 2 observes

Y n
2 = αXn

1 + γSn
2 + Zn

2 = γSn
2 +Wn

2 ,

whereWn
2 = αXn

1 +Zn
2 is treated as the effective noise which

is independent ofSn
2 . We now construct the linear estimator

Ŝn
2 =

γσ2

P +N2
Y n
2 .

Using (15), this estimator results in a distortion

D2 =
σ2

1 + (1−α1)P
α1P+N2

.

Thus the superposition scheme described above achieves the
optimal distortions for sourcesS1 andS2.

We now show that uncoded transmission is sub-optimal
for independent sources through the following theorem. Let
the distortion region achieved by uncoded transmission be
Du(σ

2, 0, P,N1, N2).

Theorem 3: Du is equal to the set of all distortion pairs
(D1, D2) such that

D1 ≥ σ2

1 + α1P
(1−α1)P+N1

andD2 ≥ σ2

1 + (1−α1)P
α1P+N2

whereα1 ∈ [0, 1]. Further,

Du(σ
2, 0, P,N1, N2) ⊂ D(σ2, 0, P,N1, N2).

Proof: The uncoded transmission strategy is to send a
linear combination ofSn

1 and Sn
2 . The power allocated for

sendingSn
1 and Sn

2 are α1P and (1 − α1)P respectively.
Therefore we transmit,

Xn =

√

α1P

σ2
Sn
1 +

√

(1− α1)P

σ2
Sn
2 .

Receiver 1 obtains a minimum mean squared error (MMSE)
estimate ofSn

1 given Y n
1 as Ŝn

1 =
√
α1Pσ2

P+N1

Y n
1 . This leads to

a distortion inS1,

D1 =
σ2

1 + α1P
(1−α1)P+N1

.

The estimate ofSn
2 is given byŜn

2 =

√
(1−α1)Pσ2

P+N2

Y n
2 resulting

in

D2 =
σ2

1 + (1−α1)P
α1P+N2

.

We observe that while uncoded transmission scheme achieves
the optimal distortion inS2, the distortion inS1 is higher
than the optimal distortion. ThusDu(σ

2, 0, P,N1, N2) ⊂
D(σ2, 0, P,N1, N2).

B. Correlated Gaussian Sources

Next, we extend our hybrid coding scheme to the problem
of correlated sources, with the goal of achieving a better
distortion region than source channel separation. We consider
two source channel separation schemes in this section, Scheme
A and Scheme B. Scheme A treats the messages obtained
by compressingS1 andS2 as independent and communicates
them reliably over the broadcast channel. Scheme B explores
the idea of using Wyner Ziv coding for communicatingS1.
Let the distortion region achieved by the hybrid scheme
be Dh(σ

2, ρ, P,N1, N2) and the distortion region achieved
by Scheme A and Scheme B beDA(σ

2, ρ, P,N1, N2) and
DB(σ

2, ρ, P,N1, N2).

Theorem 4: If α1 < 1
2 and P

N1

< 1−2α1

α2

1

, then

DA(σ
2, ρ, P,N1, N2) ⊂ Dh(σ

2, ρ, P,N1, N2).

For any P
N1

> 0 and0 ≤ α1 ≤ 1,

DB(σ
2, ρ, P,N1, N2) ⊂ Dh(σ

2, ρ, P,N1, N2).

Proof: We begin by noting thatSn
1 may be represented

asSn
1 = ρSn

2 +V n with V n independent ofSn
2 and Gaussian

distributed with mean zero and varianceσ2(1 − ρ2). The
main idea of the hybrid coding scheme is to use the scheme
proposed in the previous subsection to sendV n andSn

2 , which
are independent. Thus, the transmitter forms the coded portion
of the channel input similar to the independent case using the
latticeΛ as

Xn
1 = [V n + βγSn

2 + Un] modΛ.

As before,Sn
2 is sent uncoded and superposed on the coded

portion after an appropriate scaling to satisfy the power
constraint. Thus the channel input is given by

Xn = αXn
1 + γSn

2 ,

whereα andγ satisfy (14) and (15) respectively.

The channel output at Receiver 1 is expressed as

Y n
1 = αXn

1 + γSn
2 + Zn

1 . (22)

The receiver can now perform the same sequence of operations
as in Equations (17)-(20) to obtain

Rn
11 = [V n +Wn

11] modΛ

whereWn
11 = γ(δ + β)Sn

2 + (δα − 1)Xn
1 + δZn

1 represents
the effective noise independent ofV n. By choosingP ′ =

σ2(1 − ρ2)α1P+N1

α1P
, α =

√

α1P
P ′ , δ = αP ′

α1P+N1

andβ = −δ,
we get

Rn
11 = V n +Wn

11, (23)

where the variance ofW11 is given by σ2(1−ρ)N1

α1P
. Observe

that we can rewrite (22) as a noisy observation ofSn
2 in the

form
Rn

12 = Sn
2 +Wn

12 (24)



where Wn
12 =

(αXn

1
+Zn

1
)

γ
is independent ofSn

2 and has

variance(α1P+N1)σ
2

(1−α1)P
.

Now, using the noisy observations ofV n and Sn
2 in

(23) and (24) respectively, we construct a linear estimator
of Sn

1 given Rn
11 andRn

12. Before finding the estimator, we
observe thatWn

11 andWn
12 are uncorrelated for the choice of

constantsα andδ stated above. For each time instanti,

E[W11iW12i] = E[((δα − 1)X1i + δZ1i)
(αX1i + Z1i)

γ
]

=
1

γ

(

(δα− 1)αP ′ + δN1

)

= 0

sinceδ = αP ′

α2P ′+N1

. ThereforeRn
11 andRn

12 are uncorrelated
as well and the linear estimator ofSn

1 is given by

Ŝn
1 =

1

1 + N1

α1P

Rn
11 +

ρ

1 + α1P+N1

(1−α1)P

Rn
12.

The distortion resulting inS1 is calculated to be

D1 =
σ2(1− ρ2)

1 + α1P
N1

+
ρ2σ2

1 + (1−α1)P
α1P+N1

.

Receiver 2 obtains the estimate ofSn
2 in the same fashion

as the independent case by treating the coded portion of the
received signal as noise to obtain a distortion

D2 =
σ2

1 + (1−α1)P
α1P+N2

.

Thus

Dh =

{

(D1, D2) : D1 ≥ σ2(1− ρ2)

1 + α1P
N1

+
ρ2σ2

1 + (1−α1)P
α1P+N1

D2 ≥ σ2

1 + (1−α1)P
α1P+N2

}

.

We now compare the distortion region achieved by the hybrid
coding scheme with two possible source channel separation
schemes, Scheme A and Scheme B. In Scheme A,Sn

1 and
Sn
2 are compressed to obtain messages that can be reliably

transmitted over the broadcast channel. The distortion region
achieved by this scheme is given by the set

DA =

{

(D1, D2) : D1 ≥ σ2

1 + α1P
N1

, D2 ≥ σ2

1 + (1−α1)P
α1P+N2

}

.

The distortion inS1 incurred by the hybrid scheme is smaller
than the distortion that is achieved by the above source channel
separation scheme if

σ2(1 − ρ2)

1 + α1P
N1

+
ρ2σ2

1 + (1−α1)P
α1P+N1

<
σ2

1 + α1P
N1

⇒ P

N1
<

1− 2α1

α2
1

.

ThusDA ⊂ Dh for α1 < 1
2 and P

N1

< 1−2α1

α2

1

.

In Scheme B, we use the representationSn
1 = ρSn

2 + V n,
stated earlier in this section. The transmitter compressesV n

andSn
2 to obtain messages that can be reliably communicated

to Receivers 1 and 2 respectively. Due to the degraded nature
of the broadcast channel, Receiver 1 can mimic Receiver 2
to obtain an estimate ofSn

2 . Now Receiver 1, combines the
estimates ofSn

2 andV n to construct an estimate ofSn
1 . The

distortion region thus achieved is given by

DB =

{

(D1, D2) : D1 ≥ σ2(1 − ρ2)

1 + α1P
N1

+
ρ2σ2

1 + (1−α1)P
α1P+N2

,

D2 ≥ σ2

1 + (1−α1)P
α1P+N2

}

.

Hence,DB ⊂ Dh for P
N

> 0 and0 ≤ α1 ≤ 1.

V. CONCLUSIONS

We present a hybrid coding scheme for source channel
communication of correlated Gaussian sources over broadcast
channels, that resembles dirty paper coding. We show that
the scheme is optimal in terms of achieving the smallest
distortion for communicating independent sources. Further, we
prove that for a non-trivial set of SNR, the scheme achieves
a lower distortion than source channel separation. As a next
step, we plan to compare uncoded, hybrid coded and separately
coded transmission schemes to determine regimes where each
outperforms the others.
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